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Approximation characteristics of the isotropic
Nikol’skii-Besov functional classes

Yanchenko S.Ya.®¥, Radchenko O.Ya.2

In the paper, we investigates the isotropic Nikol’skii-Besov classes B; o(R?) of non-periodic func-
tions of several variables, which for d = 1 are identical to the classes of functions with a dominat-
ing mixed smoothness 5, oB(R). We establish the exact-order estimates for the approximation of

functions from these classes B;lg(]Rd ) in the metric of the Lebesgue space L,;(IR?), by entire func-
tions of exponential type with some restrictions for their spectrum in the case 1 < p < g < oo,
(p,q9) # {(1,1),(c0,00)},d > 1. Inthe case 2 < p = g < o0, d = 1, the established estimate is also
new for the classes S;/QB(]R).
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Introduction

In this paper, we continue to study the approximative characteristics for the isotropic
Nikol'skii-Besov classes B) (R?) of functions of many variables in the metric of the Lebesgue
space Ly(R?). Inthe case 1 < p < g < oo, (p,q) # {(1,1), (00,00)}, we established the order
estimates of the approximation of functions from these classes by entire functions of exponen-
tial type (see, e.g., [9, Ch. 3]) with a spectrum concentrated on sets whose Lebesgue measure
does not exceed M.

The isotropic spaces B) , (R%) were introduced by S.M. Nikol’skii [11] in the case § = oo
(Bl (RY) = H;(IR" )) and O.V. Besov [3], when 1 < 6 < co. In the mentioned works, the defini-
tions of the spaces H}, (R%) and B, (R¥) were given in terms of certain restrictions on the mod-
ulus of smoothness of functions from those spaces. In what follows for the sake of convenience,
we will use the equivalent definition of the spaces By (R¥), which was given by P.I. Lizorkin [5]
and is based on the application of the Fourier transform. Note that S.M. Nikol’skii [12] and
O.V. Besov [3] obtained a series of results concerning the embeddings of the spaces H, (R%)
and B (R?) with the parameters p, § and 7, respectively, and the extensions of functions from
these spaces.
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1 Definition of functions classes

Let R d > 1, be a d-dimensional Euclidean space with elements x = (xq,..., %),
(x,y) = x1y1 + ... + x4y4- Let L,(R%), 1 < p < o0, be a space of functions f(x) = f(x1, ..., x4)
measurable on R? with finite norm

1/p
£ = WAl ey = ([, FIPax) ) 1< p < o9, [fll = 1f ) = esssup|£(x)]

x€R
Fork € N,h € R?,and f € L,(R%), by Ak f(x) we denote the multiple difference AX f(x) =

AhA';‘l’lf(x), where Ay, f(x) = f(x 4+ h) — f(x) and A%f(x) = f(x).
The multiple difference A';‘l (x) can also be rewritten in the form

k
ALF(x) = Y (1) HEC f(x + h).
1=0
The modulus of smoothness of order k for a function f € L,(IR?) denoted by wy(f, t), is
given by the formula

wi(f, t)p = sup HAli{zf()Hp/

|R|<t

where |h| = /B3 +...+ hfi is the Euclidean norm of the vector h.

We say that a function f € Lp(IRd ) belongs to the isotropic space B;/Q (RY),1 < p,0 < oo,

r>0,if /
° odt\1/0
k\J — <
(/ (t “’(ft)p) t) <o for 1€<0<
0
and

sup wi(f,t)pt™" < oo for 6= oo.
t>0

Note that, in this case, the condition k > r must be satisfied.
If the norm in the space B, »(IR?) is given by the formulas

© diN1/0
£l ) = 171+ ([ 7m0, ) 7, 1<0 <0,

and
”f”B;m(le) = [|fllp + sup wi(f, £)pt ™",
’ >0

then this is a Banach space.
As already noted, the space B) , (R?) was introduced by O.V. Besov in [3] and B, ,(R?) =
Hj, (R%), where Hj, (R?) is the space introduced by S.M. Nikol’skii in [11]. In what follows, un-

less otherwise specified, the term “BJ o (R?) classes” stands for unit balls in the space B} o (RY),
namely,

o(RY) = {f € Ly: ||f”B;,9(1Rd) <1}
In establishing results, an important role is played by the property of expansion of the
spaces B;IG(IRd ) with increase in the parameter 0 (see, e.g. [9, p. 277]), i.e.
1(RY) C By o(RY) C By 5 (RY) C B o(RY) = H(RY), 1<6<6 <o,

We now present PI. Lizorkin’s result, that enables us to define the norm of functions from
the spaces B; 9(]Rd) in another form, which allows one to use the Fourier transforms in the
theory of these spaces.
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Theorem 1 ([5]). A function f belongs to the space B;IQ(IRd), r>0,1<p,0 < o, if and only if
it can be represented by a convergent series in the metric L,

= Z Pﬂs(x)f Pﬂs(x) = Pafi,...,ai (x), (1)
s=0

where P,,, . ., (x) are entire functions whose powers do not exceed vy, . ..,v; in each variable
x1,...,X4, respectively, and the following condition

1/6
<Zb59|]P |ye> < o0 2)

is satistied, where b = a > 1. Moreover, the following estimate is true

o0 1/6
IF Ol ma <G LE0IPe0IB) €0, ®
s=0
In addition, if the partial sums of order n of series (1) realize the best approximation or
give an order of the best approximation, then the expression on the left-hand side of (2) and
(- )”Br (re) are equivalent, i.e. together with (3), the following estimate is true

co 1/6
(ZrIpe0l) < CalfOly,my G0
s=

Note that P.I. Lizorkin proved this theorem in a more general case where the parameter r in
the definition of the Nikol’skii-Besov spaces is a vector with different coordinates, i.e. for the
so-called anisotropic Nikol’skii-Besov spaces.

On the basis of Theorem 1, we now give equivalent definitions of the norm of functions
from the isotropic spaces B;/e(]Rd), depending on the value of the parameter p, which are
used in what follows. To this end, we recall the definitions of the Fourier transform (see,
e.g. [2, Ch. 11], [6], [16, Ch. 2]) and of the de-la-Vallée-Poussin sums [9, Ch. 8].

Let S = S(R?) be the Schwarz space of test complex-valued functions ¢ infinitely differen-
tiable on RY and decreasing at infinity together with their derivatives faster than any power
of the function (x7 + ...+ xﬁ)’l/ 2, considered in the appropriate topology. By S’ we denote
the space of linear continuous functionals on S. The elements of the space S’ are generalized
functions. If f € S/, then (f, ¢) denotes the value of a functional f on the test function ¢ € S.
Denote by §¢ and §~ !¢ the Fourier transform and the inverse Fourier transform of functions
¢ from the spaces S and S'.

For any function ¢ continuous on IRY, the closure of the set of all points x € R? such that
¢(x) # 01is called the support of the function ¢ and denoted by supp ¢.

The generalized function f vanishes in an open set G when (f, ¢) = 0 for all ¢ € S and
supp ¢ C G. The union of all neighborhoods where f is equal to zero is an open set and called
the null set of the generalized function f. It is denoted by G;. The complement of the largest
open set Gy to IR is called the support of the generalized function f, i.e. supp f equal to G £ is
a closed set.

According to the formula

fro) = | f@e)dx, ¢€S,
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each function f € Lp(]Rd), 1 < p < oo, defines a linear continuous functional on S and, there-

fore, is an element of S’ in this sense. Hence, the Fourier transform of a function f € Lp(]Rd),

1 < p < o0, can be regarded as the Fourier transform of the generalized function (f, ¢).
Further, we consider a continuous analog of the de-la-Vallée-Poussin kernel

1 4 cos2%x; —cos2tx;
st(x):ﬁn ]x2 L, j=1,d, seNU{0}.
j=1 j

This kernel has the following properties (see [9, p. 358]):

1) Vas(z) = Vas(z1, .. .,2z,4) is an entire function of the exponential type of power 257! in each
variable zj,j=1, d, bounded and summable on RY;

2)
2\4/2 1 _it .
(B)"% = L [ veton e, wherecy = {1yl <2, j = Ta)
3)
L Vos (B)dt = 1;
ﬁ R 25() — 4
4)

1

E/w Vos (£)| dt < C3 < 0.

Note that the following equality is true

st = ]/lzs Hﬂzs x]

where
— 1, ]x]\ < 25,
]/lzs(x]') = 1/5 (2s+1 — x]-)/25, 2% < |X]| < 25—0—1,
0, 25t < ]

For functions g1 € L1(IR%) and g, € L,(R?), 1 < p < oo, we define their convolution by the
relation (see, e.g. [9, p. 52])

1
(51%82) () = [ 81(x = w)ga(u) du.
In this case, the following inequality is true
”gl gZHP =X ( )d/zl‘gll‘ ”gZHP

Let f € L,(IR%), 1 < p < co. In this case, we set
2\ d/2
oo (f,x) = <;) (st * /st x—u)f(u)du.

This function is an analog of the de-la-Vallée-Poussin sum of the periodic function of order 2°.
Moreover, 05 (f, x) € Lp(RY), 1 < p < oo, is an entire function of the exponential type 257!
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in each variable Xj, j = 1,d. In terms of the Fourier transform, the function o»s (f,x) can be
represented in the form [9, p. 359]

oo (f,x) = 00 (f) = § " (pizs - §f)-

Further, we associate each function f € Lp(IRd ), 1 < p < oo, with the series

[ee]

f=on(f)+ ) (o2(f) — o1 (f)), 4)

s=1

which converges to f in the metric of the space Lp(]Rd) [10]. This space is called the expansion
of the function f in the de-la-Vallée-Poussin-type sums.
We introduce the notation

qo(f) = on(f),  45(f) = 02:(f) =1 (f), s €. )

According to relation (5), equality (4) for f can be rewritten in the form f = Y o2 5 qs(f).

Recall that the approximation of a function f € Ly, 1 < p < oo, with the use of o (f)
has the same order as the best approximation of this function with the help of functions of the
exponential type 2°.

Thus, by using Theorem 1, we can give the following definition of the spaces B, , (RY).

Definition 1 ([10]). A function f belongs to the space B;IQ(IR"), 1<p,0<oo,r>0,Iif for this

function, the quantities
1/6
(Z2lecn)

for1 < 6 < oo and sup,-2°||qs(+) || p, for 6 = oo are finite. Moreover, according to Theorem 1,
the norm ||f(-)||pr ,(R1), 1 < 0 < 00, of the function f satisfies the relations
p,

o0 1/6
17Oy = ( Z2ll ) for 10 <00 ©
and
1Ny (rey = sup 27 g5 ()] - ?)
s=0

Here and below, for positive quantities 2 and b, the notation a < b means that there exist
positive constants C4 and Cs that do not depend on an essential parameter in the values a and
b (e.g., C4 and Cs in the expressions (6) and (7) do not depend on the function f) such that
Cga < b (in this case, we write a < b) and Csa > b (in this case, we write a > b). In the
present paper, all constants C;, i = 1,2,..., depend only on the parameters contained in the
definition of the function class, the metric in which we estimate the error of approximation,
and the dimension of the space R".

In the case 1 < p < oo, the definition of the spaces B} (R?) can be given in a different form.

Let f be a function represented by the Fourier integral

1) = s fou FEr



856 Yanchenko S.Ya., Radchenko O.Ya.

Then the expression

1 2 . i(A,x
Sy (f) = W/—z [ FQ)ean,

where f(A) is the Fourier transform of the function f € L,(R?), is called a segment of the
Fourier integral for the function f.

Let Dps = Dps,. s be a parallelepiped, |Aj| < 2°,j =1,d,s > 0, and let Tos = Dos — Dys1
fors > 1and I'yo = Dy. We set

fis) = fos = Sos(f) — Sps1(f) = (A)eA¥dr, s >1,

Iys
and

fo) = foo = Sx(f) :/rof(A)ez(Ax

where the f(;)(x) are entire functions from L »(R?),1 < p < o (see, e.g. [6]). The Fourier trans-

form of f(4) is concentrated in I'>s = {2571 < < max;_jg Ajl <28 } and coincides there with f

Definition 2 ([5]). A function f belongs to the space Bp,B(Rd> r>0,1<p<oo,1<6< o0, if,
for this function, the quantities

- sro I 16
22 Hf(s)()”p < 0o,

s=0
for 1 < 6 < oo and sup. (27| f(s(")ll, < oo, if = oo are finite. Moreover, according to
Theorem 1, the norm ||f|| 5 o(RY) of the functions f satisfies the relations
P

1/06
1O x(zzsr"nf u@) ,

for1l <6 < o and
£l By o (rey = sUp 271 f5) () llp- (8)

52>
2 Approximation by entire functions of exponential type

We now give the definition of the approximating characteristic used in what follows.
Let £ be a finite set of numbers s € Z,, M = M(L) = U;ep 2. Forany f € Ly(RY),

1 < g < oo, weput
=) fio). 9)
sel
Note that Sox(f, x) is an entire function that belongs to the space L,(IR?) (see, e.g. [6]) and
the support of its Fourier transform is concentrated in 9, i.e. supp Son(f, x) C M = Usep T'os.
For f € Ly(IR%), let us consider the following approximative characteristic

Fi(F)y = . nE_IFC) = SmF )y,

M

where M > 0 and mesA denotes the Lebesgue measure of the set A.
IfFCL, (]Rd), then we set
ey (F), = supey(f) - (10)
f€F
We first formulate the following statements essentially used in our subsequent presenta-

tion.
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d
Theorem 2. Let1 < p < p' < o0,0 >0, K:1—<5—%> Yy ]>OIff€B’ (R%), then
j=1

fe BZ, o (R%), where pj =Tk, j = 1,d. In this case, the inequality
£ e, oy < Coll 7Ol

holds, where Cg is some constant independent of f.

Theorem 2 was obtained by O.V. Besov [3, Theorem 2.1].
We also give one more assertion for entire functions of the exponential type which was
obtained by S.M. Nikol’skii [11] (see also [9, p. 150]).

Theorem 3. If 1 < p; < p2 < oo, then any entire function of the exponential type g = g, €
L,(R?) satisfies the “inequality of different metrics”

1/p—=1/p2
) 18vL,, (re): (11)

d
H8VHL,,2(]Rd) < 2d<HVk
=1

Theorem 4. Let1 < p < g < oo, (p,q) # {(1,1),(00,00)},1 < 0 < co. Ifr > d(1/p—1/9),
then the order relation
e3y (B} g(RT))g =< M~/ dx1/p=1/a (12)

is true.

Note that the fulfillment of the condition r > d(1/p — 1/q), according to Theorem 2, en-
sures that functions f € B;IQ(IRd) belong to the space Ly(IRY).

Proof. First, we will get the upper estimate in (12). Since, for 1 < 6 < oo, the embedding
By o (R C H;(le ) is true, it suffices to get the required estimate for e%(Hg(le ))q. We now
consecutively consider several possible relations between the parameters p and g.

Let 1 < p < g < oo. Then, for given M € N, we find a number n(M) such that 2" < M'/4
and, for f € H;,(le ) consider its approximation by a sum of the form S, (f, x) = Y.0_ f(s) (%).

Let g0 be a number satisfying the condition p < g9 < ¢. Further, for f € H;,(]Rd),
1 < p < o, according to (7), we can write ||gs(f,-)||, < 27*". By using the Minkowski in-
equality and twice using the Nikol’skii “inequality of different metrics” (11), we can write

e < IF) = Salf, e =l T fo Y IOl
s=n+1 g s=n+l

< Y 2RV fo (g = Yo 20 Dllgg(-)lg,
s=n+1 s=n+1

< Y ORI g (Y, = 3 2D (),
s=n+1 s=n+1
i 9sd(1/p=1/q)p—sr _ i p—sd(r/d=1/p+1/q)
s=n+1 s=n+1

< p—nd(r/d=1/p+1/q9) - pq—r/d+1/p=1/q
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Consider the case 1 < p = q < co. Then for f € Hj, (R%), taking into account (8) and the
Minkowski inequality we have

&,(Fg < 1FO) —SulF e =l 3 fio Y e Olly
s=n+1 p s=n+1
i 2—sr < 2—nr — M—r/d.

s=n+1

Hence, we obtained the upper estimate for the quantity e3 (Br (IRd)) 0
We now establish the lower estimate in (12). Since the embedding B}, (le ) C B’,e(]Rd),
1 < 0 < o, is true, it is sufficient to find the required estimate for the quan’uty es m(Bp1 (RY)),.
For the functions f € Ly(RY) and g € Ly /(R%), we will use the well- known relation
(see, e.g. [4, p. 22])
Ifllg = sup |  1f(x)g(x)]dx, (13)

gl <1

where1/g+1/4 = 1.

Consider the case 1 < p < g < oo. Let f € B;ﬂ(le ) and Son(f,x) is an entire func-
tion, the support of the Fourier transform of which is concentrated on the set M = (Jscp I'2s,
mes M < M.

According to the given relation (13), we can write

1£0) = Smlf,)llg = sup [ 1((x) = Sm(f,)3(x) | dx. (14

lgly<t

For k € IN%, we consider the function Dy (x) = I—[] 1 Dy (x (xj), where

/2 x 2ki+1 1 /2 sinx;
Dk].(x]-) =\ = <2sm§]cos ]2 x]-) x_j' D1 /2(xj) = Do(xj) := p 5 .

Then, for the Fourier transform of the function Dy (x), we can write [17]

d
$Dk(x) = xeA) =T o (),
i=1
where
1, k] < ‘)\]’ < k] +1, 1, ’A]‘ <1,
XK () =91/2, Al =k or [A]=k+1, xolx) =q1/2, [A]=1,
0, otherwise, 0, Al > 1.

Hence, for the inverse transform, we obtain ' xx(t) = Dy (x).
To use relation (14), we construct the corresponding functions. For given M € IN, we choose
n(M) € N from the inequalities 2("~2)4 < M < 20~ 14,

Consider a function
d 2n+1_1
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Since F,(x) satisfies the relation (see, e.g. [17])
1En (g =< 2071D, 1 < g < oo, (15)
then

HF HB’ (&) Z2er Hp (n—b—l)r”Fn(')”p - 2(n+1)r2nd(1—1/l7) - 2nd(r/d+1—1/P)‘

Hence, it follows from above relations, that the function f1(x) = Cy 2—nd(r/d+1-1/ P)Fn(x),
belongs to the class By, | (R%) with a constant C; > 0.

Further, according to (15) we have ||F,(+)[|; =< 2"/1,1 < q < 00,1/q+1/q" = 1. There-
fore, the function g1 (x) = Cg2~"¥/9F,(x) satisfies the condition |/g; (-) g < 1 with a constant
Cg > 0.

So, using (14), we get

1AC) = SmlA Mg = sup [ (G0 = Sl 2)g1 ()] dx

gl <1

> /d (27 U/ HPIE, (x) — Son(f1, %))2 "/ 9F, (x)| dx
R
— 2—?1d(1’/d+1—1/p)2_7’1d/q / . ’(Fl’l (x) — ngt(Fn,X>>Fn(x>‘ dx
R

—nd(r/d41=1/p) ™ (nd —nd(r/d—1/p+1 d 1
> 0" (r/d+1 /p)2 7 (2” _ M) >2 nd(r/ /p+ /q)zn (1 i ?>
~ p—nd(r/d=1/p+1/q) - pp—r/d+1/p=1/q

We now consider the case where 1 < p < co and g = co. For given M, we select a number
n(M) € N such that the relations 2" < M and 2" > 4M are true and set

d
Onr1(x) =[] (Varrr(x) = Vau(x7)), neN, xeR, j=1,d.
j=1

Note that for ||v,41(-)||p, 1 < p < oo, the estimate
[onsallp < 2470, 1< p < oo (16)

is true [7,18].
Consider a function f,(x) = CgZ’”d(r/d“’l/p)vnH(x), which, as shown in [18], for a cer-
tain choice of the constant Cy belongs to class B}, | (RY).

Further, let Son(f2, x) be an entire function of the form (9). Since for p = oo according to (16)
1041 ()]0 =< 211 then

1f2() = Som(f2r Moo = I 2()lleo — IS (fo, ) |leo| > 27/ dFI=1/P) (1 _ pp)
= and(r/dnLlfl/p)znd — and(r/dfl/p) — Mr/d+1/p.

Finally, let p = 1and 1 < g < co. In this case, we will again use relation (13) and, as
the functions f(x) and g(x), we will choose the functions f(x) at p = 1, namely f3(x) =
C102 " vy41(x), C1o > 0, and g (x) = C1127 "9, 1 (x), C11 > 0. We also assume that the
relations 2" =< M and 2" > 4M are true.
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We now show that for the proper choice of the constant Cq; the function g, (x) satisfies the

conditions of relation (13) for the function g(x), we have

g2 ()l = 27" 01 (-) || x 27 A=/ ) pnd(-1/1) =,
Thus, by applying relation (13) to the functions f3(x) and g»(x), we find
4 (fr)y 3 27200, [ — M) 5 270741/ ppr/dsi1/a,

This means that the required lower estimates are established in all cases of the theorem.

The Theorem 4 is proved. O

At the end of the work we will make some comments on the obtained results.
In the one-dimensional case d = 1, the isotropic Nikol'skii-Besov classes B, o(R) are iden-

tical to the classes with mixed smoothness S; pB(R) [1]. In the cases 1 < p < q < o and

1 < p=4q<2,d=1, the exact-order estimates of quantity (10) for the classes S;,(,B(IRd ) are
found in [8,19-21]. In the case 2 < p = q < oo, d = 1, the estimate of quantity (10) is also new

for

for
in[

Re
[1]

(2]
3]
(4]
[5]

(6]

(7]

(8]
[9]
[10]

(1]

the classes S;IGB(IR).

The quantity (10) is a non-periodic analogue of the best orthogonal approximation and
isotropic Nikol’skii-Besov classes of the periodic functions of many variables were studied
13]. Isotropic Nikol’skii-Besov classes of the periodic functions also studied in [14, 15].
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Y cTaTTi AOCAIAXKYIOThCS i30TpomHi KaaciB Hikoabcbkoro-becosa B; 0 (RY) Henepioanmurmx pyH-
KIil1 6araTbox 3MiHHMX, sIKi py d = 1 TOTOXHI KracaM (PYHKIIIN 3 AOMIHYIOUOK MIIIaHOIO TT0-
X1AHOIO S; QB(IRd). Oaep>XxaHO TOUHI 3a MOPSIAKOM OLIHKM HaOAVDKEHHS (PYHKIIIN 3 AQHMX KAAciB

r d . d . .o .
Bp,e(]R ) y MeTpumi mpoctopy Aebera L;(IR?) 3a AomoMororo IiAMx pyHKIIii eKCIIOHeHITiaAbHOTO
TUILY 3 IEBHIMY 06MeXXeHHSIMI Ha IXHiit ciiekTp y Bumaaky 1 < p < g < oo, (p,g) # {(1,1), (00, 00)},
d > 1.YBunaaxy 2 < p = g < co,d = 1, BcTaHOBA€Ha OIIiHKa € HOBOIO Ji AASI KAACiB S; GB(]R).

Kntouosi croea i ppasu: isoTponHi kaacu Hikoabcbkoro-becosa, ina pyHKIIiSI eKCIIOHeHIIiaABHO-
TO Ty, Hociit pyHKIIiI, mepeTBopenHs Dyp’e.



