ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp
Carpathian Math. Publ. 2023, 15 (1), 222-235 KapmnaTcpki MaTeM. my6a. 2023, T.15, Ne1, C.222-235
doi:10.15330/cmp.15.1.222-235

[\

Local Polya fluctuations of Riesz gravitational fields and the
Cauchy problem

Litovchenko V.A.

We consider a pseudodifferential equation of parabolic type with a fractional power of the
Laplace operator of order &« € (0;1) acting with respect to the spatial variable. This equation nat-
urally generalizes the well-known fractal diffusion equation. It describes the local interaction of
moving objects in the Riesz gravitational field. A simple example of such system of objects is stellar
galaxies, in which interaction occurs according to Newton’s gravitational law. The Cauchy problem
for this equation is solved in the class of continuous bounded initial functions. The fundamental
solution of this problem is the Polya distribution of probabilities 7P, (F) of the force F of local in-
teraction between these objects. With the help of obtained solution estimates the correct solvability
of the Cauchy problem on the local field fluctuation coefficient under certain conditions is deter-
mined. In this case, the form of its classical solution is found and the properties of its smoothness
and behavior at the infinity are studied. Also, it is studied the possibility of local strengthening of
convergence in the initial condition. The obtained results are illustrated on the a-wandering model
of the Lévy particle in the Euclidean space R in the case when the particle starts its motion from
the origin. The probability of this particle returning to its starting position is investigated. In par-
ticular, it established that this probability is a descending to zero function, and the particle “leaves”
the space R®.
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Introduction

Let R" be the n-dimensional Euclidean space with the scalar product (-,-) and the norm
[r| = (r,7r)1/2; Z" be the set of all n-dimensional multi-indices; R = R! and Z. = Z'. The
Fourier transform operator is denoted by the symbol F.

In the space R?, we consider a system of moving objects Z; with masses m;. We believe
that the interaction between objects is subject to Riesz potential [26]. This means that the
gravitational influence F between any two objects of masses M and m is described by the law

Mm
F=G——1, >0, 1

where G is the corresponding gravitational constant, r is the vector of the distance between
these objects, and 1 = r/|r|, r € R3. A simple example of such systems are stellar galaxies, in
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which the interaction between star objects Z; is described by the well-known Newton’s law (1)
with g = 2.

In this system we fix some object Zy and assume that it is at the origin. We are concerned
with the force F(t) of local influence on the unit of mass of the object Zj at time f, which
is caused by the close environment of this object. Since this environment is constantly and
unpredictably changing, it is convenient to consider F as a random variable.

In [18], it is established that the nonstationary probabilities distribution Wy (F; t) of the force
F(t) is determined by equality

W (F;t) = F! [e*”ﬁ(t)\i\w] (F;t), B >3/2 (2)

where ag(-) is the so-called the coefficient of local fluctuation of the system’s gravitational
field, which is determined by the distribution of objects in the system and their average mass.

Under certain conditions on ag(-), the distribution Wy on the set R3 x (0; T] is a fundamen-
tal solution of the Cauchy problem for the pseudodifferential equation (PDE) [18]

oru(x;t) +ag(t) Avu(x;t) =0, t € (0;T], x € R". (3)

Heren = 3, v = 3/B, T € (0;+00|; A, is the Riesz operator of fractional differentiation of v
order,ie. A, = (—A)V/ 2 where A is the Laplace operator [29], and

a%(t) _ dﬂdlgft)

In the simplest case a:g(t) = const, equation (3) is known as “fractal diffusion equation”
[12, p. 324] or “isotropic superdiffusion equation” [35, p. 251]. An important example for mo-
tivating the study of the fractal diffusion equation is given in [4, p. 2]. Here a probabilistic
model of a random walk of the particle X in long jumps is proposed and it is shown that the
probability u(x; t) of the presence particle X at the time ¢ at the spatial point x is the solution to
equation (3) for a’ﬁ(t) = 1. Processes of this type occur in nature quite often, see in particular
the biological observations in [25,36] and the mathematical discussions in [9,23].

The fractal diffusion equation is the source of many random processes [13]. In further
generality, it is known that the Riesz operator A, (the fractional Laplacian) is an infinitesimal
generator of the Lévy process, see e.g. [1,2] for further details. In this regard, we note that
each distribution Wg(-;t), B > 3/2, with a fixed t € [0; T] belongs to the class of the Lévy
distributions of symmetric stable random processes [16,37]:

L,() =F} {e—blﬁl”} (),  ve (2 4)

In particular, W, is the known Holtsmark distribution [5,11].

Obviously, Wg = Ly, forv =3/Band b = aﬁ(t), t € (0;T]. This equality characterizes
the general nature of symmetric stable random Lévy processes. Each of such processes L, for
v € (0;2) can be regarded as a process of local influence of moving objects in the corresponding
gravitational field of M. Riesz.

In his fundamental work [16], P. Lévy proved that the function £,(-) is the probability
density only for v € (0;2]. This study was preceded by the research of the Hungarian mathe-
matician G. Polya [24], who established this fact for the case v € (0;1). Thus Lévy distributions
Ly(-) of order v € (0;1) are also called Polya P, (+) distributions in the literature.
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For convenience, the fundamental solution of the problems Cauchy for PDE (3) we denote
by
Gy(x;t) = F! [e*ﬁﬂf)\@\”} (x;t), x€R", te (0;T], 5)

where dg(-) = ag(-) —ag(0).

Investigation of the Cauchy problem for PDE (3) and the corresponding function G, (x;t)
in the case when the coefficient ag(-) is a strictly increasing function on the interval (0; T], was
conducted in many works [3,6-8,30] (see the detailed review in [18]). There, for v € [1;2],
various methods were developed to study the properties of the fundamental solution G, (x; ),
and statements were formulated about the correct solvability of the Cauchy problem in classes
of Holder functions. Also, the typical properties of the classical solutions of PDE (3) were
clarified, in particular, an analogue of the maximum principle was established.

At the same time, the case of v € (0;1) appeared to be much more problematic and had
remained little-studied for a long time. Recently, new results have been obtained [14, 15, 21].
Here, in a slightly different form than that in [7], a parametrix was proposed for constructing
the structure of the fundamental solution of the Lévy-type operator L with a variable symbol of
order v € (0;1). Gradient estimates of this solution are also established, which are important in
the study of the corresponding Markov processes. In addition, for PDE (3) the correct solution
of the Cauchy problem in the class of unbounded, discontinuous with integrative singularity
of initial functions is proved in [17]. Also an analogue of the maximum principle is established,
by means of which the uniqueness of the solution of this problem is substantiated.

The subject of our research is the properties of the Polya distribution density related to the
problem of local influence of moving objects in the Riesz gravitational field, i.e. the properties
of fundamental solutions G, of the Cauchy problem for PDE (3) of purely fractional order v,
and the correct solvability of this problem in the class of bounded continuous initial data. The
results obtained here harmoniously complement the results of research conducted in [7,17].

The contents of the work is as follows. Section 1 contains the necessary information about
the operator A, and the properties of the function G,. The Cauchy problem for PDE (3) of
order v € (0;1) in the class of continuous bounded initial functions is solved in Section 2.
Here the classical solution of this problem is obtained, the form of the image of a solution is
found and properties of its smoothness and behavior at infinity are investigated. Section 3
clarifies the question of the uniqueness of the solution of this Cauchy problem under certain
conditions on the coefficient of local fluctuation ag(-). The possibility of local increasing the
convergence of the solution of the Cauchy problem to its limit value when approaching the
initial hyperplane is clarified in Section 4. The obtained result are illustrated in Section 5 by
the example of solving the problem of finding the time of return of a wandering Lévy particle,
to the place of its start. Section 6 presents conclusions.

1 Preliminary information

We assume that C/(Q) is the class of all continuously differentiable to order ! functions
on the set Q, § = S (R?) is the Schwartz space defined on R? infinitely differentiable rapidly
decreasing functions [31], and I1g = {(x;t) : x € R%,t € Q}.

As it was mentioned above, the Riesz operator of fractional differentiation is the fractional
power of the Laplace operator, taken with the “minus” sign: A, = (—/)"/2. On the elements
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of the Schwartz space of rapidly decreasing functions, this operator is determined by equality

(Af)() =F 1 [EI"FIA (), fes. (6)

However, the classical form of fractional differentiation (6) is not suitable for extending the
operator A, to wider classes of functions. The following form is more convenient for our
research [29, p.367]:

(Auf)(x) = () [ LR =fxty)

R3 |y|3+1/

dy, x€R3ve(01), 7)

where
v(l+v)

c(v) = 4nT(1 —v) cos(vm/2)

(here I'(+) is gamma function).

It should be noted that the theory of Riesz potential and the corresponding fractional dif-
ferentiation originates from [10, 26,27]. G. Thorin, S. Sobolev, S. Stein, P. Lizorkin, S. Samko
and others made a significant contribution to its development (see [22,28,32-34]).

Note that the integral from equality (7) converges absolutely, for example, for bounded
Holder functions with an order greater than v, so formula (7) allows us to apply the operator
Ay to functions of wider classes than the space S. The set of all functions f defined on R3, for
which the right-hand part of relation (7) has meaning, is denoted by D(A,). It is obvious that
the constant function f(x) = const belongs to the set D(A,) for every v € (0;1), and A, f = 0.
Further, we assume that the coefficient ag(-) € C'([0; T]) and

ﬁlg(t) = ﬂﬁ(f) — aﬁ(O) >0 Vt € (0; T]. (8)
Under such conditions, the following statement holds.
Theorem 1. The density Wg(x;t) of probability distribution on the set 11 .7} is infinitely dif-
ferentiable with respect to the variable x and once differentiable with respect to the variable t.

The following estimates are correct:
—3—|k|—v
Wy ()| < caap(t) ((ap()"" +[]) : ©)
—3—|k|-v
‘ata’;wﬁ(x; t)) < ¢ )ag(t)) ((ap(0) " + |x|) , (10)

where c; and c; are positive constants.

This theorem is easily proved according to the scheme of the proof of Lemma 2 from [19].
Hence, taking into account (2) and (5), the following consequence becomes obvious.

Corollary 1. For the derivatives of the fundamental solution G, the following estimates are

correct:
—3—|k|—v

G (x;1)| < crag(t) ((ap(t) """ + Ix]) : (1)
)atai(}v(x;t)‘ <oc )ﬂ;g(t)‘ <(ﬁﬁ(t))1/v I ]x\)_3_k|_"’ (12)
forall (x;t) € 1o, and k € z3.

Note that estimates (11), (12) for the case when the coefficient ag(-) is a strictly increasing
function, were obtained in [19,20].

Estimates (11), (12) will allow us to establish the correct solvability of the Cauchy problem
for PDE (3) in the class of continuous bounded initial functions and to study some properties
of its solutions.
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2 The Cauchy problem
For PDE (3) we consider the Cauchy problem

UGty = £, (13)
in which f is a bounded continuous function on R3.

Definition 1. The solution of the Cauchy problem (3), (13) on the set 1.1} is called the func-
tion u(x;t), which on this set is differentiable by the variable t and u(-;t) € D(Ay), t € (0; T].
In this case the function u on 11| satisties the equation (3) in the usual sense, and the initial
condition (13) in the sense of the boundary relation

u(x;t) H—jrof(x), x € R (14)

This auxiliary statement holds.

Lemma 1. Letag(-) € C'([0; T]) satisfy condition (8). Then the function

u(x;t) = (f*Go)(xt), (xt) € g (15)

is:

1) on R® - infinitely differentiable with respect to the variable x with a fixed t € (0; T| and
bounded together with all its derivatives;

2) on (0; T] - differentiable at t for a fixed x € R3.

In this case, we have

Ku(x;t) = ( f*a’;GV> (1), qu(xt) = (F*G)(xt), (i) €Ty (16)
If .
100 g . —~
I{c,a} C (0;+00) V¥ € R |f(x)] < A )™ (17)
then

‘ ‘hrr+1 u(x;t) =0 Vte (0T (18)

Proof. First, we note that
(F*G)(t) = [ FWG(x—yiDdy, (x:t) € gn (19)

Having taken into account the conditions of the function f and estimate (11), we obtain that
forallk € Z% and (x;t) € I1(o,7) the following inequalities hold true

IR3f(y)i9’§ch(x —y;t)dy' < /]R3 fv)] ai_va(x—y;t)) dy
< cag(t)dy
he (@)™ +1x—y

o oclap) e
R /IRS (1+ |z|)3+|k\+v = ci(ap(t)) ,

>3+|k+1/
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where c; is a positive value that depends only on k. These estimates ensure that the following
equality

K(f+G)(xt) = (F+35G) (xit),  (w:t) € Mgy,

holds for each k € Z3. Hence we obtain that the function u(x;t) is infinitely differentiable
with respect to the variable x on Ilj.7) and the derivatives oku are bounded. Similarly, using
estimate (12), we verify the differentiability of u(x; ) by the variable ¢ and the fulfillment of
the second equality with (16).

We are going to set the boundary relation (18). To do this, we use the estimate

NI Gu(x —y; t)dy Gy(x —y; t)dy -
[u(x8)] < </2|y|2x (1+y))" Sy 1+ ly)" ) V() € o,

According to the equality

/R Gu(xdx=1, te(0T), (20)

we have

o

/ G”(X‘W?fys 2 / G(x—yt)dy=——5 — O
2lylzlxl (14 |y]) (1+x])" /w3 (T4 ]x])" lx|=teo

Further, if 2|y| < |x|, then |x —y| > |[|x| — |y|| = [x||1 = [y|/|x]| > |x|/2.
Considering this and estimate (11), we find

/ G”(x_y;i)dyg/ c1dp(t)dy
2l (L) R 2 ((ag(1) Y+ -
- V2V c1dp(t)dy
- v/2 3 n 1
PIEIR(ag() " 12— )
ol c14/dp(t)dz

= —
’x‘v/z R3 <1+‘Z’)3+V/2 |x|~>+oo

3+v/2

3+v/2

0 Vte (0T

Thus, the fulfillment of the boundary relation (18) is substantiated. O

Theorem 2. Let ag(-) € C'([0;T]) satisfy condition (8), then formula (15) determines the
solution of Cauchy problem (3), (13).

Proof. We write formally

Apu(x;t) = c(v)/ uxt) = u(x—{—y;t)dy, (x;t) € I g.7-

]RS |y|3+1/

By Lemma 1, the function u(-; t) is infinitely differentiable and bounded together with all
derivatives by R3, so the integral from the previous equality is absolutely convergent on o;7)-
This means that u(-;t) € D(Ay), t € (0; T).

Further, we find that

u(x;t) —u(x+y;t) , Gy(x—zt)—Gy(x+y—zt)
/11{3 Y3 dy = /]R3 R3f(z) yF dzdy
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directly from equations (15) and (19). The absolute convergence of the integral from the left-
hand side of the equality makes it possible to change the order of integration in the integral in
the right-hand side of this equality and obtain

Avu(x;t) = (f x AvGy)(x;t),  (xt) € o).

Hence, taking into account that the function G, is a solution of equation (3), as well as
formula (16), we find

Avu(xt) = = (fxGy)(x;t) = —dmu(x;t), (xt) € Mg7)-

Therefore, on the set I1.7) equation (15) determines the classical solution of PDE (3).
We now show that this solution satisfies the initial condition (13), i.e. the boundary relation
(14). To do this, we use equality (20), according to which

(Gt — F)] < [ [Gu@n][F(x —8) = F(x)]de = 3(win).

Since f is a continuous function on R, for every x € R® and arbitrary ¢ > 0 there exists such
1 1
to that £3" < eand |f(x — &) — f(x)| <& if |¢] < t. Then

I(x;t) <e/g 1 |Gu(&t) }d§+/§| 1 [GuEG ][ f(x = &) — f(x)]dE < eTi(t) + Ta(x;1),

|<tg”

where
J1(t) = /11{3 }Gv(g;t)}dé,‘, Jo(x;t) = /§|>t21’ }Gu ét) Hf x—¢ —f(x)}d@.

Further, considering estimate (11) and the boundedness of the function f in R3, for all ¢ € (0; T]
and x € R3 we find

N . ac B dz _
MO SO e T e T

(v f) < ond G GE = cata () [ 0~V dp = cutin()t-1/2
Ja(x;t) < csdp(t) |§|>t% E| & = cadg(t) & P o =cadg(t)ty /7. (21)

It should be noted that the functions ag(-) and a4(-) on (0; T] are positive, while ag(-) is
continuously differentiable, so according to mean value theorem, there is a constant 6 > 0
such that for all € (0; T] the following estimate

ap(t) < ot.

is performed. Hence it follows from the above and from inequality (21) that for all x € R® and
t < top we have
To(x;t) < 04(51‘(1)/2 < g0’ = c5e”.

So, for each x € R? and arbitrary e > 0 there is tg < &2’ such that for all t < t; the inequality
J(x;t) <cle+¢€")

holds, i.e. the boundary relation (14) is true. O
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Taking into account the non-negativity of the function G, and equality (20), directly from
formula (15), we arrive at the following statement.

Corollary 2. If Cauchy problem (3), (13) has a unique solution u, then

inf f(x) <u(x;t) < sup f(x) V(x;t) € g7y
x€R3 x€R3 ’

In the next section, the question of uniqueness of the Cauchy problem solution (3), (13) is
clarified.

3 Conditions for the uniqueness of the solution

We previously assumed that on the set [0; T] the fluctuation coefficient ag(-) is such contin-
uously differentiable function that satisfy the condition (8), i.e.

ag(t) >ag(0)  Vte (0;T]

Fulfillment of this condition causes the increase of the function ag(-), even if not on the whole
interval (0; T], then at least on some part of it (0;to), to < T. However, on [ty; T] the function
ag(-) can be non-increasing. In this case, we have

ag(t)) =0; ag(t) >0, te (0;to); ag(t) <0, t€ [ty Tl
The following statement holds.

Theorem 3. Let ag(-) € C'([0; T]) satisfy condition (8) and t, is a fixed point with [0; T| such
that
ag(t) >0, t € (0;to].

Then on I1 g, the Cauchy problem (3), (13) has only one solution for which the boundary
relation (18) holds.

Proof. Suppose that for the Cauchy problem (3), (13) on 1, there are two different solutions
u1 and up with property (18). Consider the function v = u; — up, which on (g, is also a
solution of PDE (3) with property (18). The zero initial condition (13) is obviously satisfied for
v, i.e.

U(~; t>\f:o =0.

We have to show that
v(t) =0 V(xt) € gy (22)

We apply the method of proof by contradiction. Suppose that condition (22) is not satisfied.
This means that

A= inf ov(x;t) <0 or u= sup v(x;t)>0.
(x;t)eH[o;to] (x;t)en[o;tol

Let A < 0and
Lw(x;t) = drw(x; t) + ag(t) Ayw(x; t).
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We consider the auxiliary function
o(x;t) =v(xt) +tx, (xt) € gy,
where x is such fixed number that 0 < y < —A/ty. Obviously

inf  9(x;t) <O.
(x;t)eH[O;,o]

It should be noted that 9(x; t) is a continuous function on IIjy, for a set of variables, in
addition,
o(x;t)),_, =o(x;t),_, =0, x¢€ R?,
and
O(x;t) — tx >0, te (0t

|x|—00

Therefore, v(x; t) has a negative global minimum in some point (x,; t,) € IT(g;1,)- Then

Beside this
O(xsste) —0(xs + k) <0 Vy € R,

i.e.

AyO(xi;ty) = c(v)/ O(xsits) = O(x: +; t*)dy <0.

R3 |y|3+1/

Hence, we find that
Lo(xi; ti) = 00(xs £ ) + ag(te) AvD(xi; i) = ap(te) Avd(xi; ti) <0,
On the other hand, for all (x;t) € I1,7] we have
Lo(x;t) = L(v(x;t) +tx) = Lo(x;t) + L(tx) = L(tx) = x + tag(t) Avx = x > 0.
Here a contradiction arises. Therefore,

inf  o(x;t) =0.
(x38) €Mjgy1)

The falseness of the condition y > 0 is established similarly using the function
O(x;t) = v(x;t) — tx, (x;t) € I gy,

(here yx is a fixed constant such that 0 < x < u/tg). Thus, the fulfillment of condition (22) is
justified. 0]

4 The principle of the solution localization on the initial hyperplane

In this section we clarify the question of the possibility of increasing convergence in the
initial condition (13) on that part of the space R3, where the initial function f is smooth.
The below statement holds.
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Theorem 4. Let f be a continuous function bounded on R?, and let u be a corresponding
solution of the Cauchy problem (3), (13). If f € C'(Q), Q C R?, then
KcQ
du(x;t) = af(x), 0<I[k[ <,
t—=+0

(this refers to uniform convergence on each compact set K from the set Q).
Proof. Obviously, it will be enough to prove the fulfillment of the boundary relation

P KcQ 3
owu(x;t) = 0, keZ?,
t—+0

for f(x) =0,x € Q.
Let K C K; C Q, where K; is some compact set of IR, such that
Vy e KVEER3\K; : [x—¢& >b>0. (23)

We consider the finite function 7 € C*(IR3), such that suppy C Q, 77(x) = 1 on K; and we put

p=1-1.
According to Lemma 1, for all k € Z3 and (x;t) € I o.7) we have the relation

uit) = [ AC,(x =GO F(@)E + [5G, (x— & (@)@

from which, considering the equality f = 0, » = 0 on the sets Q and Ky, respectively, and that

supp (Gu (x — 1)() € Q,

we find

Fu(eit) = [ HC(x—GONE@f @ (xt) € o,

R3\ KK
Hence, using estimate (11) and taking into account the boundedness of the functions y, f
on R? as well as condition (23), for x € K and 0 < t << 1 we obtain

ok u(x; t)’ < /

R3\ Ky

G (x —&b)| [m@)f(2)]de

< ciag(t / x — &3 K=vgE < cag(t / z|737Vdz = cpag(t) — 0
<aip(t) [, Ne=a g <cag(r) [ 12 og(t), =2,
(here cq is a positive constant). O

From Theorem 4, considering that the initial function f is continuous on R3, we arrive at
the following statement.

Corollary 3. Let u be the solution of Cauchy problem (3), (13). Then for each compact set
K C R3 the following boundary relation

K
u(xt) = f(x).
t——+0

is fulfilled.
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5 Example

As an example, consider the model “Lévy v-wandering” of the particle X in R® [4, p. 2].
The probability u(x;t) of finding the particle X in point (x;¢) is a solution of the following
equation

oru(x;t) + Ayu(x;t) =0,  (x;t) € I (0; 400)- (24)

Suppose that at the initial time ¢t = 0 the probabilistic location of the particle X in R is char-
acterized by the function
f(x) =(14+x%)72, xeR

Then the mathematical model of the “v-wandering” of the particle X is the Cauchy problem
for PDE (24) with the initial condition

u(x;t),, =1+x*)7% xeR. (25)

The function f is continuous on R3 and satisfies condition (17), therefore, according to
Theorems 2 and 3, the only solution for Cauchy problem (24), (25) is

u(x;t) = /IR Gux =GOS, (51) € T(g4e0),

where
Gu(st) = F e ] (51), >0,

In views of Corollary 2 and

sup f(x) =1, inf f(x) =0,

XGRS XGRS
we get the following estimates
0<u(xt) <1  V(xt) € o)

According to condition (25), at the initial moment of time ¢ = 0 the particle X with proba-
bility 1 starts its motion from point O(0).
Let us investigate the probability #(0; f) of X returning to its original position. Using

f(x) = ?F1 [e"yq (x), x€R?

and
F'[f gl = F ' [fIF[g],

we find

u(0;t)

2 /1113]1:1 [eft\y\”} (& OF! {eflyl} (&)déE
— nz/ -l [e—t\y\” *e—lyl] (& t)dE
R3

— 2F|E? [e—t\y\v *e—lyl] ] (0; £)d¢

= 7'[2/ eit|y||/7‘y‘dy, > 0.
R3
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Hence it follows that
V{t1, tr} C (0;+400), ty < tp: 1=u(0;0) > u(0;t1) > u(0; tp)

and
lim u(0;¢) = 0.

t——+o00
This means that over time, the probability of the return of the particle X to its original position
tends to zero.
It turns out that for t — +oco the particle X leaves the space IR? altogether, since
lim u(x;t) =0 VxRS (26)
t—+o00
Let us prove boundary relation (26). Taking into account that equation (24) is a special case of
(3) forag(t) =t +a,a > 0, from (11) we obtain the estimates
c1t

Gy(x;t) <

< t>O,x€lR3.
(£ + x|

)3+V’

Hence, we have

td d
u(x;t)gc/ 25 S 3‘:/V/ z 5 = ;:91/ -~ 0, xeRR5.
R (L e ) (1704 ) B R () A

In conclusion, we note the following. If we assume that the particle X is a hungry shark,
then the considered model (24), (25) turns into the model “About a yawing shark in search of a
prey”. This problem becomes more natural in the context of the problem of the local influence
of moving objects in the corresponding Riesz gravitational field generated by the force F of the
predator’s gravitation to the prey, which obeys the law (1) for v = 3/8.

6 Conclusions

In this research the important estimates of the derivatives of the nonstationary probabil-
ity distribution Polya Wj for the force F of the local influence of moving objects in the Riesz
gravitational field are found. The problem case of studying the Cauchy problem for the corre-
sponding PDE with the Riesz operator of fractional differentiation is considered. The correct
solvability of this problem in the class of bounded continuous initial functions is determined.

The obtained results are important for further studies of P. Lévy symmetric stable random
processes, the Riesz gravitational fields in particular. The estimates of the derivatives of the
W;g function found here reveal wide possibilities for studying these processes in areas with
boundary conditions by means of the theory of boundary value problems for PDEs with point-
nonsmooth symbols.
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Po3arasiaaeTnest ceBAOAMpepeHIiaAbHe PiBHSIHHS NapaboAidHOTO THITY 3 APODOBMM CTelleHeM
oneparopa Aamaaca mopsiaky a € (0;1), o ale 3a mpocTopoBoro 3MiHHO. Lle piBHSHHS IpuUpo-
AHDBO y3aTaAbHIOE BiAOMe PiBHSIHHS (ppaKTaAbHOI Audy3ii. BoHO omicye AOKaAbHIMI BIIAMB PyXO-
Mux 06’eKTiB y rapsiTaniiiHoMy moai Picca. TTpocTimmm npukaaaoM Takoi cuctemMu 06’eKTiB € 30-
PsIHI raAaKTMKM, B SIKMX B3a€MOAIS BiAOYBa€ThCsI 3riaAHO 3 rpasiTalliiiHum 3akoHOM HeloToHa. AAs
LIbOTO PiBHSIHHS PO3B’I3Y€ThCsI 3apada Kol B kaaci HemepepBHMX 0OMeXeHNX MOYaTKOBUX (PYH-
k1iyi. dyHAaMeHTaAbHMIA PO3B’sI30K i€l 3apadi € po3noairom IToria Pu(F) VIMOBIpHOCTE AAST CU-
A F aroxanbHOL B3aeMoail Mixk mumu 06’ektamm. Oaep>XaHO OIHKM IOXiAHMX IIBOTO PO3B’SI3KY,
3a AOIIOMOTOIO SIKMX BCTAaHOBAEHO KOPEKTHY PO3B’sI3HICTh 3apaui Komrni 3a meBHMx ymoB Ha Koe-
dinieHT AoKaAbHOI PAYKTYyalii rpaBiTariitHOro moas. ITpyu npoMy 3HalAeHO POPMY KAACHMIHOTO
PO3B’sI3Ky 1li€i 3aAadi Ta AOCAIAXKEHO BAACTMBOCTI JIOTO TAQAKOCT] 7 ITOBEAIHKY Ha HeCKiHUeHHOCTI.
Taxox 3’s1c0OBaHO MOXXAMBICTH AOKAABHOTO TTOCMAEHHSI 361XKHOCTI B TOYaTKOBi yMoBi. OaepkaHi
PEe3yABTaTU TPOIAIOCTPOBAHO HA MOAEAi a-6AyKaHHS yacTMHKYU AeBi B eBKAiAOBOMY mpocTopi R®
y BUIIaAKY, KOAM YacTMHKA MTOYMHAE CBill PyX 3 MOYaTKy KOOpAMHAT. AOCAiAXEHO JIMOBIpHICTh IO~
BepHeHHsI 1€l YaCTUMHKM y CBO€ BMXiAHe TIOAOXeHHs. 30KpeMa, BCTAHOBAEHO, IO 1S IMOBIpHICTD €
CTIaaHOI0 PYHKIIIEH, SIKA 3 IAMHOM Yacy TIPSIMYE A0 HYAS, a caMa JacTMHKa “mokmaae” mpoctip R3.

Kntouosi cnoea i ppasu: rpasiTamiiiHe oae, moTeHIliaa Picca, po3noaina Ioiist, cumeTpmyasmiz CTiii-
KMt BUITaAKOBII ITporiec AeBi, TOAIT AeBi, piBHSHHS dopakTasbHOI AMdy3ii, ApoboBNMI1 AamIAaciaH,
dyHAaMEeHTaABHMIA PO3B’SI30K, 3apava Koui.



