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On *-measure monads on the category of ultrametric spaces

Sukhorukova Kh.O., Zarichnyi M.M.

The functor of *-measures of compact support on the category of ultrametric spaces and non-
expanding maps is introduced in the previous publication of the authors. In the present note, we
prove that this functor determines a monad on this category. The monad structure allows us to de-
fine the tensor product of x-measures. We consider some applications of this notion to equilibrium
theory.
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Introduction

In [6], the functors of *-measures on the category Ultr of ultrametric spaces and non-
expanding maps are defined and some of their fundamental properties are established.

The present note is devoted to the monad structure determined by these functors. In par-
ticular, this structure allows us to define the tensor product of the *-measures in the category
Ultr. In turn, we define the games in *-measure-valued strategies and prove the continuity of
the payoff functions for these games.

Finally, it is proved that any equilibrium for games in *-measure-valued strategies can be
approximated by almost equilibria consisting of *-measures of finite support.

1 Preliminaries

Recall that a metric d on a set X is called an ultrametric (a non-Archimedean metric) if 4
satisfies the strong triangle inequality

d(x,y) <max{d(x,z),d(z,y)}, xyz¢€X

By I we denote the unit segment [0, 1]. Recall that a triangular norm (a t-norm) is a contin-
uous function I x I 3 (a,b) — a * b € I satisfying the following conditions:
1) x is associative;

2) * is commutative;
3) * is monotone, i.e. a < a4’ and b < b’ bothimplya*xb < a’x V' foralla, a’, b, V' € I;

4) 1is a unit.
See, e.g., [3] for the details. The following are examples of t-norms: - (multiplication), min,
(a,b) — max{a + b — 1,0} (Lukasiewicz t-norm).
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Let us recall the notion of *-measure (see [5] for the details). Given topological spaces
X,Y, by C(X,Y) we denote the set of continuous functions from X to Y. By V we denote the
operation of maximum of numbers as well as pointwise maximum of real-valued functions.

Definition 1. Let x be a t-norm. A functional u: C(X,I) — 1 is called a x-measure on a
compact Hausdorff space X if the following conditions hold:

1) u(cx) = ¢, where cx denotes the constant function on X taking value c;
2) p(Ax ) =Axu(e);

3) u(e V) =pule)Vuy).

The notion of x-measure can be also formulated for Tychonov spaces X. We additionally
require that there exists a compact subset A in X satisfying the condition: for every ¢,y ¢
C(X,I), if p|A = y|A, then u(¢p) = u(y). The minimal (with respect to inclusion) set A
satisfying such a condition is called the support of i and is denoted by supp ().

By M*(X) we denote the set of all s-measures of compact support on a Tychonov space X.

Let x1,...,x, € X and let ay,...,&, € I be such that V! ;&; = 1. The following is an
example of x-measure: p = V_,&; * dy,. One can easily see that supp(u) = {x; : a; > 0}.

If f: X — Y is a continuous map of Tychonov spaces, then one can define a map M*(X) —
M*(Y) by the condition

M (f)(m) () = ulef), neM(X), ¢eCXI).

Given an ultrametric space X, by F;(X) we denote the set of functions from C(X,I) that
are constant on all balls of radius 7 in X.

Let X be an ultrametric space and M*(X) is a set of all x-measures with compact support
on X. Recall that the distance d(u, v) between u,v € M*(X) is defined by the formula

d(u,v) =inf{r > 0: u(¢) =v(¢e) forall ¢ € F(X)}.

One can provide an alternative description of the ultrametric d as follows. Given r > 0,
denote by X, the quotient space of X with respect to decomposition of X whose elements are
the balls of radius r. Let g,: X — X, denote the quotient map. Clearly, the quotient metric on
X, is an ultrametric. Then it is not difficult to show that

d(p,v) = inf{r > 0: M*(g,)(pr) = M*(q,)(v) }.

By exp X we denote the hyperspace of X, i.e. the set of all nonempty compact subsets of
X endowed with the Hausdorff metric. Actually, in the ultrametric case, the Hausdorff metric
can be defined by the condition

dy(A1, Ap) =inf{r > 0: forevery x € X, B,(x) N A1 # @ <= B,(x) N Ay # T}
In [6], it is proved that the map supp: M*(X) — exp X is non-expanding.
Proposition 1. Let y € M*(X). The map u: C(X,I) — I is uniformly continuous.

Proof. Actually, this is a part of the proof of [6, Theorem 2.9]. O
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Given a function ¢ € C(X, [0,1]), define ¢p: M*(X) — [0, 1] by the formula §(u) = u(¢).
Proposition 2. The map ¢ is continuous.

Proof. We first assume that X is compact. Let yp € M*(X). Given ¢ > 0, by Proposition 1 there
exists 7 > 0 such that, for every x, ¢ € C(X, 1), ||x — ¢|| < 1 implies |po(x) — Ho(¥)| < e.

There exists § > 0 such that the oscillation of ¢ on every ball of radius é intersecting
supp(#o) does not exceed 7. There is a finite cover {Bs(x1), ..., Bs(xn)} of supp(po)-

Suppose that d(y, j19) < 6. Then clearly supp(p) C U™, B;s(x;). There exist ¢, o € F5(X)
such that 1 < ¢ < ¢ and ||P1 — Po|| < 7.

It follows that

uo(Y1) = u(¥1) < po(@) < po(h2) = u(y2)
and

po(Y1) = u(¥1) < ple) < po(Y2) = u(¥2).

By the choice of 1, |uo(¢) — u(p)| < € and therefore |¢(p0) — ¢(p)| < e.

Let us now pass to the general case, i.e. of arbitrary ultrametric space X. Suppose that a
sequence (y;)$>, converges to g in M*(X). Since the map supp is non-expanding, without
loss of generality one may assume that

X = supp(po) U U2 supp(pi),
i.e. X is compact. O
Given an ultrametric space X, we define a map (x: M*Z(X ) = M*(X) by the formula
Cx (M) (@) = M().

We are going to show that M(¢) € M*(X). Clearly, M(cx) = c, because Cx = CM*(X)-
Given ¢ € C(X,I) and ¢ € I, we obtain

Ex(M)(cx ¢) = M(Tx9) = M(cx ¢) = cx M(9) = ¢+ {x(M)

(we used the equality cx ¢ = ¢ ¢: indeed, for any p € M*(X), c*¢(u) = u(c*¢@) =

cxp(g) = cx ()
Next, for any ¢, € C(X,I), we see that, clearly, ¢ V i = $ V ¢, therefore

Ix(M)(@ V) = M(p V) = M(@)VM(P) = Ix(M)(9) = Ix(M)(9).

We are going to show that the support of {x(M) is compact. Note that, since the map
supp(p) is non-expanding, the set A = U{supp(y) : 4 € supp(M)} is compact. Given
@, P € C(X,[0,1]) such that ¢|A = | A, we see that u(¢) = u(y) for every u € supp(M). We
conclude that ¢|supp(M) = P|supp(M) and therefore

Ex(M)(9) = M(¢) = M(P) = Ix(M)(¥).

Thus, {x (M) € M*(X).
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Lemma 1. If ¢ € F,(X), then § € F,(M*(X)).

Proof. For u, ' € M*(X) we have that d(u, o) < r if and only if u(@) = p/'(¢) for all ¢ €
F+(X). By the definition ¢(u) = ¢(p') and it follows that ¢ € F,(M*(X)). O

Proposition 3. The map (x is nonexpanding.

Proof. Suppose that M, M" € M*?(X). Let d(M, M') < r and ¢ € F,(X) for some r > 0. By
the definition,

Ix(M)(9) = M(¢) = M'(¢) = Ix(M') (o)
and we see that d({x (M), {x(M")) < r. O

2 Monads
Proposition 4. { = ({(X)) is a natural transformation of the functor M*? to the functor M*.

Proof. Let f: X — Y be a nonexpanding map. We need to show that the diagram

*2
M*Z (X) NI_('D"M*Z (X)

. B

M*(X) ——="M*(Y
(X) 3 "M (V)
is commutative.
Let M € M*2(X) and ¢ € C(X,[0,1]). First remark that of = ¢M*(f). Using this we
obtain

M*(£)(Cx (M) (@) = Ix(M)(gf) = M(pf) = M(eM"(f))
= M2(f)(M)(9) = LyM*2(f)(M)(9).
O

Recall that a monad on a category C is a triple T = (T,#, 1), where T: C — C is an
endofunctor, 77: 1o — T, u: T?> — T are natural transformations such that uTy = unr = 17
and ppur = uTu (see, e.g., [1] for the details).

Given monads T; = (T, #;, i), i = 1,2, on a category C, we say that a natural transforma-
tion y: Ty — T, is a morphism of Ty to Ty if y#1 = 12 and poyr, T1(7y) = Y-

LetH = (exp, s, u) be the hyperspace monad on the category Ultr. Recall that the singleton
map sx acts as follows: sy (x) = {x}, x € X. Also, ux: exp?> X — exp X is the union map.

Theorem 1. The triple M* is a monad on the category Ultr.
Proof. Let us first prove that the diagram

Om*(X) M*(6x)

M*(X) M*2(X)

M*(X)
%

M*(X)
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is commutative.
First note that Pdx (x) = Py = o, () = P(x), for any ¢ € C(X, [0,1]).
Let u € M*(X), then
Cx M (0x) (1) (¢) = M™(6x) (1) (P) = p(Pdx) = pu(¥),

Also,

CxOmex) (1) () = S () (1) (§) = () = u(y),

ie. gX(SM*(X) = 1M*(X)
Let us prove now that the diagram

M*3 (}Q%)M*Z(x)

CM% l@x
M*2(X) — M(X)

1s commutative.
Let M € M*3(X), then

ExCmz (M) () = Taag, (M) (@) = M().
On the other hand,
ExM™(Cx) (M) () = M*(Ex) (M) (@) = M( - {x)-
We need to show that § = ¢ - {x. Indeed,

We say that a t-norm * does not have zero divisors, if a * b = 0 impliesa A b = 0.

Theorem 2. Suppose that a t-norm * does not have zero divisors. Then the natural transfor-
mation supp is a morphism of the monad IM* to the monad H.

Proof. Clearly, supp(éx) = {x} = sx(x), x € X. We therefore have to show that the diagram

M*Z(X) SUPP p+ (x) exp M (X) exp(suppy) exp2 x
Cxl lux (1)
M* exp X

supp
is commutative.
Let M € M*(X), M = VI & % 8y, where p; = \/]r.”:ilﬁi]- * (5,(1,],, xjj € X. Without loss of
generality, one may assume that a; > 0, f;; > 0 for all i, j. Then
SUPPM*(X)(M) ={m, ..., mn}, suppx(pi) = {xi, ..., Xim;},
wherei =1,...,n.

supp({x(M)) ={x;j:i=1,...,n,j=1,...,mj}.
This shows that the diagram (1) is commutative for M as above. Since, by [6, Proposition 2.7],
such measures are dense in M*?(X), we conclude that diagram (1) is commutative. O

Then {x (M) = VI, v}”:fl a; * Bjj * 0x,; and, since  has no zero divisors,
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The following example shows that the requirement of absence of zero divisors is essential.
Suppose that * is the Lukasiewicz t-norm. Let X = {a,b},a # b, u = 65, v =6, V % * 0p, and
M =6,V 1 %6,. Then

1 1 1
QX(M):@\/E*(SZ,\/E*E*%:%

and

supp({x(M)) = {a} #{a,b} = |J supp(7).

Tesupp(M)

3 Tensor products

Let X, Y be ultrametric spaces, p € M*(X), v € M*(Y). We recall the definition of tensor
product (see, e.g., [7] for the general case).

In the sequel, we consider the max ultrametric on the product of ultrametric spaces. Given
x € X, define the map iy: Y — X x Y by the formula i, (y) = (x,y), y € Y. Clearly, iy is an
isometric embedding.

Given v € M*(Y), define the map j,: X — M*(X x Y) by the formula: j, (x) = M*(iy)(v),
x e X.

Lemma 2. The map j, is an isometric embedding.
Proof. Suppose that x,y € X and d(x,y) < r. Note that, for any s > r,
i {(BS Y (a,b)) = iy (B;""(a, b)) = B (b).
Therefore, for any ¢ € Fs(X x Y), we have @i, = ¢i,. Thus, for any ¢ € F5(X x Y),
ju(2)(9) = v(gix) = v(giy) = ju(y)(¢)

and consequently d(j, (x), j,(y)) < r. We conclude that j, is a non-expanding map.
Now, assume that d(x,y) > r. Then clearly, dy (supp(ju(x)), supp(ju(y))) > r and there-
fore, by [6, Proposition 2.5, d(j, (x), j, (y)) > . O

Finally, define the tensor product of y and v as follows:
HOV = Coar M (ju) (1) € MH(X XY).

Proposition 5. The map
®@: M*(X) x M*(Y) - M* (X xY)

is non-expanding.

Proof. Let u, ' € M*(X), v,v' € M*(Y). First note that clearly d(jy, j,») < d(v,v'), and, since
the functor M* is locally non-expanding, d(M*(j,), M*(j,/)) < d(v,v").

Finally,
d(u@v,p @v') = d(Cxy M (jv) (1), Sty M (o) (1))
< d(M*(j) (1), M* () (1))
< max{d(M" (ju) (1), M" (ju) (")), A(M" (o) (1), M* (or) (1)) }
< max{d(p, '), d(v,v")}

(
((v), (#,0)).

I
[
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Proposition 6. Lety = V' «; x 6y, € M*(X), v = VIL1Bj* by, € M*(Y). Then
UKV = \/;-1:1 \/;-ﬂ:l o * ‘B] * 5(3‘1/]/]') e M* (X X Y)
Proof. Note that

M*(jv) (i) = Vitgai * 6(ju (xi)) = Vi x (VL B + 6(xi, y)))

and therefore
nRV = Cxxy(Vilgai* 6(ViLy Bj * 6(xi, yj)))

whence the statement follows. O

4 Applications

We will consider a two-person game on ultrametric spaces of strategies X;, i = 1,2. The
payoff functions are denoted by u;: X3 x X, — [0,1],7 = 1,2. A *-measure-valued strategy of
player i is an element of the space M*(X;),i =1, 2.

Define U;: M*(X;) x M*(X3) — [0,1] as follows:

Ui(p, o) = (1 @ pa) (uy), i =1,2.
Proposition 7. The map U;, i = 1,2, is continuous.

Proof. Since (1 ® pp)(u;) = #;(p1 ® pp), i = 1,2, this is a combination of Propositions 5
and 2. 0

We say that (1, 43) € M*(Xq) x M*(Xy) is an equilibrium in *-measure-valued strategies
if Up(p, p2) < Un(pY, u3) for every pp € M*(Xp), and Ui (p1, p3) < Ua(p}, u3) for every
[ M* (Xl)

One can also define the notion of e-equilibrium for games in *-measure-valued strategies.
Given ¢ > 0, we say that (1, 49) € M*(X;) x M*(X;) is an equilibrium in *-measure-valued
strategies if

Un(f, p2) < Uz (p3, 13) + ¢
for every pup € M*(X3), and
Uy (p, 13) < Uz (ki 1) + 2

for every u; € M*(Xq).

Proposition 8. For every equilibrium (1, u3) € M*(X1) x M*(X) and every € > 0 there exists
an e-equilibrium in M, (X).

Proof. This follows from Proposition 7 and the fact that the set of x-measures of finite support
is dense in the space M*(X). O

Note that an approximation theorem for games in mixed strategies is considered in [2].

The question of existence of equilibrium for games in *-measure-valued strategies remains
open. The main problem consists in the lack of convex structure in the spaces of the form
M*(X) in the ultrametric case (see [4] for the case of compact metric spaces).



436 Sukhorukova Kh.O., Zarichnyi M.M.

References

[1] Barr M., Wells Ch. Toposes, Triples and Theories. Springer-Verlag, NewYork, 1985. Republished in: Repr.
Theory Appl. Categ. 2005, 12, 1-287.

[2] Glycopantis D., Muir A. Nash equilibria in co-dimensional spaces: an approximation theorem. Econom. Theory
1999, 13 (3), 743-751. d0i:10.1007 /5001990050280

[3] Klement E.P.,, Mesiar R., Pap E. Triangular Norms. In: Wansing H. (Ed.) Trends in Logic, 8. Springer Dor-
drecht, Kluwer, 2000. doi:10.1007 /978-94-015-9540-7

[4] Radul T. On t-normed integrals with respect to possibility capacities on compacta. arXiv:2111.06612, 2021. doi:
10.48550/arXiv.2111.06612

[5] Sukhorukova Kh. Spaces of non-additive measures generated by triangular norms. Proc. Int. Geom. Cent. 2021
(submitted).

[6] Sukhorukova Kh., Zarichnyi M. On spaces of *-measures on ultrametric spaces. Visnyk of the Lviv Univ. Series
Mech. Math. 2020, 90, 76-83 doi:10.30970/vmm.2020.90.076-083

[7] Teleiko A., Zarichnyi M. Categorical topology of compact Hausdorff spaces. Math. Stud. Monogr. Ser., 5,
VNTL Publ., 1999.

Received 18.04.2022

Cyxopyxosa X.O., 3apiurmit M.M. Monadu *-mip y kamezopii yrompamempuunux npocmopis // Kap-
maTchbki MaTeM. my6a. — 2022, — T.14, Ne2. — C. 429-436.

Y monepeaHiit my6aikariii aBTopiB BBeA€HO (PYHKTOP *-Mip 3 KOMIIAKTHMM HOCi€EM y KaTeropii
YABTPaMeTPUYHMX IPOCTOPIB i HEPO3TSTYIOUMX BiAOOpakeHb. Y IIilf mybAikarii My AOBeAEMO, IO
Lell pyHKTOp BM3HAUaE MOHAAY Y Lili KaTeropii. MoHaAHa CTPYKTypa AO3BOASIE BUSHAUNUTY TEH30P-
HIIT AOBYTOK *-Mip. PO3rAstHEMO AesIKi 3aCTOCYBaHHSI IIbOTO TOHSITTSI AO TeOpii piBHOBAIM.

Kontouosi coea i ppasi: yAbTpaMeTPUIHMIA IPOCTip, HEPO3TATYIOUe BiAOOpaXKeHHSs, *-Mipa, MO-
Haja, piBHOBara.



