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Lipschitz symmetric functions on Banach spaces with
symmetric bases

Martsinkiv M.V., Vasylyshyn S.I., Vasylyshyn T.V.>¢, Zagorodnyuk A.V.

We investigate Lipschitz symmetric functions on a Banach space X with a symmetric basis. We
consider power symmetric polynomials on ¢; and show that they are Lipschitz on the unbounded
subset consisting of vectors x € {1 such that |x,| < 1. Using functions max and min and tropical
polynomials of several variables, we constructed a large family of Lipschitz symmetric functions on
the Banach space ¢y which can be described as a semiring of compositions of tropical polynomials
over c.
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Introduction

Symmetric functions of infinitely many variables play an important role in the nonlinear
functional analysis and its applications [12]. Let X be a real Banach space. We recall that a
Schauder basis (e,) in X is symmetric if it is equivalent to the basis (e,(,)) for every permu-
tation ¢ of the set of positive integers IN. Let us denote by S the group of all permutations
(bijections) on the set of natural numbers IN. Any o € §* acts on X by

oo
o(x) = (xg(l),...,xa(n),...), X = Z Xnen = (X1,...,%n,...) € X.

n=1
A function f: X — R is called symmetric if f(o(x)) = f(x) forall x € X and ¢ € S®. It is
naturally to study symmetric polynomials and analytic functions on X as “simple” nonlinear
symmetric functions. Algebras of symmetric analytic functions and their generalizations on
real and complex Banach spaces were investigated by many authors (see [1-9, 14, 16-18] and
references therein). However, some Banach spaces like ¢y do not support symmetric polyno-
mials while support a lot of symmetric Lipschitz functions. In [12] it was proposed symmetric
slice polynomials for approximation of uniformly continuous symmetric functions on cy. But
the slice polynomials are not Lipschitz in the general case. In this paper we consider some
classes of Lipschitz symmetric functions on a real Banach space X with a symmetric basis.
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A mapping P from a Banach space X to a Banach space Y is an n-homogeneous polynomial if
there is an n-linear map B on the nth Cartesian power X" to Y such that P(x) = B(x,...,x). A
finite sum of homogeneous polynomials P = Py + P; + - - - 4 Py, is a polynomial of degree m if
each P, is an n-homogeneous polynomial, 0 < n < m, and P,, # 0.

Let us recall that a function f from a metric space (M3, p1) to a metric space (My, p2) is Lip-
schitz if there is a constant L such that po(f(x), f(v)) < Lp1(x,y), x,y € My. The infimum over
all constants L satisfying the inequality above is called the Lipschitz constant of f and denoted
by L(f). We refer the reader to the N. Weaver book [19] for details about Lipschitz mappings
and to J. Mujica book [13] for details on polynomials and analytic functions on Banach spaces.

In Section 1, we discuss the question about existence of Lipschitz symmetric polynomials on
an unbounded domain in #;. In Section 2, we consider Lipschitz functions on X, constructed
using operations max, min and their linear combinations. It leads us to so-called Tropical
Mathematics [15] which proceeds with semirings involving such operations. Some connec-
tions between Lipschitz symmetric functions on X and tropical polynomials of infinitely many
variables are found.

1 Lipschitz symmetric polynomials

It is clear that any polynomial of degree greater than 1 is not Lipschitz on X, even if X is
finite dimensional. However polynomials are locally Lipschitz. Among of symmetric polyno-
mials we can find Lipschitz ones on some unbounded sets.

Let cop be the space of all finite sequences, that is, if x = (x1,...,%,,...) € cpo, then only a
finite number of coordinates x, is not equal to zero. We consider power symmetric polynomi-
als

and elementary symmetric polynomials
Gm(x) = Z Xip o Xy, meIN, x €.

i< <ip

It is well known that polynomials (F,,) and (G,), form algebraic bases in the algebra of all
symmetric polynomials on cq (see e.g. [11]). Both (F,) and (G;,) can be extended to ¢; for
every m € IN. We will use the same symbols for the extensions.

Lemma 1. Symmetric polynomials Fk(x) = (X, x")* on R" with the {,-norm are Lipschitz
with constants n*~1 < L(FK) < mkn*=! on the domain D,, = {x € R": |x;| <1, i=1,...,n}.

Proof. We have

I (x) = Fi(y)] = [Fu(x) = Fu(y)||Fl " (x) + Fly () Fu(y)
+ ...+ Fu(0)FE2(y) + Fk’l(y)]

(£r) +(Ee) Lo

n

+...+ix§”<2yl> * 121]/ ) _

i=1

n

<Z‘xzm_yz

i=1
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Since |x;| < 1and |y;| < 1, it follows that

[Ep(x) = B(y)| < k1Y |2 — y|
i=1

n
=k Y G — ) (T xRy gy Ry )
i

n
< mkn* Y |x; — il = mkn®|x =y,
i=1
To get a lower estimation, we set xg = (1,...,1) and yyp = 0. Then
N——

[E () = En ()| > |Ejy(x0) — By (yo)| = n* = n*"Ylxo — yolls,-
O

Since all norms on IR" are equivalent, we have that F¥, are Lipschitz functions for any norm
on R". But for the case of /;-norm we have estimations for the Lipschitz constant which do not
depend on 7 if k = 1. Thus we can prove the following theorem.

Theorem 1. Polynomials F,,, m € N are Lipschitz functionson Do, = {x € ¢1: |x;| <1,i € N}
with 1 < L(F,,) < m and Fk, are not Lipschitz on D, for every k > 1.

Proof. Since the estimation 1 < L(F,) < m holds for every (R", | - ||s,), it is still correct if
n — oco. For k > 1 we have that n*~1 < L(Fk) and so L(FK) — oo as n — co. O

Note that polynomials G, are not Lipschitz on D,. For example, routine calculations show
that for the Lipschitz constant of the restriction of G, to D, wehave (n —1)/2 < L(Gy) < n—1.

2 Banach spaces and tropical semirings of Lipschitz functions

It is well-known (see, e.g., [10, p. 114]) that, on every Banach space with a symmetric basis,
there is an equivalent symmetric norm || - || and

(o] [ee]
Z Xn€n Z |xn|en
n=1 n=1

Throughout this section we suppose that the real Banach space X has a symmetric basis
(es(n)),n € N, is endowed with a symmetricnorm || - || = || - || x, and the co-norm is continuous
on X, that is there is a constant C > 0, such that ||x||c, = sup,, [x;| < C||x|x for every x =
(x1,...,%y,...) € X. Spaces cg and £, for 1 < p < oo are typical examples of such spaces.
Let Zy = Z \ {0}. We will use notation X(Z) for the “two-side X”, that is X & X indexed by
negative and positive integers.

Let x = (x1,%2,...,%y,...) € X. We denote by supp™(x) := {k € N: xx > 0} and by
supp~ (x) := {k € IN: x; < 0}. Clearly, supp(x) = supp™(x) Usupp ™ (x). For every vector
x € X weassignavector X = (...,0,X_j,...,X_1,X1,...,%n,0,...) in the space X(Z,), ordered
by the following way: m = |supp™(x)|, j = |supp~ (x)| (m and/or j may be equal to infinity)
anda?_]- <-...<X_q,andxy > - > Xy

We denote by Mx C X(Z) the set {X: x € X}. The set Mx can be considered as the
quotient of X with respect to the following equivalence: x ~ v if and only if ¥ = i. We suppose
that Mx is endowed with the quotient topology, that is, the strongest topology such that the
quotient map x > X is continuous.

€]l = , xeX.
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Proposition 1. Let Y be a topological space and f: Mx — Y be a continuous map. Then
f(x) := f(X) is a symmetric and continuous map on X.

Proof. The continuity of f follows from the fact that the quotient map is open. Also, by the
definition of f, f(x) = f(y) if x ~ y. O

Foragivenx = (...,0, X_j,ees Xm0, .. .) and every n € Zj we define

(x) Xy, if —j<n<m,
X g
& 0, otherwise.

Theorem 2. Functions g, are Lipschitz symmetric on X with1 < L(g,) < C, where C > 0 is
such that |u||¢, < Cllul|x, u € X. Ifx=(...,0,X_j,...,%m,0,...), then

gn(x) = max (min(%,...,%;,)) for n>0, (1)
i< <y
and
gn(x) = min (max(x_;,...,X_;)) for n<0. ()
i< <y

Proof. The symmetry of g, follows from Proposition 1. Equation (1) is correct because if 0 <
n < m, then max; <...c;, (min(%j,...,%;,)) will be attended at the tuple (¥1,%,...,%,) and
will be equal to X,,. If n > m, then each tuple (X1, Xy, ..., X,) will contain 0 and so g,(x) = 0.
Formula (2) can be proved in a similar way.

Let us show that g, is a Lipschitz function for n > 0. Let x,y € X and k,i € IN are such
that x; = X, and y; = ¥,,. Without loss of the generality, we can assume that x; > y;. Consider
the case n = 1. Since g1(y) = y;, it follows that y; > y, for every s € IN. In particular, y; > .
Thus, we have x; > y; > yx > 0. Consequently,

181(x) = g1(¥)| = |xx — il < |xx —wil < lx —ylley < Cllx —yllx.
Consider the case n > 1. Since g,(x) = x, it follows that there exists the set of indexes
{s1,...,54} such that x5, > x4,...,x5, > xx. Since g,(y) = y;, it follows that there exists
not more than n — 1 indexes m € IN such that y,, > y;. Therefore, taking into account that
[{s1,...,su}| = n > n—1, there exists j € {1,...,n} such that ys; < y;. Thus, we have
Xs; > X > Yi > Ys; > 0. Consequently,

18n(x) = gn(W)] = |2k —yil < lxs; —ys;| < [[x —ylley < Cllx —yllx-

In the case n < 0 the proof is analogical. O

Note that the functions g, are nonlinear and g;(x) = sup, xx. It can be checked that we
have the following formula for representation of any element in Mx.

Proposition 2. Every X € My C X(Z,) can be represented by

X= Z gn(x)en.

nezy

Theorem 2 and Proposition 2 imply the following corollary.

Corollary 1. The mapping: ¢ 2 x — X € M, is 1-Lipschitz.
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Proof. By Proposition 2,

Y (gn(x) — 8u(y))en

nezy

= sup |gn(x) — gn(y)|-

o HEZO

1=yl =

By Theorem 2, L(g,) = 1 for the case X = cg. Therefore |g,(x) — gn(y)| < ||x — yl|¢,- Conse-
quently, [[X =7l < [[x = ylle- N

Let ¢ € co(Zy)* be a linear continuous functional on cy(Zy). Then ¢ is completely defined
by the sequence of its values on the basis vectors, (¢,) = (¢(en)) € ¢1(Zyp). In this sense, we
will say that ¢o(Z)* coincides with ¢1(Z).

Corollary 2. For every ¢ = (c,) € {1(Zy) the function

8(/)(x) = Z cngn(X)

neZy

is a Lipschitz symmetric function and L(g,) < L(g).

Proof. According to Proposition 2, we have that g,(x) = ¢(X) and so it is well-defined. From
Corollary 1 it follows that ¢, = ¢ o1 is a composition of two Lipschitz mappings and so it is
Lipschitz with L(g,) < L(:)L(¢) = L(¢) [19, p. 4]. O

Let us estimate the norm of g,

I8¢l = sup [gp(x)] = sup |gy(x) = go(0)] < L(¢) = lloll-

[[xf <1 [[xf <1

Theorem 3. For every x € ¢,

Ix[] = sup [gqp(x)]-
loll<1

Proof. For given x € cgpand e > 0let i € ¢, ||¢|| = 1, be such that [¢p¢(x)| = ||x|| —e. Sucha
functional ¢, exists according to the Hahn-Banach Theorem. Let ¢.(e,) = b, and y: Zg — N
be a map such that (k) = j if gx(x) = x;. Clearly, -y is a bijection from supp(X) to supp(x). Let
us define a functional @, € co(Zo)* so that ¢y = b, (), k € Zo. Then |[¢¢|| < 1and

8. (V)] = [@e(X)] = [pe(x)| = [x]| —&.

Since it is true for every & > 0, the required equality holds. O

Note that functionals 8¢, Where ¢ € co(Zyp)*, does not cover all symmetric Lipschitz func-
tions on ¢. It is known [19, p. 16] that if f and & are Lipschitz functions on a metric space,
then both max(f(x),h(x)) and min(f(x),h(x)) are Lipschitz functions with Lipschitz con-
stants bounded by max(L(f), L(h)).

Example. Let f(x) = max(g1(x),282(x)). Then f can not be represented in the form g,. In-
deed, if f = g, for some ¢ € co(Zy)*, then, since f(x) depends only on X1 and X, it should be
of the form f(x) = c181(x) + c282(x) for some constants c1, cp. If x is such that X1 = 5, X, =1,
then f(x) = 5,y is such thatyj; = 5, i, = 2, then f(y) = 5, and z is such thatzy = 5,2z, = 3,
then f(z) = 6. But there are no constants c1, c; which satisfy these conditions.



732 Martsinkiv M.V., Vasylyshyn S.I., Vasylyshyn T.V., Zagorodnyuk A.V.

Another example of a Lipschitz symmetric function which can not be represented as g, is

x > ||xfle, = max(g1(x), —g-1(x))-
Let us recall that a tropical semiring is the semiring (R U {400}, &, ®), where the operations
@ and © are defined by

a@®b=min(a,b) and a®b=a+0b, a,be RU{+oo}.

It is known (see, e.g., [15]) that R U {+co} is actually a semiring, where @ plays the role of
addition, where +co is the zero-element, and © plays the role of multiplication. Note that
max(a,b) = —min(—a,—b) = a+ b — min(a,b). A tropical polynomial of several variables
t1,...,tp inRU {400} is a function of the form

p(tr, .. tn) =a @] ..t @QbOL D
=min(a+ i1ty + - +inty, b+ j1t1 + -+ jutn, .. .),
where the coefficients 4, b, . .. are real numbers and the exponents iy, j;, ... are integers. We
can see that any tropical polynomial can be represented as minimum of some affine functions.
Hence, every tropical polynomial is a Lipschitz function on R” and a finite composition of

tropical polynomials is a Lipschitz function. Note that a composition of tropical polynomials
is not a tropical polynomial in the general case. Thus we have the following result.

Proposition 3. Letgy,, ..., $, be Lipschitz functions on cy, generated by functionals

P1,---,Pn € C()(Zo)*

as in Corollary 2 and q(t4, ..., t,) be a finite composition of tropical polynomials of variables
t1,...,ty. Then

Qx) = q(81(x),---,&n(x)), x€co, 3)

is a Lipschitz function on cy.

Question. Under which conditions on cg every Lipschitz symmetric function can be approxi-
mated by functions of the form (3) uniformly on cy?

Note that the norm in ¢y can be written exactly as a composition of tropical polynomials of
81 and g -1

€]l = max(g1(x), =g-1(x)) = 1(x) = g-1(x) — min(g1(x), —g-1(x))
= 81(*) ©871(x) © (g1(x) B (g-1) ) 7 (x).

Thus, we have represented the Lipschitz symmetric function x — ||x||, in the form (3).
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AocripxeHo Aimmmmiesi cumeTpuyHi pyHKUIT Ha 6aHaxoBOMY ImpocTopi X 3 cMMeTpUJIHMM ba-
3ucoM. PO3rAsIHYTO cTeleHeBi cMMeTpUYHi MOAIHOMM Ha {1 i IOKa3aHO, IO BOHM € AIMIIMIIEBIMM
y HeoOMeXeHilf 06AACTi, sIka CKAAAAEThCSI 3 BEKTOPIB X € {1 KOOpAMHATH SKMX |X;| < 1. Bukopm-
CTOBYIOUM (PYHKIII max Ta min i TpomiuHi moAiHOMM BiA KiABKOX 3MiHHMX, TOO6YAOBAHO IIVIPOKIN
KAAC ANIIMIEBMX CMMETPUYHMX (PYHKII Ha 6aHaXOBOMY IPOCTOPI g, SIKVMI MOXHA OIACATH SIK
HaIiBKiAbIle KOMITO3MIIiV TPOIIYHMX TOAIHOMIB HaA IIPOCTOPOM Cg.

Kntouosi cnosa i hpasu: AimmmaieBa cvMeTpUYHA aHAAITHYHA (PYHKIIISI Ha 6aHAXOBOMY IIPOCTOPI,
CUMeTPUYHII 6a311C, TPOIIYHMIT ITOAIHOM.



