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Bernstein-Jackson-type inequalities with exact constants in
Orlicz spaces

Dmytryshyn M.L>, Dmytryshyn L.I.

We establish the Bernstein and Jackson type inequalities with exact constants for estimations
of best approximations by exponential type functions in Orlicz spaces Ly(IR"). For this purpose,
we use a special scale of approximation spaces B5(M) that are interpolation spaces between the
subspace &) of exponential type functions and the space Ly(IR"). These approximation spaces
are defined using a functional E (¢, f) that plays a similar role as the module of smoothness. The
constants in obtained inequalities are expressed using a normalization factor Ny, that is determined
by the parameters T and s of the approximation space B5(M).
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1 Introduction

The classical Bernstein inequalities characterize the smoothness properties of a function
depending on the speed of convergence to zero of its approximation by polynomials or entire
exponential type functions. The Jackson inequalities indicate that smoothness of the function
implies a quick decreasing to zero of its error of approximation by corresponding approx-
imating aggregates (see, e.g., [2, Section 7], [15]). Investigation of the relation between the
smoothness properties of functions and the possible orders of their approximations were car-
ried out by many authors on various classes of functions [5,6]. These results are extended to
approximations in a Banach space, in particular, to spectral approximations for a linear closed
unbounded operator [7,10,12]. In this case, special approximation scales of analytic vectors of
finite exponential types and abstract Besov-type approximation spaces are considered.

It is important to determine exact estimates of the constants in the Bernstein and Jackson
type inequalities, which allow us to estimate the best approximation errors by analytic vectors
of an operator in a Banach space [8,9].

In addition to the classical direction of approximation theory it should be mentioned the
studies on direct and inverse approximation theorems in Orlicz function spaces [3, 11].

The purpose of this paper is to prove the Bernstein and Jackson type inequalities by explic-
itly calculated constants on approximation scales of exponential type functions in the Orlicz
space. The constants in such inequalities are expressed using the special normalization factor
that is determined by parameters of the approximation spaces.
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2 Preliminaries

Let us recall some concepts of the theory of Orlicz spaces (see, e.g., [13]). Let M(t) be an
arbitrary Young function, i.e. M(t) is a non-decreasing convex function defined for ¢t > 0 such
that M(0) = 0, M(t) > 0 and M(t) # 0. The function

M(s) = max(ts — M(t))

is a conjugate function to M. Further, let L;(IR") be a space of measurable functions f(x) with
the Luxemburg norm

Then Ly(R") is a Banach space and is called the Orlicz space. The norm (1) is equivalent to
the Orlicz norm
N

Ifllae = sup
o(g,M)<1

where p(g, M) = /R M(|g(x)|)dx < oo, s0 that

1Ay < IFllma < 201 Ml a

Note that || f[|(a1) = ||f”Lq(]Rn) in the case M(t) = t7for1 < g < co,and | fll(m) = || fll 1 (vr)
when M(t) =0for0 <t <1and M(t) = oo fort > 1.
o]
Denote D*f = ax‘i‘laifaxﬁ” and a! = ai!-...-a,!, where a = (ay,...,0,) € Z7,
la| = a1 + ...+ ay. In what follows, « > O meansa; >0, ..., a, > 0.
A function f € Ly(R") has an exponential type v > 0 if the series

- |a|
F@) = X 51D Fll
a>0

is such that v = lim sup ||D”‘f||1/‘ “

\ \%oo
we refer the reader to [1, Theorem 2].

< 0. For the behavior of the sequence ||D*f|| 1), « > 0,

3 Subspaces of exponential type functions in the Orlicz space

In this section, we describe the subspaces of exponential type functions in the Orlicz space
Lp(R™). For any v > 0 we define the subspace

& = {f(x) € Lu(R") 1 ||flgy, < 0}
endowed with the norm || |5y = Lux0 [[D*fll(m) Jvlel,
Proposition 1. (a) For any p > v the following contractive inclusions hold
EY B &+ Ly(R™).

(b) The space &y, is complete.
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Proof. (a) The inequalities ||f]| P < ||f]l sy, and I Iy < £l P yield the contractive inclu-
sions & % &}, and &1, & Ly(R"), respectively.

(b) Let (f,) be a fundamental sequence in &};. Thus, for any & > 0 there exists ¢ such that
|fn — fmllgy, < eforn,m> ne. Then the sequences (f,) and (HD"‘an(M)/v|”‘|) foralla > 0 are
fundamental in Ly(R"). It follows || fullsy, < [Ifu — fucllsy, + Ifncllsy, < €+ |l fnellsy, for any
n > ne.

There exist f,gx € Ly(R") such that f, — f and ||D”‘fn||(M)/v‘”“ — ga in Ly (R") for
a > 0. Thus, the equality g, = |]D"‘f|](M)/1/“’“ with f € Ly(IR") holds. Hence, we obtain
||D”‘fn||(M)/v|”‘| — ||D"‘f||(M)/1/""‘ for all « > 0. Taking the limit in Ly;(R") as n — oo, we
find ||f|lsu < || fullsy, + e thatis f € &y, since fu, € &} Thus, & is complete. O

We consider the subspace &y = U,~o &}y in Ly (R") endowed with the quasinorm
If g = £l +inffv >0: f e &5} 2)

Let us clarify that for any f € &Y, ¢ € &4y,

1f + gl < 1flloy + 118l
sinceinf {v+pu>0: f+ge &y, '} <inf{v+u>0:feé&y gc &)
Proposition 2. The quasinormed space (&, || - ||,,) is complete.

Proof. We reason similarly to [8, Theorem 1(a)]. Let (f;;) be a fundamental sequence in &).
Then there exists v > 0 such that || f,||s, < v for n € IN. It follows that (f,) C &}, since
inf {y: (fu) C Em} < v. Consider the corresponding sequence of functions (f,(¢)) in variable
¢ € R of an exponential type v. The following sequence

{[0,00) > T = (fu = fu)(Q) exp (=Cv): m,m € N}

is bounded. Thus, according to the Bernstein compactness theorem [15, Theorem 3.3.6], for
any ¢ > 0 there exist n, € N and B, > 0 such that

sup (fu, — fm,)(0)exp(—Cv) < e forall n;m; > ne.
IC|<Be

Therefore, for all n;, m; > ne,

o= folgg <20 ([ ) G = S (@ exp (=200 d < e

Hence, (fy,) is fundamental sequence in &2/ and there exists fy € &2 such that f,, — fp as
i — 00, fu = foin &Y. So, &y is complete. l

We use a real K-method interpolation (see, e.g., [2,16]). Let 0 < ¢ < 1and 1 < g < oco. For
a compatible couple (&, Ly (R™)), we define the interpolation space

(ém, Lm(R"))g 5 = {f € &+ Lu(R"): || fll sy, Lag(R)),, < 00} ,

- (/0 [t—ﬂK(t f)]th>l/q if g < oo,

1f N6y Lag(R))o, =
(S Laa (R sup t~ 19K(t,f) if g = oo,
0<t<oo
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1/2
where K(t,f) = K(t fi s, Lu(R") = inf (Ao, + £lAlky) ¢ >0
For T = ¢gand s +1 = 1/% we assign the subspace

Bi(M) = {f € &m +Lu(R"): |flls;m) < oo},
1/t

(/Oo [i’SE (t,f} Em, LM(]Rn)> ]T%> if T < oo,
0
sup t°E (¢, f; Em, Lm(R™)) ifT=o00

0<t<oo

where E (t, f) = E (t, f; 6m, Lm(R")) = inf { ||f — foll ) : fo € Em, [ follsy, < t}andt>0.

With regarding to the quasinorm || - | zs (p1), we note the following. If || f|| s (p) = O then
E(t, f) = 0 for all t. There exist f, € &y (n € N) such that ||f — ful[(p) — 0and || fullg, — 0
as n — co. Hence, f, — 0in &y and f, — f in Ly(IR"). Since &) is the subspace of Ly;(IR"),
so fu — 0in Ly(R") and f = 0. For 0 < € < 1 we have

Hf"‘g”Bi(M) < max (1’271/1’) [ (/Ooo [tSE(St,f)]T?>1/T+ (/Ooo [tSE((l — S)t,gﬂT%)l/T].

Setting x = 2max (1,271/7), we get

ANl Bs () =

1+ 8llssany < % (I flls an) + (1 =€) llgl sz o)) -

With an appropriate choice of ¢, we have

1+ gllss oy < % (AN apy + 81 ) )

Proposition 3. The following isomorphism with equivalent quasinorms

B3(M) = (6u, Lu(R")) 3)

holds, where (8, L M(]R”))l/ % is endowed with the quasinorm || f ngi L (R)s
A

Proof. Let us reason as in [9, Theorem 2]. We use the following normalization factor

~1/q

</ $10-0)=1(1 4 tz)q/zdt> if g < oo,
0
97%/2(1 — 9)=(1=9)/2 if g = oo,

ng,q =

which is characterized in [4]. For 1 < g < co and f € &), we obtain

) t(l—l?)q dt (1-9) 19
q q _ N1 q

1My e, < 10 Mg | AR AR,

5M

In the case g = oo, we obtain

1-0
1 - —0 1
1A R < 11, 1A st1p —mmrz = Noo£11,” 1 Wy
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From [16, Remark 3.1] it follows
Koo(t, f) < K(t, f) < V2Kno(t, f), @)
where Ko (t, f) = mff max (HfOHgM,tHﬁH ) Further,

min(1,1)/v2 < t/+/1+ 2 < min(1, ). (5)

Taking into account (4) and (5), the inequalities (6) from [8] can be written as

q 120852\ £11%4 /2] 11 3 —
I g gm0, = 27700 Sl gz gy < 277Ny Lag ey,  WitR T =07
Thus, the isomorphism (3) is valid. 0

Next, we establish some interpolation properties of the spaces B3 (M). For 0 < s¢,s1 < o,
0<d¥<land0 < 1,19, 71 < o0, we consider the interpolation space

(B33, B ),, = { £ € B + B0 1 a5y, <

endowed with the quasinorm
1/t
Rl . T dt
U agon, sy, = ([ 72K m300, B300)] 5

1/2
where K(1, i B(M), B2 (M) = int (ol + PRI ) ot >0

Proposition 4. Ifs = (1 — ¢)sg + 9s; with sy # s1, then
(B2 (M), B (M), = B3(M). ©)
If 0 < T < ¢ < 0, then the following continuous embedding holds
B (M) & By(M). (7)

Proof. By the reiteration theorem [2, Theorem 3.11.5] for the indices & = (1 — 1) + 19, with
%, =1/(si+1),i=0,1,0=1/(s+1), T =g and 0 < 7 < 1, we obtain

([BE]™, [BE(M)]™), = [B2(M)]" ®)
Applying the power theorem [2, Theorem 3.11.6], we obtain
S [/ s 9 o4
( [BTg (M)] 0’ [BTi (M)] 1)11,g 0,T

with ¢ = 179, /9. The equalities (8) and (9) for s = (1 — ¢)sp + 0s1 yield (6) with ¢ = ¢
Forany f € (B3)(M), B31(M)), . there exists ¢ > 0 such that

= (B%(M), By (M)) ©)

-9 . $1 (1-t/0)
I geanyon),, < (Pt K B (M), B (M)
T s T dt\1/0
([ ke o, Bi)] )

< cllfll s ma ),

It follows that (By (M), B (M)), . % (BR(M), BST}(M))M. Now using (6), we at once
obtain (7). O
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4 Bernstein-Jackson-type inequalities

Let us establish the Bernstein and Jackson type inequalities that give an estimate of approx-
imation errors by means of elements &) in the Orlicz space Ly (R").

Theorem 1. For each f € &) the following Bernstein-type inequality

1AWz my < ese 1 f 1l L 1Ty (10)
. —(1 . —(1
holds with csr = (T?(1 + s))l/TNl/((liss)),T(Hs) if T < o0oand cseo = Nl/((liss)),oo.
For each f € B5(M) the following Jackson-type inequality
E(t,f) <t %csq ’f”BST(M) (11)
holds with cs » = 2(1+5)/2(72(1 4 s))*l/TNl(}asis)’T(Hs) if T < o0 and cs 0 = 1.
Proof. It suffices to apply [8, Theorem 2] and Proposition 3. O

Corollary 1. If T =2/(1 + s), then the following inequalities hold:

£l vy < es 1 flley £l f € s (12)
with c; = [(1+s)(271) 1 sin(7r/(1 +5))]~(1+9)/2 and
E(t, f) <t7cs | fllgymy,  f € Be(M), (13)

withcs = [(1+s)m sin(rr/ (1 +s))](1+9)/2,

The inequalities (12) and (13) follow from the inequalities (10) and (11) correspondingly,
taking into account that Ny, = ((2/7) sin(78))'/? (see [14, Exercise B.5])and ¢ = 1/(s + 1).
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Amyrpuie ML, Amurpymmms AL Hepisnocmi muny beprwimeiina i Adicexcona 3 mouHuMU KOHCIAH-
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BcranoBaeHO HepiBHOCTI THIy BepHinTerina i AJXeKkcoHa 3 TOUHMMM KOHCTAHTaMM AASI OIIIHOK
HalfKpalyx HabAVDKeHb (DYHKIHSIMY €KCIIOHeHIiaABHOro iy B pocropax Opaida Ly (R™). Aast
LIBOTO MJ BUKOPMCTOBYEMO CIIELiaAbHY IIIKAAY alpOKCUMALIHIX IIpocTopiB B (M), siki € iHTeprio-
ASILIVHUMY IIPOCTOPaMM MiX MIATIPOCTOPOM &)1 PYHKIIIN €KCIIOHeHIiaABHOTO THITY i IIPOCTOPOM
Lp(R™). LIi ampoxcumariiifHi mpocTopy BU3HAYAIOTECS 3a AOLIOMOro0 dpyHKIioHaay E (¢, f), sxmi
BiAirpae Taxky X poAb, SIK MOAYAb TAaAKOCTi. KOHCTaHTH B OTpMMAaHMX HEPiBHOCTSIX BMPaXKeHO ue-
pe3 xoedpinieHT HOpManisawli Ny , SIK/IT 3aA€XUTH Bia MapaMeTpiB T i § anpOKCUMMALIHOTO Ipo-
cropy B5(M).

Kntouosi croea i ppasu: HepisHOCTI bepHIITelHa i AXKeKcoHa, HaliKpallla alpOKCUMallist, IpOCTip
Opaiua.



