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Lipschitz symmetric functions on Banach spaces with
symmetric bases
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We investigate Lipschitz symmetric functions on a Banach space X with a symmetric basis. We

consider power symmetric polynomials on ℓ1 and show that they are Lipschitz on the unbounded

subset consisting of vectors x ∈ ℓ1 such that |xn| ≤ 1. Using functions max and min and tropical

polynomials of several variables, we constructed a large family of Lipschitz symmetric functions on

the Banach space c0 which can be described as a semiring of compositions of tropical polynomials

over c0.
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Introduction

Symmetric functions of infinitely many variables play an important role in the nonlinear

functional analysis and its applications [12]. Let X be a real Banach space. We recall that a

Schauder basis (en) in X is symmetric if it is equivalent to the basis (eσ(n)) for every permu-

tation σ of the set of positive integers N. Let us denote by S∞ the group of all permutations

(bijections) on the set of natural numbers N. Any σ ∈ S∞ acts on X by

σ(x) = (xσ(1), . . . , xσ(n), . . .), x =
∞

∑
n=1

xnen = (x1, . . . , xn, . . .) ∈ X.

A function f : X → R is called symmetric if f (σ(x)) = f (x) for all x ∈ X and σ ∈ S∞. It is

naturally to study symmetric polynomials and analytic functions on X as “simple” nonlinear

symmetric functions. Algebras of symmetric analytic functions and their generalizations on

real and complex Banach spaces were investigated by many authors (see [1–9, 14, 16–18] and

references therein). However, some Banach spaces like c0 do not support symmetric polyno-

mials while support a lot of symmetric Lipschitz functions. In [12] it was proposed symmetric

slice polynomials for approximation of uniformly continuous symmetric functions on c0. But

the slice polynomials are not Lipschitz in the general case. In this paper we consider some

classes of Lipschitz symmetric functions on a real Banach space X with a symmetric basis.
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A mapping P from a Banach space X to a Banach space Y is an n-homogeneous polynomial if

there is an n-linear map B on the nth Cartesian power Xn to Y such that P(x) = B(x, . . . , x). A

finite sum of homogeneous polynomials P = P0 + P1 + · · ·+ Pm is a polynomial of degree m if

each Pn is an n-homogeneous polynomial, 0 ≤ n ≤ m, and Pm 6≡ 0.

Let us recall that a function f from a metric space (M1, ρ1) to a metric space (M2, ρ2) is Lip-

schitz if there is a constant L such that ρ2( f (x), f (y)) ≤ Lρ1(x, y), x, y ∈ M1. The infimum over

all constants L satisfying the inequality above is called the Lipschitz constant of f and denoted

by L( f ). We refer the reader to the N. Weaver book [19] for details about Lipschitz mappings

and to J. Mujica book [13] for details on polynomials and analytic functions on Banach spaces.

In Section 1, we discuss the question about existence of Lipschitz symmetric polynomials on

an unbounded domain in ℓ1. In Section 2, we consider Lipschitz functions on X, constructed

using operations max, min and their linear combinations. It leads us to so-called Tropical

Mathematics [15] which proceeds with semirings involving such operations. Some connec-

tions between Lipschitz symmetric functions on X and tropical polynomials of infinitely many

variables are found.

1 Lipschitz symmetric polynomials

It is clear that any polynomial of degree greater than 1 is not Lipschitz on X, even if X is

finite dimensional. However polynomials are locally Lipschitz. Among of symmetric polyno-

mials we can find Lipschitz ones on some unbounded sets.

Let c00 be the space of all finite sequences, that is, if x = (x1, . . . , xn, . . .) ∈ c00, then only a

finite number of coordinates xn is not equal to zero. We consider power symmetric polynomi-

als

Fm(x) =
∞

∑
i=1

xm
i ,

and elementary symmetric polynomials

Gm(x) = ∑
i1<···<im

xi1 · · · xim , m ∈ N, x ∈ c00.

It is well known that polynomials (Fm) and (Gm), form algebraic bases in the algebra of all

symmetric polynomials on c00 (see e.g. [11]). Both (Fm) and (Gm) can be extended to ℓ1 for

every m ∈ N. We will use the same symbols for the extensions.

Lemma 1. Symmetric polynomials Fk
m(x) = (∑n

i=1 xm
i )

k on Rn with the ℓ1-norm are Lipschitz

with constants nk−1 ≤ L(Fk
m) ≤ mknk−1 on the domain Dn = {x ∈ R

n : |xi| ≤ 1, i = 1, . . . , n}.

Proof. We have

|Fk
m(x)− Fk

m(y)| = |Fm(x)− Fm(y)||F
k−1
m (x) + Fk−2

m (x)Fm(y)

+ . . . + Fm(x)Fk−2
m (y) + Fk−1

m (y)|

≤
n

∑
i=1

|xm
i − ym

i |

∣∣∣∣
( n

∑
i=1

xm
i

)k−1

+

( n

∑
i=1

xm
i

)k−2 n

∑
i=1

ym
i

+ . . . +
n

∑
i=1

xm
i

( n

∑
i=1

ym
i

)k−2

+

( n

∑
i=1

ym
i

)k−1∣∣∣∣.
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Since |xi| ≤ 1 and |yi| ≤ 1, it follows that

|Fk
m(x)− Fk

m(y)| ≤ knk−1
n

∑
i=1

|xm
i − ym

i |

= knk−1
n

∑
i=1

|(xi − yi)(xm−1
i + xm−2

i yi + · · ·+ xiy
m−2
i + ym−1

i )|

≤ mknk−1
n

∑
i=1

|xi − yi| = mknk−1‖x − y‖ℓ1
.

To get a lower estimation, we set x0 = (1, . . . , 1︸ ︷︷ ︸
n

) and y0 = 0. Then

|Fk
m(x)− Fk

m(y)| ≥ |Fk
m(x0)− Fk

m(y0)| = nk = nk−1‖x0 − y0‖ℓ1
.

Since all norms on R
n are equivalent, we have that Fk

m are Lipschitz functions for any norm

on Rn. But for the case of ℓ1-norm we have estimations for the Lipschitz constant which do not

depend on n if k = 1. Thus we can prove the following theorem.

Theorem 1. Polynomials Fm, m ∈ N are Lipschitz functions on D∞ = {x ∈ ℓ1 : |xi| ≤ 1, i ∈ N}

with 1 ≤ L(Fm) ≤ m and Fk
m are not Lipschitz on D∞ for every k > 1.

Proof. Since the estimation 1 ≤ L(Fm) ≤ m holds for every (Rn, ‖ · ‖ℓ1
), it is still correct if

n → ∞. For k > 1 we have that nk−1 ≤ L(Fk
m) and so L(Fk

m) → ∞ as n → ∞.

Note that polynomials Gm are not Lipschitz on D∞. For example, routine calculations show

that for the Lipschitz constant of the restriction of G2 to D2 we have (n − 1)/2 ≤ L(G2) ≤ n− 1.

2 Banach spaces and tropical semirings of Lipschitz functions

It is well-known (see, e.g., [10, p. 114]) that, on every Banach space with a symmetric basis,

there is an equivalent symmetric norm ‖ · ‖ and

‖x‖ =

∥∥∥∥
∞

∑
n=1

xnen

∥∥∥∥ =

∥∥∥∥
∞

∑
n=1

|xn|en

∥∥∥∥, x ∈ X.

Throughout this section we suppose that the real Banach space X has a symmetric basis

(eσ(n)), n ∈ N, is endowed with a symmetric norm ‖ · ‖ = ‖ · ‖X , and the c0-norm is continuous

on X, that is there is a constant C > 0, such that ‖x‖c0 = supn |xn| ≤ C‖x‖X for every x =

(x1, . . . , xn, . . .) ∈ X. Spaces c0 and ℓp, for 1 ≤ p < ∞ are typical examples of such spaces.

Let Z0 = Z \ {0}. We will use notation X(Z0) for the “two-side X”, that is X ⊕ X indexed by

negative and positive integers.

Let x = (x1, x2, . . . , xn, . . .) ∈ X. We denote by supp+(x) := {k ∈ N : xk > 0} and by

supp−(x) := {k ∈ N : xk < 0}. Clearly, supp(x) = supp+(x) ∪ supp−(x). For every vector

x ∈ X we assign a vector x̂ = (. . . , 0, x̂−j, . . . , x̂−1, x̂1, . . . , x̂m, 0, . . .) in the space X(Z0), ordered

by the following way: m = |supp+(x)|, j = |supp−(x)| (m and/or j may be equal to infinity)

and x̂−j ≤ · · · ≤ x̂−1, and x̂1 ≥ · · · ≥ x̂m.

We denote by MX ⊂ X(Z0) the set {x̂ : x ∈ X}. The set MX can be considered as the

quotient of X with respect to the following equivalence: x ∼ y if and only if x̂ = ŷ. We suppose

that MX is endowed with the quotient topology, that is, the strongest topology such that the

quotient map x 7→ x̂ is continuous.
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Proposition 1. Let Y be a topological space and f : MX → Y be a continuous map. Then

f̌ (x) := f (x̂) is a symmetric and continuous map on X.

Proof. The continuity of f̌ follows from the fact that the quotient map is open. Also, by the

definition of f , f (x) = f (y) if x ∼ y.

For a given x̂ = (. . . , 0, x̂−j, . . . , x̂m, 0, . . .) and every n ∈ Z0 we define

gn(x) =

{
x̂n, if − j ≤ n ≤ m,

0, otherwise.

Theorem 2. Functions gn are Lipschitz symmetric on X with 1 ≤ L(gn) ≤ C, where C > 0 is

such that ‖u‖c0 ≤ C‖u‖X , u ∈ X. If x̂ = (. . . , 0, x̂−j, . . . , x̂m, 0, . . .), then

gn(x) = max
i1<···<in

(
min(x̂i1 , . . . , x̂in)

)
for n > 0, (1)

and

gn(x) = min
i1<···<in

(
max(x̂−i1 , . . . , x̂−in

)
)

for n < 0. (2)

Proof. The symmetry of gn follows from Proposition 1. Equation (1) is correct because if 0 <

n ≤ m, then maxi1<···<in

(
min(x̂i1 , . . . , x̂in)

)
will be attended at the tuple (x̂1, x̂2, . . . , x̂n) and

will be equal to x̂n. If n > m, then each tuple (x̂1, x̂2, . . . , x̂n) will contain 0 and so gn(x) = 0.

Formula (2) can be proved in a similar way.

Let us show that gn is a Lipschitz function for n > 0. Let x, y ∈ X and k, i ∈ N are such

that xk = x̂n and yi = ŷn. Without loss of the generality, we can assume that xk ≥ yi. Consider

the case n = 1. Since g1(y) = yi, it follows that yi ≥ ys for every s ∈ N. In particular, yi ≥ yk.

Thus, we have xk ≥ yi ≥ yk ≥ 0. Consequently,

|g1(x)− g1(y)| = |xk − yi| ≤ |xk − yk| ≤ ‖x − y‖c0 ≤ C‖x − y‖X .

Consider the case n > 1. Since gn(x) = xk, it follows that there exists the set of indexes

{s1, . . . , sn} such that xs1 ≥ xk, . . . , xsn ≥ xk. Since gn(y) = yi, it follows that there exists

not more than n − 1 indexes m ∈ N such that ym > yi. Therefore, taking into account that

|{s1, . . . , sn}| = n > n − 1, there exists j ∈ {1, . . . , n} such that ysj
≤ yi. Thus, we have

xsj
≥ xk ≥ yi ≥ ysj

≥ 0. Consequently,

|gn(x)− gn(y)| = |xk − yi| ≤ |xsj
− ysj

| ≤ ‖x − y‖c0 ≤ C‖x − y‖X .

In the case n < 0 the proof is analogical.

Note that the functions gn are nonlinear and g1(x) = supk xk. It can be checked that we

have the following formula for representation of any element in MX.

Proposition 2. Every x̂ ∈ MX ⊂ X(Z0) can be represented by

x̂ = ∑
n∈Z0

gn(x)en.

Theorem 2 and Proposition 2 imply the following corollary.

Corollary 1. The mapping ι : c0 ∋ x 7→ x̂ ∈ Mc0 is 1-Lipschitz.
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Proof. By Proposition 2,

‖x̂ − ŷ‖ =

∥∥∥∥ ∑
n∈Z0

(gn(x)− gn(y))en

∥∥∥∥
c0

= sup
n∈Z0

|gn(x)− gn(y)|.

By Theorem 2, L(gn) = 1 for the case X = c0. Therefore |gn(x)− gn(y)| ≤ ‖x − y‖c0 . Conse-

quently, ‖x̂ − ŷ‖ ≤ ‖x − y‖c0 .

Let ϕ ∈ c0(Z0)
∗ be a linear continuous functional on c0(Z0). Then ϕ is completely defined

by the sequence of its values on the basis vectors, (cn) = (ϕ(en)) ∈ ℓ1(Z0). In this sense, we

will say that c0(Z0)
∗ coincides with ℓ1(Z0).

Corollary 2. For every ϕ = (cn) ∈ ℓ1(Z0) the function

gϕ(x) := ∑
n∈Z0

cngn(x)

is a Lipschitz symmetric function and L(gϕ) ≤ L(ϕ).

Proof. According to Proposition 2, we have that gϕ(x) = ϕ(x̂) and so it is well-defined. From

Corollary 1 it follows that gϕ = ϕ ◦ ι is a composition of two Lipschitz mappings and so it is

Lipschitz with L(gϕ) ≤ L(ι)L(ϕ) = L(ϕ) [19, p. 4].

Let us estimate the norm of gϕ,

‖gϕ‖ = sup
‖x‖≤1

|gϕ(x)| = sup
‖x‖≤1

|gϕ(x)− gϕ(0)| ≤ L(ϕ) = ‖ϕ‖.

Theorem 3. For every x ∈ c0,

‖x‖ = sup
‖ϕ‖≤1

|gϕ(x)|.

Proof. For given x ∈ c0 and ε > 0 let ψε ∈ c∗0 , ‖ψε‖ = 1, be such that |ψε(x)| = ‖x‖ − ε. Such a

functional ψε exists according to the Hahn–Banach Theorem. Let ψε(en) = bn and γ : Z0 → N

be a map such that γ(k) = j if gk(x) = xj. Clearly, γ is a bijection from supp(x̂) to supp(x). Let

us define a functional ϕε ∈ c0(Z0)
∗ so that ck = bγ(k), k ∈ Z0. Then ‖ϕε‖ ≤ 1 and

|gϕε(x)| = |ϕε(x̂)| = |ψε(x)| = ‖x‖ − ε.

Since it is true for every ε > 0, the required equality holds.

Note that functionals gϕ, where ϕ ∈ c0(Z0)
∗, does not cover all symmetric Lipschitz func-

tions on c0. It is known [19, p. 16] that if f and h are Lipschitz functions on a metric space,

then both max( f (x), h(x)) and min( f (x), h(x)) are Lipschitz functions with Lipschitz con-

stants bounded by max(L( f ), L(h)).

Example. Let f (x) = max(g1(x), 2g2(x)). Then f can not be represented in the form gϕ. In-

deed, if f = gϕ for some ϕ ∈ c0(Z0)
∗, then, since f (x) depends only on x̂1 and x̂2, it should be

of the form f (x) = c1g1(x) + c2g2(x) for some constants c1, c2. If x is such that x̂1 = 5, x̂2 = 1,

then f (x) = 5; y is such that ŷ1 = 5, ŷ2 = 2, then f (y) = 5; and z is such that ẑ1 = 5, ẑ2 = 3,

then f (z) = 6. But there are no constants c1, c2 which satisfy these conditions.
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Another example of a Lipschitz symmetric function which can not be represented as gϕ is

x 7→ ‖x‖c0 = max(g1(x),−g−1(x)).

Let us recall that a tropical semiring is the semiring (R ∪ {+∞},⊕,⊙), where the operations

⊕ and ⊙ are defined by

a ⊕ b = min(a, b) and a ⊙ b = a + b, a, b ∈ R ∪ {+∞}.

It is known (see, e.g., [15]) that R ∪ {+∞} is actually a semiring, where ⊕ plays the role of

addition, where +∞ is the zero-element, and ⊙ plays the role of multiplication. Note that

max(a, b) = −min(−a,−b) = a + b − min(a, b). A tropical polynomial of several variables

t1, . . . , tn in R ∪ {+∞} is a function of the form

p(t1, . . . , tn) = a ⊙ ti1
1 . . . tin

n ⊕ b ⊙ t
j1
1 · · · t

jn
n ⊕ . . .

= min(a + i1t1 + · · ·+ intn, b + j1t1 + · · ·+ jntn, . . .),

where the coefficients a, b, . . . are real numbers and the exponents i1, j1, . . . are integers. We

can see that any tropical polynomial can be represented as minimum of some affine functions.

Hence, every tropical polynomial is a Lipschitz function on R
n and a finite composition of

tropical polynomials is a Lipschitz function. Note that a composition of tropical polynomials

is not a tropical polynomial in the general case. Thus we have the following result.

Proposition 3. Let gϕ1 , . . . , gϕn be Lipschitz functions on c0, generated by functionals

ϕ1, . . . , ϕn ∈ c0(Z0)
∗

as in Corollary 2 and q(t1, . . . , tn) be a finite composition of tropical polynomials of variables

t1, . . . , tn. Then

Q(x) = q(g1(x), . . . , gn(x)), x ∈ c0, (3)

is a Lipschitz function on c0.

Question. Under which conditions on c0 every Lipschitz symmetric function can be approxi-

mated by functions of the form (3) uniformly on c0?

Note that the norm in c0 can be written exactly as a composition of tropical polynomials of

g1 and g−1

‖x‖c0 = max(g1(x),−g−1(x)) = g1(x)− g−1(x)− min(g1(x),−g−1(x))

= g1(x)⊙ g−1
−1(x)⊙ (g1(x)⊕ (g−1)

−1)−1(x).

Thus, we have represented the Lipschitz symmetric function x 7→ ‖x‖c0 in the form (3).
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Марцiнкiв М.В., Василишин С.I., Василишин Т.В., Загороднюк А.В. Лiпшицевi симетричнi фун-

кцiї на банахових просторах з симетричним базисом // Карпатськi матем. публ. — 2021. — Т.13,

№3. — C. 727–733.

Дослiджено лiпшицевi симетричнi функцiї на банаховому просторi X з симетричним ба-

зисом. Розглянуто степеневi симетричнi полiноми на ℓ1 i показано, що вони є лiпшицевими

у необмеженiй областi, яка складається з векторiв x ∈ ℓ1 координати яких |xn| ≤ 1. Викори-

стовуючи функцiї max та min i тропiчнi полiноми вiд кiлькох змiнних, побудовано широкий

клас лiпшицевих симетричних функцiй на банаховому просторi c0, який можна описати як

напiвкiльце композицiй тропiчних полiномiв над простором c0.

Ключовi слова i фрази: Лiпшицева симетрична аналiтична функцiя на банаховому просторi,

симетричний базис, тропiчний полiном.


