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Characterizing Riesz bases via biorthogonal Bessel sequences

Zikkos E.

Recently D.T. Stoeva proved that if two Bessel sequences in a separable Hilbert space H are

biorthogonal and one of them is complete in H, then both sequences are Riesz bases for H. This

improves a well known result where completeness is assumed on both sequences.

In this note we present an alternative proof of Stoeva’s result which is quite short and elementary,

based on the notion of Riesz-Fischer sequences.
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Introduction

Let H be a separable Hilbert space endowed with an inner product 〈 ·, · 〉 and a norm ‖ · ‖.

Let { fn}∞
n=1 be a sequence of vectors in H. We say that:

(i) { fn}∞
n=1 is a complete sequence if the closed span of { fn}∞

n=1 in H is equal to H;

(ii) { fn}∞
n=1 is minimal if each fn does not belong to the closed span of { fk}k 6=n in H;

(iii) { fn}∞
n=1 is exact if it is both complete and minimal.

It is well known that { fn}∞
n=1 is a minimal sequence in H if and only if it has a biorthogonal

sequence {gn}∞
n=1 in H, that is

〈 fn, gm〉 =

{

1, m = n,

0, m 6= n.

Remark 1. An exact sequence in H has a unique biorthogonal sequence.

We also say that

(iv) { fn}∞
n=1 is a Bessel sequence if

∞

∑
n=1

∥

∥〈 f , fn〉
∥

∥

2
< ∞ ∀ f ∈ H;

(v) { fn}∞
n=1 is a Riesz sequence (see [2, p. 68] and [4, Lemma 3.2]), if there are some positive

constants A and B, A ≤ B, so that for any finite scalar sequence {βn} we have

A
∞

∑
n=1

|βn|
2 ≤

∣

∣

∣

∞

∑
n=1

βn fn

∣

∣

∣

2
≤ B

∞

∑
n=1

|βn|
2;
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(vi) { fn}∞
n=1 is a Riesz basis for H if fn = U(en), where {en}∞

n=1 is an orthonormal basis for

H and U is a bounded bijective operator from H onto H.

Remark 2. A Riesz sequence is a Riesz basis for the closure of its linear span in H (see

[2, p. 68]). Therefore, a complete Riesz sequence in H is a Riesz basis for H.

There are many equivalences of Riesz bases (see, e.g., [5, Theorem 1.1]). One of them states

that a sequence { fn}∞
n=1 is a Riesz basis for H if and only if { fn}∞

n=1 is a complete Bessel

sequence having a complete biorthogonal Bessel sequence {gn}∞
n=1 in H.

Recently D.T. Stoeva [5] improved the above by assuming completeness on just one (anyone)

of the two { fn}∞
n=1, {gn}∞

n=1 sequences.

Theorem A ([5, Theorem 2.5]). Let two sequences { fn}∞
n=1 and {gn}∞

n=1 in H be biorthogonal.

If both of them are Bessel sequences and one of them is complete in H, then they are Riesz

bases for H.

Our goal in this note is to offer an alternative proof of Theorem A, which is quite short and

elementary. We only need to use the notion of Riesz-Fischer sequences introduced below and

a result by P. Casazza et al. [1].

1 Riesz-Fischer sequences and Bessel sequences

Following R.M. Young (see [7, Chapter 4, Section 2]), we say that a sequence of vectors

{ fn}∞
n=1 in H is a Riesz-Fischer sequence if the moment problem

〈 f , fn〉 = cn

has at least one solution f ∈ H for every sequence {cn}∞
n=1 in the space l2(N).

In [7, Chapter 4, Section 2, Theorem 3], we find the following two theorems, attributed to

N. Bari, which provide a necessary and sufficient condition so that a sequence in H is either a

Riesz-Fischer sequence or a Bessel sequence.

(A) { fn}∞
n=1 is a Riesz-Fischer sequence in H if and only if there exists a positive number A

so that for any finite scalar sequence {βn} we have

A
∞

∑
n=1

|βn|
2 ≤

∥

∥

∥

∥

∞

∑
n=1

βn fn

∥

∥

∥

∥

2

. (1)

(B) { fn}∞
n=1 is a Bessel sequence in H if and only if there exists a positive number B so that

for any finite scalar sequence {βn} we have

∥

∥

∥

∥

∞

∑
n=1

βn fn

∥

∥

∥

∥

2

≤ B
∞

∑
n=1

|βn|
2. (2)

Remark 3. Hence, a Riesz sequence is a Bessel sequence and a Riesz-Fischer sequence simul-

taneously.

It easily follows from (1) that a Riesz-Fischer sequence is also a minimal sequence hence

it has at least one biorthogonal sequence. As stated by P. Casazza et al. [1], one of them is a

Bessel sequence.
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Proposition ([1, Proposition 2.3, (ii)]). The Riesz-Fischer sequences in H are precisely the

families for which a biorthogonal Bessel sequence exists.

For the sake of completeness, we present a proof of one of the two directions of the above

result.

Lemma 1. Suppose that a Bessel sequence { fn}∞
n=1 is biorthogonal to a sequence {gn}∞

n=1 in

H. Then {gn}∞
n=1 is a Riesz-Fischer sequence.

Proof. Consider a finite scalar sequence {βn}. Due to biorthogonality, the Cauchy-Schwartz in-

equality and since { fn}∞
n=1 is a Bessel sequence, thus (2) holds, there is some positive constant

A so that
( ∞

∑
n=1

|βn|
2

)2

=

(〈 ∞

∑
n=1

βn · fn,
∞

∑
n=1

βn · gn

〉)2

≤

∥

∥

∥

∥

∞

∑
n=1

βn · fn

∥

∥

∥

∥

2

·

∥

∥

∥

∥

∞

∑
n=1

βn · gn

∥

∥

∥

∥

2

≤ A ·
∞

∑
n=1

|βn|
2 ·

∥

∥

∥

∥

∞

∑
n=1

βn · gn

∥

∥

∥

∥

2

.

It is clearly now, that (1) holds, therefore {gn}∞
n=1 is a Riesz-Fischer sequence.

2 Proof of Theorem A and an application

Consider the assumptions of Theorem A. Then by Lemma 1 the biorthogonal Bessel se-

quences { fn}∞
n=1 and {gn}∞

n=1 are also Riesz-Fischer sequences in H. Therefore, both of them

are Riesz sequences in H. If one of them, say { fn}∞
n=1, is complete in H, then it follows from

Remark 2 that { fn}∞
n=1 is a Riesz basis for H. Biorthogonality yields that {gn}∞

n=1 is a Riesz

basis for H as well. The proof of Theorem A is now complete.

As an application of Theorem A, consider an exact Bessel sequence { fn}∞
n=1 in a Hilbert

space H such that it is not a Riesz basis for H. Since it is exact, it has a unique biorthogonal

sequence {gn}∞
n=1. By Lemma 1, {gn}∞

n=1 is a Riesz-Fischer sequence. However, {gn}∞
n=1 is not

a Bessel sequence: if it were, then by Theorem A the families {gn}∞
n=1 and { fn}∞

n=1 would be

Riesz bases for H.

As an example, consider the exponential system
{

eiλnt
}

n∈Z
, where

λn =















n + 1
4 , n > 0,

0, n = 0,

n − 1
4 , n < 0.

The system
{

eiλnt
}

n∈Z
is not only minimal but also uniformly minimal in L2(−π, π) (see

[3, Theorem 5]). In fact it is exact in L2(−π, π) (see [7, Chapter 3, Section 2, Theorem 4]).

However, this exponential system is not a Riesz basis for L2(−π, π) (see [3, Theorem 4]).

Nevertheless, since the frequencies λn are uniformly separated (λn+1 − λn ≥ 1 for all n ∈ Z),

the system is a Bessel sequence in every L2(−A, A) space, A > 0 (see [7, Chapter 4, Sec-

tion 3, Theorem 4]). But clearly, the system is not a Riesz-Fischer sequence in L2(−π, π), oth-

erwise it would be a Riesz basis. Moreover, the various properties of this exponential system,
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Lemma 1 and Theorem A, imply that the system has a unique biorthogonal sequence {gn}n∈Z

in L2(−π, π), which is a Riesz-Fischer sequence but not a Bessel one. In addition, it follows

from [6], that {gn}n∈Z is also exact in L2(−π, π), a property enjoyed by biorthogonal families

to exact exponential systems {eiµnt}n∈Z in L2(−π, π).
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Зiккос Е. Характеризацiя базисiв Рiсса через бiортогональнi послiдовностi Бесселя // Карпатськi

матем. публ. — 2023. — Т.15, №2. — C. 377–380.

Недавно Д.Т. Стоєва довела, що якщо двi послiдовностi Бесселя в сепарабельному гiльбер-

товому просторi H є бiортогональними та одна з них є повною в H, то обидвi послiдовностi є

базами Рiсса для H. Це покращує добре вiдомий результат, коли передбачається повнота обох

послiдовностей.

У цiй замiтцi ми представляємо альтернативне доведення результату Стоєвої, яке є досить

коротким i елементарним, та ґрунтується на поняттi послiдовностей Рiсса-Фiшера.

Ключовi слова i фрази: послiдовнiсть Рiсса-Фiшера, послiдовнiсть Бесселя, послiдовнiсть Рiс-

са, базис Рiсса, бiортогональна послiдовнiсть, повнота.


