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A note on the Banach lattice c0(ℓn
2), its dual and its bidual

Lourenço M.L., Miranda V.C.C.

The main purpose of this paper is to study some geometric and topological properties of c0-sum

of the finite dimensional Banach lattice ℓn
2 , its dual and its bidual. Among other results, we show

that the Banach lattice c0(ℓ
n
2 ) has the strong Gelfand-Philips property, but does not have the positive

Grothendieck property. We also prove that the closed unit ball of l∞(ℓn
2) is an almost limited set.
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Introduction

Throughout this paper, X and Y will denote Banach spaces, E and F will denote Banach

lattices. We denote by BX the closed unit ball of X. In a Banach lattice, the additional lattice

structure provides a large number of tools that are not available in more general Banach spaces.

This fact facilitates the study of geometric and topological properties of Banach lattices. It is

extremely important to add more examples of Banach lattices which satisfy or do not some

geometric or topological properties. Our objective here is to study the Banach lattices given

by (
À

∞

n=1 ℓ
n
2 )0 , (

À

∞

n=1 ℓ
n
2)1 and (

À

∞

n=1 ℓ
n
2)∞

and describe which properties each of them sat-

isfies. The importance of such Banach spaces is due to the fact that the result presented by

C. Stegall in [14], where he showed that (
À

∞

n=1 ℓ
n
2)∞

does not have Dunford-Pettis property,

but its predual, (
À

∞

n=1 ℓ
n
2)1 , has it.

We will start by recalling concepts of specific sets in Banach spaces and their consequences

on their geometric or topological properties.

A bounded set A ⊂ X is Dunford-Pettis (resp. limited) if every weakly null sequence in

X′ converges uniformly to zero on A (resp. if every weak* null sequence in X′ converges

uniformly to zero on A). Concerning these sets, we can consider a few properties in the class

of Banach spaces. A Banach space X has the DP property (resp. DP* property) if every relatively

weakly compact subset of X is Dunford-Pettis (resp. if every relatively weakly compact subset

of X is limited). Or equivalently, x′n(xn) → 0 for every xn
ω

→ 0 in X and x′n
ω

→ 0 in X′ (resp.

x′n(xn) → 0 for every xn
ω

→ 0 in X and x′n
ω
∗

→ 0 in X′). We say that X has Gelfand-Phlips property

(GP property for short), if every limited subset of X is relatively compact.
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Of course the DP* property implies the DP. On the other hand, L1[0, 1] and c0 are Banach

spaces with the DP property without the DP*. Schur spaces have all three properties listed

above. Separable and reflexive spaces are examples of Banach spaces with the GP property.

For more information concerning those properties we refer the reader to [1, 4, 6, 9].

In the class of Banach lattices, the lattice structure allows us to consider disjoint sequences.

A sequence (xn) ⊂ E is disjoint if |xn| ∧ |xm| = 0 for every n =/ m. A bounded subset A ⊂ E is

almost Dunford-Pettis (resp. almost limited) if every disjoint weakly null sequence in E′ converges

uniformly to zero on A (resp. if every disjoint weak* null sequence in E′ converges uniformly

to zero on A). Next, we will give some properties in Banach lattices that the definitions given

for the sets above appear naturally. A Banach lattice E has the weak DP property (wDP for

short) if every relatively weakly compact subset of E is almost Dunford-Pettis. Or equivalently,

if for all Banach space Y, every weakly compact operator T : F → Y is an almost Dunford-Pettis

operator, that means, T maps disjoint weakly null sequences of F onto norm null sequences

in Y. We say that E has the weak DP* property (wDP* for short) if every relatively weakly

compact subset of E is almost limited, or equivalently, if x′n(xn) → 0 for each weakly null

sequence (xn) ⊂ F and each disjoint weak* null sequence (x′n) ⊂ F′. A Banach lattice E is said

to have the strong GP property (sGP for short) if every almost limited subset of E is relatively

compact.

Of course, the DP and the DP* properties imply the wDP and the wDP*, respectively.

In [10], D.H. Leung gave the first example of a Banach lattice with the wDP property and

without the DP. In [7], the authors showed that L1[0, 1] has the wDP* property even though it

does not have the DP*. Note that the sGP property is stronger than the GP. For instance, L1[0, 1]

does not have the GP property. We refer to [2,3,7] for more details concerning those properties.

Recall that a Banach space X has the Grothendieck property if every weak* null sequence

in X′ is weakly null. For example, ℓ∞ has the Grothendieck property. For a Banach lattice,

we can consider the weak Grothendieck property and the positive Grothendieck property.

From [15], E is said to have the positive Grothendieck property if every positive weak* null se-

quence in E′ is weakly null. Following [12], E has the weak Grothendieck property if every dis-

joint weak* null sequence in E′ is weakly null. Clearly, the Grothendieck property implies

both the positive Grothendick and the weak Grothendieck properties. For instance, ℓ1 has

the weak Grothendieck property, but it fails to have the positive Grothendieck property, and

c is a Banach lattice with the positive Grothendieck property without the weak Grothendieck

property.

1 Results

First, we are going to fix some notations. Denote by ℓn
2 the Banach lattice R

n with Euclidean

norm and let

E =

(

∞
à

n=1

ℓ
n
2

)

0

= c0(ℓ
n
2 ), E′ =

(

∞
à

n=1

ℓ
n
2

)

1

= l1(ℓ
n
2 ) and E′′ =

(

∞
à

n=1

ℓ
n
2

)

∞

= l∞(ℓ
n
2 ). (1)

We can consider in E a natural structure of Banach lattice induced by its unconditional

basis (ei
j)i,j, where ei

j = (0, . . . , 0,

i
hkkikkj

ej , 0, . . . ) with ej = (0, . . . , 0, 1(j), 0, . . . ). Thus E′ and E′′

also are Banach lattices with their dual structures.
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Our goal in this section is to study the topological properties of such Banach lattices. In the

following, E, E′ and E′′ will be fixed as in (1). It is known that E′ is a Schur space (see [14]),

and consequently, E′ has the DP property. However, its dual E′′ does not have it. This was the

first example of a Banach space with the DP property whose dual space does not have it.

Since E′ has the Schur property, it has the DP, the DP* and the sGP properties, then E has

the DP and wDP properties. In the next proposition, we will show that E does not have the

wDP* property.

Proposition 1. The Banach lattice E does not have the wDP* property.

Proof. If (en) is the Schauder basis in c0 and if T : c0 → E is the positive diagonal operator

given by

T(αj)j =











α1 0 0 . . .

α2 0 . . .

α3 . . .











,

we have that Ten
ω

→ 0 in E. On the other hand, the sequence e′n,n = (0, . . . , 0, en, 0, . . . ) ∈ E′

is disjoint and weak* null with e′n,n(Ten) = 1 for every n. So, E does not have the wDP*

property.

As E′′ does not have the DP property, it is natural to ask if E′′ has the wDP property. And

here we will show that E′′ does not have it. To do this, we need the next two lemmas.

Lemma 1. Let F and G be Banach lattices such that F has the wDP property. If T : F → G is a

surjective lattice isomorphism, then G also has the wDP property.

Proof. Let X be a Banach space and S : G → X be a weakly compact operator. So S ◦ T : F → X

is a weakly compact operator. As F has the wDP property, then S ◦ T is an almost DP operator

operator. Now we show that the operator S is an almost DP operator. Let (yn) ⊂ G be a

disjoint weakly null sequence, so there exists (xn) ⊂ F a disjoint weakly null sequence such

that Txn = yn for all n. Therefore S(yn) = S
(

T(xn)
)

and we have that S(yn) → 0 in X, so S is

an almost DP and the result follows.

Let F be a Banach lattice and G ⊂ F a sublattice. We say that G is a complemented sublattice

of F if there is a bounded projection P : F → F such that P(F) = G.

Lemma 2. Let F a Banach lattice and let G be a complemented sublattice of F. If F has the wDP

property, then G has wDP property.

Proof. Consider a Banach space X and a weakly compact operator T : G → X. Let P : F → F

be a bounded projection such that P(F) = G. So T ◦ P : F → X is also a weakly compact

operator. Thus, T ◦ P is an almost DP operator. If (zn) is a disjoint weakly null sequence in

G, since G is a sublattice of F, it follows that (zn) is a disjoint weakly null sequence in F. As

T(zn) = T
(

P(zn)
)

we get that T(zn) → 0 and the result is true.

Now we can prove that E′′ does not have the wDP property.
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Proposition 2. The Banach lattice E′′ does not have the wDP property.

Proof. Consider the bounded linear operator R : E′ → ℓ2 given by

R(x) = (x1,1 + x2,1 + · · · , x2,2 + x3,2 + · · · , · · · ).

By C. Stegall [14], we have that R′ : ℓ2 → E′′ is an isomorphism on R′(ℓ2), and R′(ℓ2) is

a complemented subspace of E′′, as Banach spaces. It is easy to verify that R′ is a lattice

isomorphism on R′(ℓ2) and R′(ℓ2) is a complemented sublattice of E′′. Since ℓ2 does not have

the wDP property, it follows from Lemma 1 that R′(ℓ2) cannot have the wDP property. By

Lemma 2, it follows that E′′ cannot have the wDP property.

Since every almost limited set is almost DP set, as a consequence of Proposition 2, E′′ cannot

have the wDP* property. We observe that E has the GP property, because E is separable.

Now, we will prove that E has the sGP property. First we need the following assertion.

Lemma 3. The Banach lattice E is Dedekind complete.

Proof. Let A ⊂ E such that a ≤ x for every a ∈ A and some x ∈ E+. In particular,

a =











a1,1 a2,1 a3,1 · · ·

a2,2 a3,2 · · ·

a3,3 · · ·

· · ·











≤











x1,1 x2,1 x3,1 · · ·

x2,2 x3,2 · · ·

x3,3 · · ·

· · ·











= x

holds for every a ∈ A. So, ai,j ≤ xi,j in R for every i ∈ N and j = 1, . . . , i. As R is Dedekind

complete, there are zi,j = sup
{

ai,j : a = (ak,l)l≤k ∈ A
}

for all i ∈ N and j = 1, . . . , i. Now, let

z = (zi,j)j≤i. Since xi,j ≤ zi,j holds for every i ∈ N and j = 1, . . . , i, it follows that z ∈ E. Now

we prove that z = sup A. In fact, if y ∈ E is such that a ≤ y for every a ∈ A, so ai,j ≤ yi,j for

every i ∈ N and j = 1, . . . , i. Thus zi,j ≤ yi,j for every i ∈ N and j = 1, . . . , i, hence z is the

supremum of A in E.

As a consequence of the above lemma, we have that E has order continuous norm. We will

conclude that E has the sGP property showing that E is a discrete Banach lattice. First, we

recall that an element x belongs to a Banach lattice F is discrete if x > 0 and |y| ≤ x implies

y = tx for some real number t. If every order interval [0, y] in F contains a discrete element,

then F is said to be a discrete Banach lattice.

Theorem 1. The Banach lattice E has the sGP property.

Proof. By [2, Theorem 2.1], it suffices to prove that E is a discrete Banach lattice. Let [0, y] be an

order interval in E, take

y =











y1,1 y2,1 y3,1 · · ·

y2,2 y3,2 · · ·

y3,3 · · ·

· · ·











and x =











y1,1 0 0 · · ·

0 0 · · ·

0 · · ·

· · ·











.
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So x ∈ [0, y]. If |z| ≤ x in E, it follows that

z =











z1,1 0 0 · · ·

0 0 · · ·

0 · · ·

· · ·











with |z1,1| ≤ y1,1 in R. This implies that there exists a real number t such that z1,1 = ty1,1. Thus

z = tx. The result follows.

We claim that E′′ does not have the GP property. Indeed, consider the positive operator

S : ℓ∞ → E′′ given by

S(αj)j =











α1 0 0 . . .

α2 0 . . .

α3 . . .











.

As (en)n ⊂ ℓ∞ is a weakly null limited sequence, this implies that (Sen) is a weakly null limited

sequence in E′′ such that ‖Sen‖∞ = 1 for all n. That means E′′ does not have the Gelfand-

Phillips property.

Next, we study the Grothendieck type properties in E and E′.

Proposition 3. The Banach lattice E does not have the weak Grothendieck property and does

not have the positive Grotendieck property.

Proof. Let (e′n,n) ⊂ E′ as given in the proof of Proposition 1. This sequence is positive, disjoint

and weak* null in E′, however, (e′n,n) is not weakly null. Indeed, if x′′ ∈ E′′ given by

x′′ =











1 0 0 0 · · ·

1 0 0 · · ·

1 0 · · ·

0 · · ·











.

then x′′(e′n,n) = 1 for all n.

Proposition 4. The Banach lattice E′ has the weak Grothendieck property, however it does not

have the positive Grothendieck property.

Proof. Let e ∈ E′′ be given by

e =











1 1 1 · · ·

1 1 · · ·

1 · · ·

· · ·











It is easy to see that e is an order unit of E′′, that means BE′′ = [−e, e]. Let (x′′n) ⊂ E′′ be a

disjoint weak* null sequence. In particular, (x′′n) is bounded, and so there exists M > 0 such

that x′′n ∈ [−Me, Me] for every n ∈ N. Consequently, (x′′n) is a disjoint order bounded sequence

in E′′, hence x′′n
ω

→ 0 in E′′ (see [1, p. 192]). Therefore E′ has the weak Grothendieck property.



A note on the Banach lattice c0(ℓ
n
2 ), its dual and its bidual 275

Consider the diagonal operator T : ℓ1 → E′, given by

T(αj)j =











α1 0 0 . . .

α2 0 . . .

α3 . . .











.

It is easy to see thar T is a lattice isometry and for each α = (αj)j ∈ ℓ1, we have
∥

∥T(α)
∥

∥ = ‖α‖,

hence T is a lattice embedding. By [13, Proposition 2.3.11], it follows that ℓ1 is isomorphic to

a positively complemented sublattice in E′, then E′ does not have the positive Grothendieck

property.

Corollary 1. The norm in E′′ is not order continuous.

Proof. By [12, Proposition 4.9], if F is a Banach lattice which has the weak Grothendieck prop-

erty and F′ has order continuous norm, then F also has the positive Grothendieck property.

So, by Proposition 4, it follows that E′′ does not have order continuous norm.

Now we want to give a version of Phillip’s Lemma for E′′. To do this we use Dixmeir’s

Theorem, that is, if X is a Banach space, then X′ is complemented in X′′ (see [8]). Despite

being a known result, we decided to state it in the next lemma and present a proof for the

specific case of the Banach lattice E′′′.

Lemma 4. Consider E⊥ = { f ∈ E′′′ : f (x) = 0, ∀ x ∈ E}. Then E′′′ = E′ ⊕ E⊥ and E⊥ is an

ideal in E′′′.

Proof. Let f ∈ E′′′ and put ai,j = f (ei,j) for all i ∈ N and j = 1, . . . , i. We claim that

a′ =











a1,1 a2,1 a3,1 · · ·

a2,2 a3,2 · · ·

a3,3 · · ·

· · ·











∈ E′.

Indeed, since

∞
ÿ

i=1

‖ai‖2 ≤
∞
ÿ

i=1

i
ÿ

j=1

|ai,j| =
∞
ÿ

i=1

i
ÿ

j=1

f (ǫi,jei,j) = f

(

∞
ÿ

i=1

i
ÿ

j=1

ǫi,jei,j

)

≤ ‖ f‖.

On the other hand, if x = (xi,j)1≤j≤i ∈ E, then

f (x)− a′(x) = lim
n→∞

[ n
ÿ

i=1

i
ÿ

j=1

fi,j(xi,jei,j)−
n

ÿ

i=1

i
ÿ

j=1

ai,j(xi,j)

]

= 0.

As E′ ∩ E⊥ = {0}, we get E′′′ = E′ ⊕ E⊥.

By Lemma 3, E has order continuous norm, as a consequence it is an ideal in E′′. We claim

that E⊥ is an ideal in E′′′. Indeed, let x′′′, y′′′ ∈ E′′′ with |y′′′| ≤ |x′′′| and x′′′ ∈ E⊥. If x ∈ E+

and |y′′| ≤ x in E′′, then |y′′| ∈ E, this implies that |x′′′|(x) = sup {|x′′′(y)| : |y| ≤ x} = 0.

Finally, if x ∈ E,
∣

∣y′′′(x)
∣

∣ ≤ |y′′′|
(

|x|
)

≤ |x′′′|
(

|x|
)

= 0.

Therefore y′′′ ∈ E⊥.



276 Lourenço M.L., Miranda V.C.C.

Now we give a version of Phillip’s Lemma for E′′. The proof follows the same idea of

[1, Theorem 4.67]. We remark that in [5] the authors has showed that BE is a limited set in E
′′
,

but they used another technique in another context.

Proposition 5. Every weak* null sequence in E′′ converges uniformly to zero on BE. Conse-

quently, BE is a limited set in E′′.

Proof. Let ( fn) ⊂ E′′′ be a weak* null sequence. By Lemma 4 we write fn = xn + gn with

(xn) ⊂ E′ and (gn) ⊂ E⊥. As E′ has order continuous norm then E′ is an ideal in E′′′. On the

other hand, since E⊥ also is an ideal in E′′′, by [1, Theorem 1.41], we have that E′ is a projection

band in E′′′, which yields that xn
ω
∗

→ 0 in E′′′ (see [1, Theorem 4.46]). Then xn
ω

→ 0 in E′, and

since E′ has the Schur property, xn → 0 in E′. As a consequence,

‖ fn‖BE
= sup

x∈BE

∣

∣xn(x)
∣

∣ ≤ ‖xn‖ → 0.

Proposition 6. The Banach lattice E′′ has the weak and the positive Grothendieck properties.

Proof. Let (x′n) ⊂ E′′′ be a positive weak* null sequence. Since e is an order unit of E′′, that

means BE′′ = [−e, e], we get that

‖x′n‖ = sup
x∈[−e,e]

∣

∣xn(x)′
∣

∣ = x′n(e) → 0.

So x′n
ω

→ 0, and E′′ has the positive Grothendieck property.

Now, as every disjoint weak* null sequence ( fn) ⊂ E′′′ implies | fn|
ω
∗

→ 0 in E′′. So, E′′ has

the positive Grothendieck property.

In the next result we classify the closed unit balls of E, E′ and bounded subset E′′ concern-

ing if they are (or not) almost Dunford-Pettis or almost limited. As E′ has the Schur property,

BE is a Dunford-Pettis set.

Proposition 7.

(1) The closed unit ball of E is not almost limited.

(2) The closed unit ball of E
′

is not almost Dunford-Pettis.

(3) Every norm bounded subset in E′′ is almost limited.

Proof.

(1) Let T : c0 → E and (e′n,n) ⊂ E′ be the positive operator given in the proof of Proposition 1.

Since ‖e′n,n‖BE
= supx∈BE

∣

∣e′n,n(x)
∣

∣ ≥ e′n,n(Ten) = 1 for all n, where (en)n is the canonical

basis in c0, we have that BE is not almost limited.

(2) The unit diagonal sequence e′′n,n = (0, . . . , 0, en, 0, . . . ) for all n is weakly null and disjoint

in E′′. Since supx∈BE′

∣

∣e′′n,n(x)
∣

∣ ≥ supx∈BE′

∣

∣e′′n,n(e
′
n,n)

∣

∣ = 1 for all n, we have that BE′ is not

almost Dunford-Pettis. As a consequence BE′ it is not almost limited.

(3) Consider a norm bounded subset A ⊂ E′′. Then there exists M > 0 such that

A ⊂ M · BE′′ = [−Me, Me] = sol(Me). By [11, Lemma 2.1], we have that M · BE′′ is

almost limited. Consequently, A is almost limited as well.
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Лоуренцо М.Л., Мiранда В.С.С. Замiтка про банахову ґратку c0(ℓ
n
2 ), її спряжену та другу спря-

жену // Карпатськi матем. публ. — 2023. — Т.15, №1. — C. 270–277.

Головним завданням цiєї статтi є дослiдження деяких геометричних та топологiчних вла-

стивостей c0-суми скiнченно вимiрної банахової ґратки ℓn
2 , її спряженої та другої спряженої.

Серед iншого ми показуємо, що банахова ґратка c0(ℓ
n
2 ) володiє сильною властивiстю Гель-

фанда-Фiлiпса, але не володiє додатньою властивiстю Ґротендiка. Ми також доводимо, що
замкнута одинична куля простору l∞(ℓn

2 ) є майже граничною множиною.

Ключовi слова i фрази: банахова ґратка, властивiсть Данфорда-Петтiса, властивiсть Гель-

фанда-Фiлiпса, слабка властивiсть Данфорда-Петтiса, слабка властивiсть Ґротендiка, додатна
властивiсть Ґротендiка, сильна властивiсть Гельфанда-Фiлiпса.


