ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp
Carpathian Math. Publ. 2023, 15 (1), 212-221 KapmaTcbki MmaTem. my6a. 2023, T.15, Nel, C.212-221
doi:10.15330/cmp.15.1.212-221

\J

On wavelet type Bernstein operators

Karsli H.

This paper deals with construction and studying wavelet type Bernstein operators by using the
compactly supported Daubechies wavelets of the given function f. The basis used in this construc-
tion is the wavelet expansion of the function f instead of its rational sampling values f (%) After
that, we investigate some properties of these operators in some function spaces.
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Introduction

For a bounded real valued function f € B|0, 1] defined on the interval [0, 1], the Bernstein
operators B, (f), n > 1, are defined by

B = L f () st n2 1, )

where p, x(x) = (Z) xF(1 — x)"%,0 < x < 1, is the Bernstein basis.

In approximation theory, these operators and some of their modifications are very well-
known. Especially, since the classical Bernstein operators (1) cannot be used for LP[0,1],
1 < p < oo, approximation, to obtain some positive results for these functions by using the
Bernstein operators, their Kantorovich and Durrmeyer type versions were considered.

The goal of this study is to find a positive solution to the approximation (or superposition)
problem for operators in some general function spaces by using the effects and relations be-
tween different function spaces provided by the wavelets. In other words, we will propose a
generalization and extension of the theory of approximation by introducing an integral oper-
ator, called wavelet type operators (see [1,4-7]). The new operators are more flexible than the
previous ones and they are at least a natural extension of the classical Bernstein operators, and
their Kantorovich and Durrmeyer type modifications.

1 Preliminaries and auxiliary results

In this section, we recall some notations and background material, namely Daubechies’
compactly supported wavelets [2,3], used throughout the paper.
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As usual, we denote by C[0, 1] the Banach space of continuous functions u : [0,1] — R with
norm

[ull = sup {|u(x)| : x € [0,1]},

LP[0,1], 1 < p < oo, denotes the space of Lebesgue measurable functions f satisfying some
conditions related with the pth power. The norms of f € LP[0,1],1 < p < oo, are given by

1/p
I, = ([ 1rora) <o, fle = esssup {1501 v € 0,11,

Definition 1 (boxcar function). Let I C IR be a single interval and A is a fixed positive constant.
A function ¢ : R — {0, A}, defined as

A xel,
P(x) =
0, x¢l,
is called boxcar function.

Definition 2 (scale function). A scale function is a special boxcar function defined as

1, x€10,1),
o) = oy ®
0, x¢&][0,1).
Clearly, a scale function can be also deftine by using Heaviside unit step function
I, x=>0,
HEx) =4 "~
0, x<0,

namely
¢(x) =H(x) —H(x—1).

Definition 3 ([2,3]). A multiresolution analysis (MRA) is a sequence (Vj)jcz of closed sub-
spaces of L?(R) such that the following statements hold:

i) Vjisasetofall f € L*(R) which are constant on 27/ length intervals and

e CVaaCcVyicWyCcWVic---CViC Vi C.CLa(R),

UV = Lo(R);

VjkeZ f(x)eV, < f(2x) € Vi,
VkeZ, f(x)e Vo< f(x—k) eV,
VijikeZ f(x) €V« f(x—27k) €V;

iii)

Y= o).
J
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Definition 4 (Wavelet). A wavelet is a small wave which oscillates and decays in the time
domain. A wavelet basis set starts with two orthogonal functions: the scaling function or father
wavelet ¢(t) and the wavelet function or mother wavelet (t). By scaling and translation
of these two orthogonal functions we obtain a complete basis set. The scaling and wavelet
functions, respectively, satisfy

/oo P(t)dt =1, /oo W(t)dt = 0.

These two functions have finite energy, namely ¢, € L?(IR), and orthogonal.

In general, the wavelets refer to the set of family of orthonormal functions of the form

Pap(t) = %l[) <d> , a>0,beR, 3)

a
where 1 is the basic wavelet.

Example 1 (Haar wavelet). The simplest wavelet is known as the Haar wavelet defined as

1, 0<x<3,
p(x)=4-1, 3<x<1,

0, otherwise

with the scaling function (2).

Clearly, Haar wavelets constitutes an orthonormal system for the space of square-integrable
functions on the real line. Since Haar wavelet is not continuous and therefore not ditferen-
tiable, it is suitable for representing discrete signals not for representing smooth signals or
functions.

In the present study, we consider orthonormal bases of wavelets in L?(IR), and assume that
there is a scaling function (father wavelet) ¢ (t) whose translates {¢(t — n) } are orthogonal and
the mother wavelet ¢(t) based on the father wavelet ¢(t) gives rise to the orthonormal basis
;k(t) of L*(R), where

i) =222t — k). (4)

Hence, by using a multiresolution analysis (MRA), each f € L?(R) has the following repre-
sentation

fx) =YY bjxpir(x),

jezkez

called wavelet expansion of f € L?(R), where b; x are wavelet coefficients defined by

bix = (f(x), ¥jx(x)) = /]Rf(x)ll’j,k(x)dx = 27/2/]Rf(x)¢’ (2x — k)dx.

Some convergence results about wavelet expansions are descibed in [5-7].
From (3) and (4) with some special cases of a and b one can obtain different types of
wavelets, such as Haar wavelet, Franklin system, Stromberg wavelet, Meyer wavelets, etc.
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Definition 5 (Compactly supported Daubechies wavelet [2, 3]).
Owing to the above definitions, we introduce the compactly supported Daubechies
wavelets considered in this paper. Let us assume that { € Lo (R) satisfies:

(a) ¥ is compactly supported, namely there is a real constant A > 0 such thatsupp ¢ C [0, 7],

(b) /°° P(x)dx =1,

(c) the first N moments satisfy

/oo lep(x)dx =0, j=1,...,N.

Definition 6. Let f € B[0,1], and let ¢ € Lo(R) be a father wavelet satistfying (a), (b), (c).
Then the wavelet type Bernstein operators, constructed by using the compactly supported
Daubechies wavelets, are defined by

x+k
n

(WBA)() = n 2 puslt) [ (gt —Rydx = £ pustt) [ £ (05 ) o)

:épn,k(t) /OAf<x:k> p(x)dx, teR

Remark 1. If we choose the father wavelet (x) as the Haar scaling function, namely
¥(x) = Xjo1)(x), then clearly our wavelet type operators reduce to the Kantorovich form of
the Bernstein operators

(5)

u-t+k
n

(WBAf)() =1 3 pustt) [ () plorx = e = st [ £ (45 ) )

= 3 puclt) [ 1 (55 )ty

This means that our operators constructed by wavelets are natural extensions of the Kan-
torovich type of the Bernstein operators and also Durrmeyer type operators.

2 Fundamental and some convergence properties

We now introduce some notations and structural hypotheses, which will be fundamental
in proving our convergence theorems. This section provides the main approximation results
of the paper.

We are now ready to establish one of the first main results of this study, which gives a strong
relation between Bernstein operators (1) and our new operators (5) constructed by wavelets.

Theorem 1. Let f € B[0,1] and let € Lo(R) be a father wavelet satisfying (a), (b), (c). Then
the moments of wavelet type Bernstein operators, constructed by using the compactly sup-
ported Daubechies wavelets (5) and the Bernstein operators (1) are the same, namely

(WBux®)(t) = (Bpx®)(1), s=0,1,...,K

holds true.
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Proof. In view of the definition of the operators (5), we have

(W) () =13 sl /x¢<nx—k>dx=ipn,ka)/m(”*")sw(u)du

k=0
-1 kgopn,km KRN ank 0 [ 2 ()| pa an

In view of (c), for i # 0 one has

and from (b) for i = 0 we get

(VB () = e 1 pucl®) [ K0 = Y- opustt) = (B )

Remark 2. Moreover, the central moments of the wavelet type Bernstein operators (5) are the
same as of the classical Bernstein operators (1). Indeed, as in the previous Theorem 1, we get

n

(WBa (x=0)F) () =1 Y pus() [ (x= ) plnx = k) dx

k=0
=1§)pnk<t>4(”jk—t)ﬁw<u>du
= %épnka)/niwk—nt)ﬁw(u)du
-2 Eo pustt) [ | f@ (5)w = i) .

Again by the properties of the compactly supported Daubechies wavelets, namely (c) and
(b), we get

(WB. (x~ 1) (1) = kz% pux(®) (k= 1) = (B (x— 1)) (1)

Throughout this work, as in the case of the Bernstein operators, we assume that the first two
central moments of the Bernstein operators, constructed by using the compactly supported
Daubechies wavelets (5), satisfy

mo(¢@) := (WB,1)(t) =1,
mi(¢) == (WBn (x—1t) )(t> =0, (6)

o 2 ~x(1—-x)
(@) == <WBn (x — 1) ) () = =—=.
Theorem 2. Let f € B[0,1] and let ) € Lo(R) be a father wavelet satisfying (a), (b), (c). Then
lim (WB, f)(to) = f(t)

holds true at each point t( of continuity of f.
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Proof. In view of the definition of the operators (5), one has
(WB.f) (to) = £(to) = ank to) [ £ (x) plnx = k) dx = f(to)
u+k
=Y puslto) [ f Y(u)du — £(t).
k=0 R n
By Theorem 1, we know that
(WB,1)(t) = (Ba1)(t) = 1. )
Hence we can write
|(WBWf) (t0) = f(to)] = |n Y- puslto) [ (F (¥) = fto)g(nx — K dx
& u+k
<Y puatto) [ |7 () = 7000 )
k=0 R n
Let us divide the last term into two parts as follows
|[(WB.f) (to) = f(to)| < Py + P2,
where
u+k
P= % pustto) [ |7 () = o) [t
k=0
u-+k
= Y et [ () F0) o]
and L
u—+
Pr= Epto) [ () ) lew) e
Since t( is a continuity pomt of f, then clearly
[f(t) = fto)| <e
whenever |t — tg| < J, hence we can write
u-+k
= S st [ () )|l < < gl
On the other hand, since
() = fto)| < 2] f]
whenever |t — tg| > J, we get
u-+k
Z Y (“15) = st |l
<2 t) [ d
<2 L pustt) [, 0]
ma(¢) _ -2
<2|f 5 5 9l = O (n72).
Collecting these estimates we have
Tim (WB, ) (to) = £(to)-
This completes the proof. O
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Actually, Daubechies wavelets have strong relations with the properties of continuity and
differentaibility. Namely, for an arbitrary fixed integer N > 1, compactly supported
Daubechies wavelet i is supported with [0,2N — 1], in addition there exists a constant r > 0
such that for N > 2, ¢ € C'N (R) and it have a given number of vanishing moments.

In particular, when N = 1, then the first Daubechies wavelet ¢ will be the classical Haar
basis. As N increases, the regularity of the wavelets increase (see [2,3]). This means that if we
want to use Daubechies wavelets to reconstruct a function, it is more convenient to choose or
construct wavelets based on the continuity or differentiability properties of the given function
(see Example 1).

Using Weierstrass criterion, as a consequence of the Theorem 1 we have the following uni-
form convergence result.

Corollary 1. The same arguments of Theorem 2 apply to the case when f € C|0,1]. In this
case the convergence is uniform with respect to x € [0,1], and hence one has

Tim [[(WBaf) — fll, = 0.

Theorem 3. Let f € C[0,1] and let p € Lo(R) be a father wavelet satisfying (a), (b), (c). Then

IWBuflloo < Kl flleo
holds true, where K = A ||]|, -

Proof. For the operators (5) we have

Enatt) [} 7 (55) v ds| < X st

By taking the norm of the functions f and ¢ and considering (6), one has

}(Wan) (1) ‘ =

n

' f(”k) 'W(x)}dx-

[(WB.f)(H)] < épn,k(t) 1 flleo 1#lloc A <l flleo 1lloo A-

Hence we get

IWBuflloo < Alplleo 1 flleo -
O

Note 1. Since the compactly supported Daubechies wavelets are also an unconditional or-
thonormal base of L¥(IR), this allows us to investigate the convergence problem on LF(RR) by
means of our wavelet type Bernstein operators (5).

For CJ0, 1], let us consider the following Peetre’s K-functional
Ky(f,0) := inf - +5||¢" , 8
2(f,0) = inf {1If =8l + 118"l } ®)

where § > 0and W? = {g € C[0,1] : ¢, ¢” € C[0,1]}. Then there exists an absolute constant
C > 0 such that

Clwy(f, V3) < Ka(f,8) < Cwn(f, V), )
where

wa(f,V6) = sup sup |f(x+2h) —2f(x+h)+ f(x)] (10)
0<h<v/5x€[0/1]

is the second order modulus of smoothness of f.
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Theorem 4. Let f € C[0,1] and let € Lo(R) be a father wavelet satisfying (a), (b), (c). Then
lim (WB,f) (x) = £(x)

and

(WBLf)(x) — ()] < (K+1) K, (f; M) ,

n2
where K = A ||ip||, and Ka(f; ) is the Peetre’s K-functional.

Proof. Let ¢ € W2. By Taylor’s theorem, we have

8() = g0+ (-0 + [ (- 0, tel]

In view of Remark 2 and (7), applying WS, to the both sides of the above equation, we have

| (WB.g)(x) ‘(WBn< x)(t —x) —I—/t(t—v)g”(v) dv))(x) —g(x)
/ '/ Hk( )g”(v) do
/ [/x"” ‘}8 )\dv]\’l)(u)\du

" 2
< Allleollsll 2o prs(x) <A+k - x)

| (u)| du

<
<

n

= Ayl g 3 st ) 2 (5]

n

2 m
<A|r¢|rong”Hm[ 2l9) 25 2m (9)]

n
M9l I8 e
n2

[mz () + AZ] .

Hence, taking infimum on the right hand side over all ¢ € W? and using (8), we get

| WBf) () = f(0)] < inf {IWBo (F = 8) [l + I = 8ll | (WBng) (5) — ()] }

. MYl [mZ (p) +A ] "
< int {19l + 1) 1 = gl + "Il }

2
: _ na ((P) + A2 "
< (k1) inf {1 =gl + =0 [
m + A2

— (K+1)K; <f;72(9’;)2 ) :
where K = A |9, - O
Theorem 5. Let f € C[0,1], ¢ € Lo(R) be a father wavelet satisfies (a), (b), (c) and « € (0,2)
be fixed real number. Then

wy(fit) = O(t") = [ (WBuf) (x) — f(x)| = O(1/n)"

holds true.
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Proof. In view of the relation (9) between modulus of smoothess (10) and Peetre’s K-functional
(8), from Theorem 4 we have

»(W&J)@)—ﬂwns<K+1wa(ﬁT4ftiﬁ)

n2

e () L A2 w/2
< (K+1)Cay (ﬁ\/w> < (K+1)C<M>

n? n?
O

Theorem 6. Let f € L'[0,1] and let ¢ € Lo(IR) be a father wavelet satistying (a), (b), (c). Then

IWBxflly < K|l flly

holds true, where K = nh |||, ||pnll; and h := [A]| 4 1. Here | x| denotes the floor function
of the real number x.

Proof. We have

[ 1w )] i = |

ank /f(x:k>1/’
/ank (x:k>'}l[] )| du dt
<wmu2/w

}du(/ P (t dt)

<l ol 35 [, 70

k=0""n

For a real number x, |x| = max{n € Z | n < x} denotes the integer part function. Now, we
seth:= |A] + 1. Hence we have

h+k
[ 1WBag) (0]t < n 1l npnku1§:‘/' £ ()l < o [l el 111y = KDL
here K = nh ||¢||, ||pnll; and this completes the proof. O

Theorem 7. Let f € LP[0,1],1 < p < o0, and let ) € L(R) be a father wavelet satisfying (a),
(b), (c). Then
IWBufll, < Ky llfll,

holds true, where K, = n ||¢ ||, HpnkHl/p W/P >0andh:= [A] +1.

Proof. We have

</01 }(Wan)(t)‘pdty/p N (/ Z Pkt / f(x)p(nx — k)dx pdt>1/p

< (kg)pn,k(f) /]R |f (x) p(nx — k)| dx) pdt) w = W.
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Applying Jensen inequality, generalized Minkowsky inequality, and the change of variable

nx — k = u, we obtain

where Ky, = 1 {[9]| [| Pk

wr < [ 3 o) f, () gl =] dx )
<o [ X st ( [P g - ) a
= [ (LI ot =R [ puctta)

n A

LY [ I P

k=0
Since i = [A] 41, we have WP < n? ||[$||2, || Pk

< 1 ([$lleo 1Pnk

|, h Hf”g This implies
1/p
IWBfll, < (n” 11912 Pl 1 1F1D) " = Ko lI£1,
1

]1/’7 hl/P. This completes the proof. O

Note 2. By Riesz-Thorin Theorem, Theorem 7 is a natural consequence of Theorems 3 and 6.

Acknowledgment. I would like to thank the referees for their valuable comments and

suggestions that improve the quality and the presentation of the paper.

References

Agratini O. Construction of Baskakov-type operators by wavelets. Rev. Anal. Numér. Théor. Approx. 1977, 26 (1-2),
3-11.

Daubechies 1. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 1988, 41, 909-996.
DaubechiesI. Ten Lectures on Wavelets. CBMS-NSF Series In: Appl. Math. 61, SIAM Publ. Philadelphia, 1992.

Gonska H.H., Zhou D.X. Using wavelets for Szdsz-type operators. Rev. Anal. Numér. Théor. Approx. 1995, 24
(1-2), 131-145.

Kelly S.E., Kon M.A., Raphael A.L. Pointwise convergence of wavelet expansions. Bull. Amer. Math. Soc. (N.S.)
1994, 30 (1), 87-94. doi:10.1090/50273-0979-1994-00490-2

Lenski W., Szal B. Approximation of Integrable Functions by Wavelet Expansions. Results Math. 2017, 72, 1203-1211.
d0i:10.1007 /s00025-016-0614-z

Walter G.G. Pointwise convergence of wavelet expansions. ]. Approx. Theory 1995, 80 (1), 108-118.

Received 29.05.2022
Revised 16.07.2022

Kapcai X. I1po onepamopu bepHumetina seiienemuozo muny // KapmaTtcexi marem. myba. — 2023. —
T.15, Nel. — C. 212-221.

LIst craTTst mpucBsiueHa O6YyAOBi Ta BUBUEHHIO OllepaToOpiB DepHIlTeiiHa BelfBA€THOTO THITY 3
BUKOPYICTaHHSIM BelfBAeTiB A0beIlTi 3 KOMITAaKTHYMY HOCisIMU 3aAaHOI PyHKIIT f. OcHOBOIO, sIKa BU-
KOPMCTOBY€ETBCS B LIill KOHCTPYKIIil, € BelfBAT-pO3KAaA PYHKIIT f 3aMicTb 1i 3HaUeHD f (%) IMicas
LIbOTO MM AOCAIAXYEMO AesIKi BAACTMBOCTI IIMX OIIePaTOpPiB y AesIKMX (PYHKITIOHAABHMX IIPOCTOPaX.

Kntouosi cnoea i ppasu: morinom BepHIITeliHa, iHTepIIOASIIiS, BeViBAET, BeliBAeT Aoberi 3 KoM-
MaKTHMM HOCie€M, alfpOKC/MaALLisl.



