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Coefficient inverse problem for the strongly degenerate
parabolic equation

Huzyk N.M.L, Pukach P.Y.2, Vovk M.1.2

The coefficient inverse problem for the degenerate parabolic equation is investigated. The mi-
nor coefficient of this equation is the polynomial of the first power with respect to the space variable
with two unknown time-dependent functions. The investigation is carried out under given inhomo-
geneous initial condition, Dirichlet boundary conditions and integral overdetermination conditions.
We establish the conditions of the unique solvability to the named problem for the case of strong
degeneration.
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Introduction

In this paper, we consider the coefficient inverse problem for the parabolic equation with
strong power degeneration.

Those problems are called inverse in which knowing consequences we need to find the
reasons causing them. These problems are widely studied within the past decades (see [2,
10, 21]) due to its applications in medicine, geophysics, tomography, acoustics, ecology, finan-
cial mathematics, electrodynamics, etc. Various statements of coefficient inverse problems for
parabolic equation are investigated in [1,4,7,9,11-13,18,24-27,31]. In these papers, the authors
studied both the inverse problems of recovering of the time-dependent major coefficients in the
parabolic equations without degenerations and the minor coefficients or source terms in them.
They also differ in boundary and overdetermination conditions. The conditions of existence
and uniqueness of the solutions are established in these works.

Degenerate parabolic problems arise in the mathematical models of the flow in the porous
media, climate models, population genetics, propagation of the thermal waves in plasma, fi-
nancial mathematics and others [3,6,14,22]. Despite their fundamental importance and practi-
cal application, the literature on inverse degenerate problems for parabolic equations is rather
recent and scarce. The conditions of unique solvability to the inverse problems of recovering
of the time-dependent major coefficient a = a(t),a(t) > 0,t € [0, T] (thermal diffusivity) in
the one-dimensional degenerate parabolic equation

W = a(t)tPwyy + b(x, t)wy + c(x, H)w + f(x,1)
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are established in [20, 30] for both cases of weak (0 < B < 1) and strong (8 > 1) degenera-
tion. The inverse problems of identification of the time-dependent minor coefficient b = b(t)
(convection coefficient) in the degenerate parabolic equation

W = a(t) Py, + b()wy + c(x, )w + f(x,t)

are studied in [15, 16] for both cases of degenerations. In these papers, the unknown coeffi-
cients of the equations depend on time and the degeneration of the equation is caused by the
power function with respect to time variable. The coefficient inverse problems for the parabolic
equations with degeneration caused by the function with respect to space variable are studied
in [5,23,28,29] and to time variable —in [8, 14] (see also the bibliography in them).

The inverse problems for identification of the coefficients which depend simultaneously on
both spatial and time variables remain unexplored in spite of their importance. In the present
paper, we consider a coefficient inverse problem for the one-dimensional degenerate parabolic
equation. It is known that the major coefficient of the equation is the product of the power
function t# which caused degeneration and a known positive time-dependent function. The
minor convection coefficient of the equation is the polynomial of the first power with respect to
the space variable with two unknown functions which depend on time variable. We investigate
this inverse problem under given nonhomogeneous initial condition, the Dirichlet boundary
conditions and the values of the heat moments as the overdetermination conditions. The case
of strong degeneration is studied.

1 Statement of the problem and the main result

In a rectangle Q7 = {(x,t) : 0 < x < [,0 < t < T}, we consider an inverse problem of
identification of the time-dependent functions by = by(t), by = by(t) in a minor coefficient of
the parabolic equation

U = a(t)t’svxx + (b1 (t)x + ba(t))ox +c(x, t)v + f(x, t) (1)

with initial condition
v(x,0) = ¢(x), x€][0,]], (2)

boundary conditions
v(0,t) = u1(t), v(L,t) = ua(t), t € [0, T] (3)

and integral overdetermination conditions

/Ol v(x,t)dx = usz(t), t€]0,T), 4)

/Ol xv(x, t)dx = uy(t), te€[0,T]. (5)

It is known that a(t) > 0,t € [0,T], and a degeneration of the equation (1) is caused by
the power function t#. The case of weak degeneration is studied in [17]. In this paper, the
case of strong degeneration (8 > 1) is investigated. Our purpose is to find the conditions of
existence and uniqueness of the solution to this inverse problem. The main result of this work
is contained in the following theorem.
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Theorem 1. Suppose that the following conditions hold:

Al) ¢ € C?[0,1], u; € C'[0,T],i € 1,4,a € C[0,T], a(t) > 0,t € [0,T], and functions
¢, f € C(Qr) satisfy the Holder condition with respect to x uniformly to t with indicator
n,0<a<1;

A2) (Ipa(t) = us(5)* = (ua(t) — i1 (1)) (Ppia(t) — 2pa(t)) # 0, € [0, T);

A3) [f(x, )] < Axt?, e(x,t)] < Aat?, (x,1) € Qp, [u3(t)] < Ast?, [uy(H)] < Agt?, t € [0,T],
where A;, i = 1,2,3,4, are some positive known constants and v > % is an arbitrary
fixed number;

A4) 11(0) = 9(0), 12(0) = (1), [y p(x)dx = p3(0), fy xp(x)dx = pa(0).

Then there exist Ty, 0 < Tp < T, and a unique solution (b1, by, v) € (C[O, To])2 x C21 (Qr,) N
C(Qr,), [b1(H)| < Mat’, |by(t)| < Mat® with § = min {7, ﬁTH} to the problem (1) —(5), where
the numbers Ty and M; > 0, M, > 0 are defined by the problem data.

To prove the existence of the solution to the problem (1) —(5) we use the apparatus of Green
functions for the heat equation and Schauder fixed point theorem. The uniqueness of the
solution is based on the properties of the solutions to the homogeneous integral equations
with integrable kernels.

2 Existence of the solution

First, let us replace the inverse problem (1)-(5) by a system of equations that is equivalent
to it. For this purpose we make in the named problem the substitution

v(x,t) =0(x, t) +vo(x, t). (6)

The function vg(x, t) in (6) is satisfied given initial and boundary conditions (2), (3). Taking
into account the compatibility conditions A4), it is easy to verify that this function is equal to

v0(x,£) = @(x) = 9(0) + jur (1) + T (a(t) = jr () = 2(0) + 11 (0) ). @)
The substitution (6) yields for the function & = o(x, t) nonhomogeneous equation
B = a(t)P s + (b1 (1) + ba(0) B+ c(x, 3 + F(x, ) = iy (£) — T (1) — 15 (1))
LD (x) + (1 (O)x + ba()) (¢ )+ 7 (2(0) =i () — 2 0) 411 (0))) B
+c(x, 1) (9(x) = 9(0) + jur () + T (4a(t) = pa (1) = p2(0) + ur (0)) )
with homogeneous initial and boundary conditions
9(x,0) =0, xel0,1], 9)

5(0,t) = o(L,t) =0, tel0,T) (10)
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Now we replace the problem (8) — (10) by the following equivalent integro-differential equa-
tion (see [19, p. 49]):

o) =[ [ Gt )0+ 02(0)5 (0,7 <1, 10, 7) + al2) P ) = ()
= () = () + (a7 + 02(1) (9 () + %(HZ(T) — 1 (%) = 12(0) + 11 (0)) )

+(1,7)(9(n) = @(0) + () + ?(ﬂz(f) — (1) = 12(0) + 1 (0))) +f(17,T)> dip dt.
(11)
For this purpose we use the Green function G; = Gy (x,t,7, T) for the first boundary value

problem for the heat equation
wy = a(t)tfgwxx. (12)

It is known [19, p. 12] that Green functions of the first (k = 1) or the second (k = 2) boundary
value problem for the equation (12) can be written in the form

1

G(x, t,n,T) =
2¢/7(6(t) — 6(7)) 13)
o (x—17+2nl)2> ‘ < (x+17+2nl)2>
X ex 1) exp (| — ,
wherek=1,2,0<x,7 <[,0<t<t<T,0( fo 7)7PdT. These functions possess the
properties
/l }Gk(‘xl t/ 1, T)}d?’]d'l— < 1/ /h ‘ka(xr tr 1, T)‘ d?’] < Cl ’ k= 1r2/ (14)
0 N 0 N (t) —0(7)
where C; is known positive constant.
t
dr
Let us consider the behavior of the integral I = / —————ast — 0. Using the
& /ol —6(0) &

definition of the function § = 6(t), we deduce

_/t dt < 1+ﬁ/t dt
o S alo)obdo VAo Jo VI

where Ag = mma( ). By the substitution z = 7 we obtain

1
1+ 1ﬁ/ 1+ 1ﬁ _dz <C2t (15)
\/1—21+ 0 Vi-z

Put u(x,t) = vy(x,t). Taking into account (6), (11), we replace the direct problem (1)-(3) by
the system of integral equations for unknowns v = v(x,t), u = u(x, t):

)= [ [ a6t o) (a2 +ba(0)) o, )+ el )00, )~ (0

— T (uh(v) = i (1)) +a(x)7Pe" () +f<n,r>) dydr+oo(x,1), (x,t) € Qr,

(16)
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wet) = [ [ Gulxtn D ((blmn +ba(7) ) ul, 7) + (7, T)o(n, T) — i (7)
(17)

= (1) = () + ale) P () + £, ) ) dyd -+ (), (58) € O

Note, that we obtain the equation (17) differentiating (16) with respect to the space variable.
To find the equations for the functions by = by(t), by = by (t) we multiply (1) by x*, k = 0,1,
and integrate it with respect to x from 0 to [:

n(t) = A1 ((m a0 (a1, 1) — u(0,)

— /Ol (c(x, t)o(x, 1) +f(x,t))dx) (lVZ(t) - P‘3(t)>

(18)
— (4a(5) = a())P (1u(l, 1) = pa(t) + pua (1)
__Afxgcnovcnt)+fxnt»dx)(wxo-ygo)>,te[azm
ba(t) = A1) ((uw) — a0 (1u(1,1) — pa(t) + (1)
I
—[}ddﬁﬂij)+waD¢0(Wﬂﬂ—WQU» (19)
~ (44— a(O)FP (w1, ) — u(0,1))
— AlQXx,ﬂv(Lt)—%f(x,ﬂ)dx)(Fyzﬁ)——2y40))>, te[0,T).
Note that the expression
A1) = ()~ 1s0) — (pa®) — () (Pralt) — 20(0)) (20)
never becomes zero according to the condition A2) of the Theorem.
Now we denote U(t) = max } lu(x,t)|, V(t) = max  |o(x,7)|, t € [0,T].

(x,7)€[0,1] x [0t (x,7)€[0,1] x [0,4]
Using the condition A3) of the Theorem and (14), (15) we derive from (16) —(19) respectively

Wﬂﬁ@+@ﬁ<@ﬂM+MﬁWum+ﬂWﬂﬁnte&ﬂ, (21)
e G (B @U@ Ve . .
(t>_t$+ 6/0 m T’ tE(,], ( )
by (t)| < Cot" + CtPU(t) + Cot 'V (E), t€[0,T], (23)

ba(t)| < Cigt” + CpitPU(t) + Cppt"V(t), t €0, T]. (24)

We conclude from (21)—(24) that the function v = v(x,t) is continuous in Qy, the function
u = u(x, t) has the behavior 2" ast — 0 accordingly to (15) and the functions by (t), bp(t) tend
to zero as t — 0 like a power function #°, where § = min{-y, # }.
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Thus, the problem (1) —(5) is reduced to the equivalent system of equations (16)—(19). The
term “equivalence” means that: if the triplet of functions (b1, by, v) is a global solution to
the problem (1) (5), that the functions (v, u, b1, b2) € C(Qr) x C([0,1] x (0,T]) x (C[0, T])Z,
b1(t)] < Myt |ba(t)| < Mat®, t € [0,T), satisfy (16)—-(19). And conversely, if a triplet
(v,u,b1,b2) € C(Qr) x C([0,1] x (0,T]) x (C[0, T])2 is a solution to the system of equations
(16)—(19), then (by, by, v) belongs to (C[0, T])2 x C>1(Qr) N C(Qy), verifies (1)—(5) and satis-
fies the estimates |by (t)| < M1t°, |by(t)| < Mat®, t € [0, T].

The fact that the first part of the statement is true follows from how the system of equations
(16) —(19) is obtained. Now we prove the contrary statement. For this aim we suppose that
(v,u,b1,b2) € C(Qr) x C([0,1] x (0, T]) x (C[0, T])2 is the solution to the system of equation
(16) —(19). The condition A1) of the Theorem allows us to differentiate the equation (16) with
respect to x. We get

ox(,) = [ [ Guat, g, ) (11000 + 8200 )l 7) 4 0,000, 7) = i (1)

= (1) = 5 (0)) + a(r)TP" o) + £, ) + 0, 0.

The right-hand sides of this equality and (17) coincide, so u(x,t) = vx(x,t), (x,t) € Qr. Fur-
thermore, taking into account the behaviors of the functions by = by (t), by = ba(t), u = u(x,t),
we deduce that b;(t)u(x,t), i = 1,2, are continuous in Q7. Let us look at the equation (16) as
an integro-differential one with respect to the function v = v(x,t). Now we can state that the
function v belongs to C*>!(Qr) N C(Qr) and satisfies (1)—(3) (see [19, p. 49]).

Then we multiply the equations (18) and (19) by Iux(t) — ps(t), and ua(t) — p1(t) respec-
tively. Adding obtained equalities we get

b () (Ip2(t) = pa (1)) + ba(t) (p2(t) — pa (1)) = pa(t) — a(t)tP (vx(h, 1) — 0x(0,1))
h
—/O (c(x, t)o(x,t) + f(x,t))dx.

Taking into account (1) —(3), this expression we rewrite in the form

bl(t)</olv(x,t)dx—y3(t)> - —</Ol vt(x,t)dx—yg(t))

Put z(t) = fol v(x,t)dx — pz(t). Then z/(t) = —by(t)z(t), and by integration we obtain
z(t) = z(0)e~ Jybr(ydr, Taking into account that z(0) = 0, we conclude z(t) = 0. This means
that the condition (4) holds.

Similarly, multiplying the equations (18) and (19) by I?us(t) — 2u4(t) and lus(t) — us(t)
respectively, and adding them we deduce

by () (Ppa(t) = 2pa(8)) + b2 (8) (Ina(t) — pa(t)) = pig(t) — a()F (Tox(h, ) — pa(t) + pua (1))
/
—/0 x(c(x, t)o(x, t) + f(x,t))dx,

and

2b2(t)</01 xv(x, t)dx — y4(t)> = —(/Ol xvi(x, t)dx — yé(t)).
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Then (5) follows from (1) - (3) and compatibility condition A4). We show that the inverse prob-
lem (1) - (5) and the system of equations (16) —(19) are equivalent.

Denote py(t) = bi(t)t=0, pa(t) = ba(t)t=%, w(x, t) = t%u(x,t). The system of equations
(16) — (19) we rewrite in the form

0= [ [ Gatutn o) (@ -+ pa(o)) ety 0 + el o0, - (0
(25)

—7@xﬂ—ﬂ<>)+M>ﬁbwm+wa0dnw+maxo,<noe§p

— ﬁT/ / Guie(x, t, 1, T <<p1(T)17+P2(T))T5%w(ﬂrﬂ‘i‘c(’?rf)v(ﬂrl—)_P‘/l(T)

—?( T) - (7)) + <>#¢<>+ﬂmﬂ)mwr+ﬁ%m4no,<xwe§p
(26)

i) = 271074 (00 00" (0,0) - 0

-/ Cr £ ) dx) (Ipa(t) = pa (1))
—(ha(H) = a()# (12 w(1, 1) = ua(t) + (1))

l
_/O x(c(x, o(x, £) + f(x, 1)) dx) <y2(t)—]/t1(t)>), teo,T],
(27)

pa(t) = ATH D ((ﬂ&(f) —a(t)tF (12" 0(1, 1) — pat) + pr (1))

N /O : x(c(x, t)o(x, ) + f(x,t))dx) <ly2(t) _ yg(t))
_ (yé(t) —ats <w(l,t) _ w(O,t))

!
- /0 (c(x, )o(x,t) + f(x, t))dx) <12y2(t) - 2;14(1‘)) > te[o,T).
(28)
Now we start studying the system of equations (25)—(28). We consider this system as an

operator equation
w = Pw, (29)

where w = (v, w, p1, p2) and the operator P = (Py, P,, P53, Py) is defined by the right-hand sides
of the equations (25)—(28).

Assume that [v(x, )| < Ms, |w(x,t)| < My, (x,t) € Qp, where M3, My are some positive
constants. We define the values of these constants below. Taking into account these estimates
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and definition of ¢ in (27), (28) we find

C13 <t77§ + 477 M, + fv*‘SM?’)

P <
[P < min |A(f)]
t€[0,T] (30)
Ci3 AR y—90 Y—9o ._
TG max{(1+T ; M4+M3), <T M 4T M3)} — My,
te[0,T]
Pyw| < Ca (”“5 + 17 OMy + t7—5M3>
IPaco] min, [4(0)]
te|0, T (31)
Cig Bl_s y—5 y—s ._
_WmaX{<1+Tz M4+M3),<T +M4+T M3)}.—M2,
telo,T

where t € [0, T] and the constants Cy3, C14 depend on the problem data. Let us consider the
equations (25), (26). Using (30), (31), we derive

bl _
|Prw| < '/ /Gl(x, t,q,r)((Mll+M2)t‘S_‘321M4+ max  |c(17,T)|Ms
0 Jo (n,7)€Qr

+ max
(n,0)€Qr

F0,7) = it (0) = 2 (4(0) = 1 () + a0y )| ) iy te| 52

. B3
+ max |og(x,t)| < Ci5t° 2 + Cipt" 1+ Cizt + max  |og(x, t)
(xt)€Qr (xt)€Qr

4

Lot s
|Pw| < ‘tﬁ;/ /Glx(x,t,n,r)((MlH—Mz)to_ﬁZlMLH— max_ |c(,T)|Ms
0 Jo (n,7)€Qr

+ max
(n,0)€Qr

F0,7) = it 0) = 2 (4(0) = () + a0y )| ) e

g1

-1 B
t2 UOx(xrt>) < CigtT™ 2 + Ciot” + Cy0 + max
(xt)€Qr

+ max
(xt)€Qr

t%v()x(x,t)‘ .
(33)

Now we choose the constants M3, My such that

Mz > max |vg(x,t)|, My > Cyp+ max
(xt)€Qr (x,t)€Qr

t 2 vor(x, t)

g1 ‘

Then fix number Ty, 0 < Ty < T, such that

_ B3
CisTy 2 +CieT) ™ +CiyTo+ max |og(x, )| < Ms, (34)

(xrt)EQT

s B-1
2

5 p-1

+ Clng + Cy0 + max tZUOx(x,t)‘ < My. (35)

(x,t)€Qr

As a result we find
‘le‘ < M3, ‘Pzw‘ < My, (x, t) S QTO' (36)
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Note that the estimates (34), (35) are the basis for choosing the number Tjy and show its depen-
dence on the input data of the problem.
We consider the operator equation (29) on the closed and convex set

N = {(v, w, p1,p2) € (C(Qr,))* x (C0, To])? : o(x, )| < M3, |w(x,£)| < My,
IP1(t)] < My, |p2(8)] < Mz |

in a Banach space B = (C (@TO))2 x (Clo, TO])Z. The estimates (30), (31), (36) guarantee that P
maps N into N. To prove the compactness of the operator P we have to show that the set PN,
by Arzela-Ascoli theorem, is uniformly bounded and equicontinuous. It means that for any e

there exists ¢ such that )Pw(xz, tp) — Pw(x1, tl)) < € for arbitrary |x; — x1| < o, |t2 — 1] < 0,
w(x,t) e N.

Consider the operator
Pao =15 [ [ Gt ) ( (1o + pae)) e T, ) + <l 700, 7) — i 1)
= (1(0) = 5 (0)) + a0y () + £, 7)) dp e+ £ s, )

g-1 [t rl -1
=t2 / / Gix(x,t,1,T)z(n, T)dndt + t 7 vy (x, t).
0 Jo

It follows from (36) that the set P, is uniformly bounded. We prove that it is also equicon-
tinuous. For this aim fix an arbitrary € > 0 and consider the difference

Pzw(xl, tl) — Pzw(xz, tz) ‘

tp _
//Glx x1,t1,1,7)z(y, T) dydt — t,° / Gix(x2,t2,1,T)z(n, T) dy dt

-1

T

g1 g1
vox (X1, t1) — vox (X2, fZ)’ + ’tlz - fzz

vox (X2, 12 ’ =L+ L+ L

Taking into account the continuity of the input data we can state that I, + I3 < @, when
X2 — x| <o |f2—f1| <e

Since hm/ / t 2 Glx (x,t,1,7T)z(n, T) dny dt = K1, then

<5, When t<é, xe[0. (37

t2 Glxxtq, T)z(y,T) dydt — 14 15

As a result we obtain [} < %—g, when t1,t; < 4.
Let now tq,t, > 41 and, to be definitive, t, > t;. Represent I; in the form

=1 ré1 gl -1 &y pl
? /0/Glx(xl,tl,n,T)Z(W,T)dﬂdT + |ty° /0/OG1x(Xz,tz,17,T)Z(11,T)d17dT

B-1 p-1 t1 pl
+‘<t T g )/01/0 Gix(x1,t1,1,T)z(n, T) dydt
1

B=1| rt1rl
: /(5 / (Glx(xll tl/ 1, T) - Glx(xlf t2/ 1, T))Z(W, T)dﬁdT
1

L=t

L
2

2¢€
// (Gix(x1, 2,7, T) — Gix(x2, 12,71, 7)) 2(y7, T) dydt §E+11,1+11,2+11,3~
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Since < Cy then from the continuity of the function tf we

t1 pl
/é_/OGlx(xl,tl,q,r)z(iy,r)dndr
1
get I11 < {5, when \tl — tp| < J,. Using (13), we represent I , in the form
1 = x1 — 1 + 2nl)?
ey (eXp<‘ (elu >17—9<r>) >(x1_’7+2”l)
0 laym(o(t) - 0(1)) v i
)2
+exp< (x1+77+21’ll ) 1+17+2nl)>
1 Py — 1+ 2nl)?
B 1 (e"p ( (eluz)n— 0(7) ) G = 2n)
ay/7(0(t2) —6(r))" "

t
1o <Cxp

31

(%1 + 1 +2nl)?
row (- 9<tz> o) Gt 2m)

t | +°° (x1 — 75+ 2nl)?
<c / / / ( 420l <— )
=B & | Jo(t)—6(1) 85( 0§53 3 1+ 2nl) exp 4s

+ (x1 +n +2nl) exp (—(xl o+ 2nl)” ) )d;y) ds

4s
< Ca /fl /9(f1)—9(T) d_a
5 |J6(t)—6(c) VO
when |t; — tp| < &,. The summand I; 3 we reduce to the form

t1 rl
I3 S'/{S /0 <G1x(x1,tz,17,r)—G1x(xz,tz,ﬂ,r)>2(17,f)d17df
1

dnydt

do

It < Cos0(t2) — 0(11)| < Ca|85™ —£8¥7| < S

+

ty rl
/ ; Gix(x2,t2, 1, T)z(n, T)dydt

5]

=Ihig1+ Lz

< Cy )tﬁJrl _ tﬁ+1‘ €

To estimate I; 3, we use (14) and find I; 3, < Cyy 30’

|, =
when [t; — tp| < d3. Using (13) for I; 31 we obtain

t
/51/ Gixx (X, tp, 1, T)dx dn dt
1

Choosing 0 = mm{&l, 02,63, 04} and unifying the obtained estimates we obtain the equiconti-
nuity of the set P,N. Obviously, the same arguments work for the operator P;. Let us consider

€
1131 = < C29|X2 —x1| < %, when |JC1 —JC2| < 54.

Psw(t). Using the equation (27), we rewrite it in the form P3w = %, where A(t) is defined
by (20) and

() = (450~ ar's (wt,0) - w(0,0)
= [ (et tot ) + £t ) dx ) (1nalt) - s(0)
- (1) = a0 (185 00,0) = alt) + (1)
= [ x(etumote ) + £ ) dx ) () - (o).
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Due to the condition A2) of the Theorem and the definition of the set /" we conclude that F(t)
is a continuous on [0, To] and F(t) < Czt’, where the constant Cs is defined by the problem

. - _F() E(t)
data. Since 15% IO O

0 < t < t*. As a result we obtain

= K, then we can indicate such number t* that — Ko

€
< ifor

‘Pg,w(i'z) — P3(,L)(t1)’ < ’Pg,w(tz) — Kz’ + ’Kz — P3w(f1)’ <€
for 0 < t1,tp < t*. In the case t1,t, > t* we get
F(ti) (1 1 F(ty) (1 1 F(t1) — F(t2)
g (A(tn - A(@)'* A(t) <§‘§> REAGE
_ E@)|[A)=AH)] N [F(t1)][19—15)] N |[F(t1) — F(t2)]

= 2 RV RV :
(t*)‘5<é?&r%o]m(r)\> (t) Tg[l&rTlo]\A(T)\ (t) Tg&r;o}}ﬁ(ﬂ}

Psw(ty) — P3w(t1)’ <

Taking into account the continuity of the input data and the mean value theorem we deduce
Pyw(ty) — Pgw(tl)‘ <€, |tp —t| < 0. The case t; < t*,tp > t* combines two previous ones
because

[Pra(t2) = Paw(ty)| < [Psco(ta) = Paco(#)| + [ Paco(t") = Pacw ()

and equicontinuous of the operator P; is proved. The equicontinuity of the operator P4 can be
showed in a similar way:.

Applying the Schauder fixed-point theorem we obtain the existence of the continuous so-
lution to the system (25)—(28) on [0, ] x [0, Tp]. It yields the existence of the solution (b1, by, v)
to the inverse problem (1)—(5) on [0,1] x [0, Ty]. It means that we prove the existence of the
solution to the problem (1) —(5).

3 Uniqueness of the solution

Assume that the system (25)—(28) has two solutions (v;, w;, p1j, p2i), i = 1,2. Denote

o(x,t) = vi(x,t) —va(x,t), w(x, t) = wi(x,t) —wax,t), p1(t) = pu(t) — pra(t), pa(t) =
p21(t) — pa2(t). Using (25)—(28), we deduce

o) = [ [ Gt ) (@ + pa(0) 2 iy, .

(o + pa() 2T aly, ) <l D0, 7) ) i,

w(x,t) = & /Ot/ol Gix(x,t,17,7) ((pll(r)n + p21(r))ré—$w(q,r)

-1

(P10 + pa(0)) T a0, 1) + (o, 7)o, 7) dy e
(39)

for (x,t) € Qr, and
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pr(t) = A1) 170 <(a(t)1t”zﬁw(l, f) + /0 l xe(x, )o(x, t)dx) <y2(t) _ yl(t))

N | (40)
_ (a(t)tT(w(l,t) —w(0,1)) +/O c(x,t)v(x,t)dx) <ly2(t) - m(t))),
pa(t) = A(E) 10 ((my# (w(l,t) —w(0,1)) + /O e Holx, Hdx) (Pea(t) - 2ma(t))
1+ (41)
~ (altie = w(t, 1) + /0 l xe(x,)o(x, )dx) (1o () — y;,(t)))
fort € [0, T].
Substituting (40) —(41) into (38)—(39), we reduce these equations to the form
o(x,t) = /0 t <K11(t, T)o(x, T) + Ko (t, T)w(x, T))dr, te [0, Ty, (42)
w(x,t) = /Ot <K21(t, T)o(x, T) + Koo (t, T)w(x, T))dT, t € [0, To. (43)

The equations (42)—-(43) form a system of homogeneous integral Voltera equations of the
second kind with respect to unknowns v = v(x,t),w = w(x,t) for every x € [0,1]. Using
(14), (15), we can state that the kernels of this system have integrable singularities. It means
that this system has only trivial solution

v(x,t) =0, w(x,t) =0, (x,t) € Qr, (44)

Substituting (44) into (40), (41) we get

pi(t) =0, p2(t) =0, te€[0,To]. (45)

It means that the Theorem is proved.

Conclusions

The inverse problem for identification two time-dependent functions in the minor coeffi-
cient in a strongly degenerate parabolic equation is investigated.

1. The sufficient conditions of existence and uniqueness of the solution to this inverse prob-
lem are established. Note that both existence and uniqueness are local in time.

2. It is proved, that for the strongly degenerate parabolic equation in contrast to the case of
weak degeneration the first derivative of unknown function # = u(x, t) has a singularity at the
point t = 0 as +2° and unknown functions by = by(t), by = by(t) tend to zero as t — 0 like #°
with § = min {’y, %H}, v > %1

3. The system of equations (16) — (19) which is equivalent to the inverse problem (1) - (5) can
serve as a base to application of some numerical methods to this problem.

4. This problem is the first step to solve the more complex inverse problems of finding the
minor coefficient in a parabolic equation that depends on both spatial and time variables using
the approximation of a continuous function by an algebraic polynomial. Furthermore, it is the
base in investigation of inverse problems for multidimensional parabolic equations.
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Aocaiaxyerbest KoedpillieHTHa obepHeHa 3apavda AASI BUPOAKEHOTO IapaboAiuHOTo piBHSHHS.
Monoanmt koedpillieHT IbOro PiBHSIHHS € MHOTOYAEHOM IIEPIIIOTO CTEMeHs 32 IIPOCTOPOBOIO 3MiH-
HOIO 3 ABOMa HEBiAOMMMM 3aA€XKHIMI Bia dacy OyHKIIisSIMIL. AOCAIAKEHHS TPOBeASHO ITPY 33 AaHIX
HeOAHOPiAHMX ITOYATKOBIil yMOBi, KpaitoBux ymoBax Aipixae Ta iHTerpaAbHMX yMOBaX IepeBU3Ha-
uJeHHs. BcTaHOBAGHO YMOBM OAHO3HAUHOI PO3B’SI3HOCTI BKa3aHOI 3apadi y BUIIAAKY CMABHOTO BUPO-
AKEHHSI.

Kntouosi cnosa i ppasu: obepHeHa 3apada, MOAOAIINMI KoedillieHT, TapaboaiuHe piBHSHHS, CMAD-
He BUPOAKeHHSI.



