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A note on the Banach lattice cy(/}), its dual and its bidual

Lourenc¢o M.L., Miranda V.C.C.

The main purpose of this paper is to study some geometric and topological properties of co-sum
of the finite dimensional Banach lattice Eg, its dual and its bidual. Among other results, we show
that the Banach lattice co (¢ ) has the strong Gelfand-Philips property, but does not have the positive
Grothendieck property. We also prove that the closed unit ball of I (£}) is an almost limited set.
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Introduction

Throughout this paper, X and Y will denote Banach spaces, E and F will denote Banach
lattices. We denote by By the closed unit ball of X. In a Banach lattice, the additional lattice
structure provides a large number of tools that are not available in more general Banach spaces.
This fact facilitates the study of geometric and topological properties of Banach lattices. It is
extremely important to add more examples of Banach lattices which satisfy or do not some
geometric or topological properties. Our objective here is to study the Banach lattices given
by (P51 45)y, (Br=1 05), and (P, £4),, and describe which properties each of them sat-
isfies. The importance of such Banach spaces is due to the fact that the result presented by
C. Stegall in [14], where he showed that (P);,_; ¢5),, does not have Dunford-Pettis property,
but its predual, (P;_; £3),, has it.

We will start by recalling concepts of specific sets in Banach spaces and their consequences
on their geometric or topological properties.

A bounded set A C X is Dunford-Pettis (resp. limited) if every weakly null sequence in
X' converges uniformly to zero on A (resp. if every weak* null sequence in X’ converges
uniformly to zero on A). Concerning these sets, we can consider a few properties in the class
of Banach spaces. A Banach space X has the DP property (resp. DP* property) if every relatively
weakly compact subset of X is Dunford-Pettis (resp. if every relatively weakly compact subset
of X is limited). Or equivalently, x},(x,) — 0 for every x, — 0in X and x/, < 0 in X’ (resp.
X! (x) — 0 for every x, <5 0in X and x/, “ 0in X' )- We say that X has Gelfand-Phlips property
(GP property for short), if every limited subset of X is relatively compact.
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Of course the DP* property implies the DP. On the other hand, L1[0,1] and ¢( are Banach
spaces with the DP property without the DP*. Schur spaces have all three properties listed
above. Separable and reflexive spaces are examples of Banach spaces with the GP property.
For more information concerning those properties we refer the reader to [1,4,6,9].

In the class of Banach lattices, the lattice structure allows us to consider disjoint sequences.
A sequence (x,,) C E is disjoint if |x,| A |xy,| = 0 for every n # m. A bounded subset A C E is
almost Dunford-Pettis (resp. almost limited) if every disjoint weakly null sequence in E’ converges
uniformly to zero on A (resp. if every disjoint weak* null sequence in E’ converges uniformly
to zero on A). Next, we will give some properties in Banach lattices that the definitions given
for the sets above appear naturally. A Banach lattice E has the weak DP property (wDP for
short) if every relatively weakly compact subset of E is almost Dunford-Pettis. Or equivalently,
if for all Banach space Y, every weakly compact operator T : F — Y is an almost Dunford-Pettis
operator, that means, T maps disjoint weakly null sequences of F onto norm null sequences
in Y. We say that E has the weak DP* property (wWDP* for short) if every relatively weakly
compact subset of E is almost limited, or equivalently, if x),(x,) — 0 for each weakly null
sequence (x,) C F and each disjoint weak* null sequence (x;,) C F’. A Banach lattice E is said
to have the strong GP property (sGP for short) if every almost limited subset of E is relatively
compact.

Of course, the DP and the DP* properties imply the wDP and the wDP*, respectively.
In [10], D.H. Leung gave the first example of a Banach lattice with the wDP property and
without the DP. In [7], the authors showed that L;[0, 1] has the wDP* property even though it
does not have the DP*. Note that the sGP property is stronger than the GP. For instance, L1[0, 1]
does not have the GP property. We refer to [2,3,7] for more details concerning those properties.

Recall that a Banach space X has the Grothendieck property if every weak* null sequence
in X" is weakly null. For example, /« has the Grothendieck property. For a Banach lattice,
we can consider the weak Grothendieck property and the positive Grothendieck property.
From [15], E is said to have the positive Grothendieck property if every positive weak* null se-
quence in E’ is weakly null. Following [12], E has the weak Grothendieck property if every dis-
joint weak* null sequence in E’ is weakly null. Clearly, the Grothendieck property implies
both the positive Grothendick and the weak Grothendieck properties. For instance, /1 has
the weak Grothendieck property, but it fails to have the positive Grothendieck property, and
c is a Banach lattice with the positive Grothendieck property without the weak Grothendieck

property.

1 Results

First, we are going to fix some notations. Denote by £ the Banach lattice R" with Euclidean
norm and let

(@éz) —co(th), E= (@éz) () and E”z(éeg)wzlww@. 1)

We can consider in E a natural structure of Banach lattice induced by its unconditional
i
basis (e ])l], where e] 0,...,0," ¢; ,0,...) withe; = (O,...,O,l(

also are Banach lattices with their dual structures.

]-),0,...). Thus E’ and E”
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Our goal in this section is to study the topological properties of such Banach lattices. In the
following, E, E’ and E” will be fixed as in (1). It is known that E’ is a Schur space (see [14]),
and consequently, E’ has the DP property. However, its dual E” does not have it. This was the
first example of a Banach space with the DP property whose dual space does not have it.

Since E’ has the Schur property, it has the DP, the DP* and the sGP properties, then E has
the DP and wDP properties. In the next proposition, we will show that E does not have the
wDP* property.

Proposition 1. The Banach lattice E does not have the wDP* property.

Proof. 1f (ey) is the Schauder basis in ¢y and if T : ¢o — E is the positive diagonal operator
given by

X1 0 0
[1%) 0

T 2) . = ,
(j); &3

we have that Te,, < 0 in E. On the other hand, the sequence e, , = (0,...,0,e,,0,...) € E/
is disjoint and weak* null with e}, ,(Te,) = 1 for every n. So, E does not have the wDP*
property. U

As E” does not have the DP property, it is natural to ask if E” has the wDP property. And
here we will show that E” does not have it. To do this, we need the next two lemmas.

Lemma 1. Let F and G be Banach lattices such that F has the wDP property. If T : F — G isa
surjective lattice isomorphism, then G also has the wDP property.

Proof. Let X be a Banach space and S : G — X be a weakly compact operator. So So T : F — X
is a weakly compact operator. As F has the wDP property, then S o T is an almost DP operator
operator. Now we show that the operator S is an almost DP operator. Let (y,) C G be a
disjoint weakly null sequence, so there exists (x,) C F a disjoint weakly null sequence such
that Tx, = y, for all n. Therefore S(y,,) = S(T(x,)) and we have that S(y,) — 0in X, so S is
an almost DP and the result follows. O

Let F be a Banach lattice and G C F a sublattice. We say that G is a complemented sublattice
of F if there is a bounded projection P : F — F such that P(F) = G.

Lemma 2. Let F a Banach lattice and let G be a complemented sublattice of F. If F has the wDP
property, then G has wDP property.

Proof. Consider a Banach space X and a weakly compact operator T: G — X. Let P: F — F
be a bounded projection such that P(F) = G. So ToP : F — X is also a weakly compact
operator. Thus, T o P is an almost DP operator. If (z,) is a disjoint weakly null sequence in
G, since G is a sublattice of F, it follows that (z,) is a disjoint weakly null sequence in F. As
T(zn) = T(P(zn)) we get that T(z,) — 0 and the result is true. O

Now we can prove that E” does not have the wDP property.
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Proposition 2. The Banach lattice E” does not have the wDP property.
Proof. Consider the bounded linear operator R : E' — /¢, given by
R(x) = (JC1,1+JC2,1+"' ;X202 + X304 - ,)

By C. Stegall [14], we have that R’ : ¢, — E” is an isomorphism on R'(¢;), and R'(¢;) is
a complemented subspace of E”, as Banach spaces. It is easy to verify that R’ is a lattice
isomorphism on R’(¢;) and R’(¥¢;) is a complemented sublattice of E”. Since ¢, does not have
the wDP property, it follows from Lemma 1 that R’(¢;) cannot have the wDP property. By
Lemma 2, it follows that E” cannot have the wDP property. ]

Since every almost limited set is almost DP set, as a consequence of Proposition 2, E’ cannot
have the wDP* property. We observe that E has the GP property, because E is separable.
Now, we will prove that E has the sGP property. First we need the following assertion.

Lemma 3. The Banach lattice E is Dedekind complete.

Proof. Let A C E such thata < x for every a € A and some x € E™. In particular,

a1 dz1 4z1 - X11 X211 X31
g = a2 4as2 < X22 X32 -
assz - | X33

holds for every a € A. So, ajj < X inRforeveryi € Nandj =1,...,i. As R is Dedekind
complete, there are z; ; = sup {ai,j ca=(ag)<x € A} forallie Nandj=1,...,i. Now, let
z = (zj;)j<i- Since x;; < z; ; holds for every i € Nand j = 1,...,1, it follows that z € E. Now
we prove that z = sup A. In fact, if y € E is such thata < y for every a € A, soa;; < y; ; for
everyi € Nandj =1,...,i. Thus zij < Vi foreveryi € Nand j = 1,...,i, hence z is the
supremum of A in E. O

As a consequence of the above lemma, we have that E has order continuous norm. We will
conclude that E has the sGP property showing that E is a discrete Banach lattice. First, we
recall that an element x belongs to a Banach lattice F is discrete if x > 0 and |y| < x implies
y = tx for some real number ¢t. If every order interval [0,y] in F contains a discrete element,
then F is said to be a discrete Banach lattice.

Theorem 1. The Banach lattice E has the sGP property.

Proof. By [2, Theorem 2.1], it suffices to prove that E is a discrete Banach lattice. Let [0, y]| be an
order interval in E, take

Vi1 Y21 Y31 - yiqa O
Y22 Y32 0
Y33

o O O
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So x € [0,y]. If |z| < xin E, it follows that

with |z1 1| < y1,1 in R. This implies that there exists a real number ¢ such that z; ; = ty; 1. Thus
z = tx. The result follows. O

We claim that E” does not have the GP property. Indeed, consider the positive operator
S : e — E" given by

X1 0 0
[1%) 0
S(OC])] = i3

As (en)n C Lo is a weakly null limited sequence, this implies that (Se,) is a weakly null limited
sequence in E” such that ||Se,||lcc = 1 for all n. That means E” does not have the Gelfand-
Phillips property.

Next, we study the Grothendieck type properties in E and E’.

Proposition 3. The Banach lattice E does not have the weak Grothendieck property and does
not have the positive Grotendieck property.

Proof. Let (e}, ,,) C E’ as given in the proof of Proposition 1. This sequence is positive, disjoint

and weak* null in E’, however, (e}, ,,) is not weakly null. Indeed, if x” € E” given by

10
1

- o O
o O © O

then x’ (e}, ,,) = 1 for all n. O

nn

Proposition 4. The Banach lattice E' has the weak Grothendieck property, however it does not
have the positive Grothendieck property.

Proof. Lete € E” be given by

—_
[

It is easy to see that e is an order unit of E”, that means Bg» = [—e¢,¢e]. Let (x)]) C E” be a
disjoint weak* null sequence. In particular, (x),) is bounded, and so there exists M > 0 such
that x;, € [—Me, Me] for every n € IN. Consequently, (x),) is a disjoint order bounded sequence
in E”, hence x}! % 0in E” (see [1, p. 192]). Therefore E’ has the weak Grothendieck property.
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Consider the diagonal operator T : {; — E/, given by

o1 0 0
1%} 0
T(a;); =
() i3
It is easy to see thar T is a lattice isometry and for each & = («;); € {1, we have || T(a)| = |||,

hence T is a lattice embedding. By [13, Proposition 2.3.11], it follows that ¢; is isomorphic to
a positively complemented sublattice in E’, then E’ does not have the positive Grothendieck
property. UJ

Corollary 1. The norm in E” is not order continuous.

Proof. By [12, Proposition 4.9], if F is a Banach lattice which has the weak Grothendieck prop-
erty and F’ has order continuous norm, then F also has the positive Grothendieck property.
So, by Proposition 4, it follows that E” does not have order continuous norm. O

Now we want to give a version of Phillip’s Lemma for E”. To do this we use Dixmeir’s
Theorem, that is, if X is a Banach space, then X’ is complemented in X" (see [8]). Despite
being a known result, we decided to state it in the next lemma and present a proof for the
specific case of the Banach lattice E"”.

Lemma 4. Consider E* = {f € E"" : f(x) =0,Vx € E}. Then E" = E' ® E*+ and E* is an
ideal in E.

Proof. Let f € E" and puta;; = f(e;;) foralli € Nand j = 1,...,i. We claim that

a1 d21 4asg
/ ap azp - -- cE
as3

Indeed, since

2 il <3S oy = 33 Fleyen,) — (2 3 euel,]) < Il

i=1j=1 i=1j=1 i=1j=1

On the other hand, if x = (x;)1<j<; € E, then

n 1
1) =) = tim [ 3333 )~ 33 gt =0
i=1j=1 i=1j=1
AsE'NE+ ={0},wegetE"” =FE ®E*.

By Lemma 3, E has order continuous norm, as a consequence it is an ideal in E”. We claim
that E+ is an ideal in E". Indeed, let x,y""" € E" with |y"'| < |x"’| and x"” € E+. If x € E*
and |y”’| < xin E”, then |y”| € E, this implies that |x"|(x) = sup {|x""(y)| : |y|] < x} = 0.
Finally, if x € E,

‘ /// ‘ <‘y///‘<’x‘) <‘x///‘<‘x’)

Therefore y’ € E*. O
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Now we give a version of Phillip’s Lemma for E”. The proof follows the same idea of
[1, Theorem 4.67]. We remark that in [5] the authors has showed that B is a limited set in E’,
but they used another technique in another context.

Proposition 5. Every weak* null sequence in E" converges uniformly to zero on Br. Conse-
quently, B is a limited set in E”.

Proof. Let (f,) C E" be a weak* null sequence. By Lemma 4 we write f, = x, + ¢, with
(x4) C E'and (g,) C E*. As E’ has order continuous norm then E’ is an ideal in E’”. On the
other hand, since E* also is an ideal in E’, by [1, Theorem 1.41], we have that E’ is a projection

band in E"”’, which yields that x, @, 0in E" (see [1, Theorem 4.46]). Then x, = 0in E/, and
since E’ has the Schur property, x, — 0in E’. As a consequence,

| fullBe = sup ‘xn(x)‘ < lxu|| — 0.
x€BE

O
Proposition 6. The Banach lattice E” has the weak and the positive Grothendieck properties.

Proof. Let (x;,) C E" be a positive weak* null sequence. Since e is an order unit of E”, that
means Bpr = [—e, ¢], we get that

lxull = sup [xu(x)'| = x;(e) — 0.
x€[—ee]

So x}, %4 0, and E" has the positive Grothendieck property.
Now, as every disjoint weak* null sequence (f,,) C E"” implies |f,| “> 0in E”. So, E” has

the positive Grothendieck property. O

In the next result we classify the closed unit balls of E, E’ and bounded subset E” concern-
ing if they are (or not) almost Dunford-Pettis or almost limited. As E’ has the Schur property,
Bg is a Dunford-Pettis set.

Proposition 7.

(1) The closed unit ball of E is not almost limited.
(2) The closed unit ball of E' is not almost Dunford-Pettis.

(3) Every norm bounded subset in E" is almost limited.
Proof.

(1) LetT :cog — Eand (e, ,) C E'be the positive operator given in the proof of Proposition 1.
Since ||e} ,[|B; = SUP,ep, el o (x)| > €], ,(Ten) = 1 for all n, where (e, ), is the canonical
basis in ¢y, we have that Bg is not almost limited.

(2) The unit diagonal sequence ey, = (0,...,0,e,,0,...) for all n is weakly null and disjoint
in E”. Since SUP,cp, len ,(x)] > SUPcp, ey 1(e1,,)| = 1 for all n, we have that By is not
almost Dunford-Pettis. As a consequence B it is not almost limited.

(3) Consider a norm bounded subset A C E”. Then there exists M > 0 such that
A C M- Bgr = [—Me, Me] = sol(Me). By [11, Lemma 2.1], we have that M - B is
almost limited. Consequently, A is almost limited as well.

O
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l'onoBHMM 3aBAQHHSIM ITi€l CTATTi € AOCAIAKEHHSI A€SIKIX TeOMeTPUYHMX Ta TOIMOAOTiUHMX BAA-
CTUBOCTE Co-CyMU CKiHUeHHO BMMipHOi 6aHax0BoOI I'paTky {5, I CIpsKeHOI Ta APYTOl CIpSIKeHOi.
Cepep, iHIIOrO MM IOKa3yeMo, 110 6aHaxoBa I'paTka Co({}) BOAOAi€ CMABHOIO BAacTuBicTIO I'enb-
danaa-dinirnca, are He BOAOAI€ AOAATHBOIO BAACTHBICTIO rp0T6HAiKa. Mwu TakoX AOBOAMMO, IIO
3aMKHYTa OAVHMYHA KYASI IPOCTOPY loo (€5 ) € Maiike TpaHMUHOI MHOXXHOIO.

Kontouosi cnosa i ¢ppasu: baHaxoBa Iparka, BaacTusicTh AaHdopaa-Tlerrica, BAacTuBicTb I'eAb-
danna-Dinrinca, crabka BaactusicTs Aardopaa-Tlerrica, caabka BaactusicTs I poreHaika, AoaaTHA
BAacTuBicTh [ poTeHaika, ciAbHa BAaCTUBICTh I'eabdpanaa-Dirinca.



