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Application of symmetric analytic functions to spectra of
linear operators

Burtnyak L.!, Chernega I.>>, Hladkyi V.!, Labachuk O.!, Novosad Z.3

The paper is devoted to extension of the theory of symmetric analytic functions on Banach se-
quence spaces to the spaces of nuclear and p-nuclear operators on the Hilbert space. We introduced
algebras of symmetric polynomials and analytic functions on spaces of p-nuclear operators, de-
scribed algebraic bases of such algebras and found some connection with the Fredholm determinant
of a nuclear operator. In addition, we considered cases of compact and bounded normal operators
on the Hilbert space and discussed structures of symmetric polynomials on corresponding spaces.

Key words and phrases: symmetric analytic function on a Banach space, p-nuclear operator, Fred-
holm determinant.
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1 Introduction and preliminaries

Investigations of symmetric analytic function of infinitely many variables is important re-
garding to possible applications in Data Science, Statistical Mechanics, Neural-Networks and
other branches of knowledge [18,29]. By this reason, symmetric polynomials and analytic func-
tions give us useful tools. On the other hand, the amount and behavior of symmetric analytic
functions on a Banach space with a symmetric structure essentially depend on the particular
space [21].

Symmetric polynomials in classic algebra means polynomials on C" which are invariant
with respect to the group of permutations of basis vectors. There are two natural generaliza-
tions of the group of permutations of basis vectors for the case of Banach spaces with some
symmetric structures. We consider here the cases when X = /,, 1 < p < o0, or L [0;1],
or cg. For the cases of sequence spaces like £, or ¢ it is naturally to consider the group &%
of all permutations (bijections) of IN. Every element s € S* acts on a sequence space X by
s(x) = (Xs(1),- -+, Xs(n),..), where x = (x1,...,xy,...) € X. In the case X = Lc[0;1], we use
the group E of all measurable automorphisms of [0; 1] that preserve the Lebesgue measure.
Elements s € E act on Ly [0; 1] by s(x) = x o s, where x = x(t) € Ls[0;1]. Let € be a group S
orZonX = {,or Le [0; 1], respectively. A scalar-valued function f on X is said to be symmetric
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if f(s(x)) = f(x) forevery x € X and s € €.

Let us recall that a function P on a Banach space X is an n-homogeneous polynomial if there is
an n-linear map B on the nth Cartesian power X" such that P(x) = B(x,...,x). A continuous
function f on X is analytic if its restriction to any finite dimensional subspace is analytic. Every
analytic mapping can be represented by its Taylor series expansion

f(x) = io ful),

where f, are n-homogeneous polynomials. If an analytic function on X is bounded on all
bounded subsets, then it is called a function of bounded type, otherwise it is a function of un-
bounded type. For details on polynomials and analytic functions on Banach spaces we refer the
reader to [22].

Symmetric analytic functions on Banach spaces for various symmetry groups, algebras of
symmetric analytic functions and their spectra were considered by many authors [3-6,8-10,12,
14-17,19,23, 25, 26].

It is known [17,23] that polynomials

Pk<x>:i1xﬁ, k= TplTp] +1,...,

form an algebraic basis in the algebra of all symmetric continuous polynomials on £,
1 < p < oo, where [p] is the smallest integer not less than p. In other words, every sym-
metric continuous polynomial on £, can be uniquely represented as an algebraic combination
of polynomials Fy, k > [p]. On the other hand, only constants are symmetric continuous poly-
nomials on ¢o. In [17] it is proved that a continuous function on £, 1 < p < o, is symmetric if
and only if it is Si°-symmetric, where S5 C S is the subgroup of finite permutations. Note
that in /o it is not so [14]. Also, in [17] it is proved that polynomials

Ru(x) = /[O;l](x(t))” dt, x€Llof0;1], neN,

form an algebraic basis in the algebra of all symmetric continuous polynomials on Le[0; 1].
The algebra of all symmetric continuous polynomials on X is denoted by Ps(X). The classical
combinatorial approach to symmetric polynomials can be found in [20].

Let X = £, 1 < p < oo, or cp. We can consider every element x = (x1,...,Xy,...) € X as
an operator A, of coordinate-wise multiplication on x in the Hilbert space /5. In other words,

Ax(h> = Z Xnhnen, h €y, (1)

n=1

where (ey,) is the standard orthonormal basis in ¢;. Clearly, Ay is bounded and normal. If
X =1y, 1< p < oo, Ayis p-nuclear. If x = cg, then Ay is a compact operator. Conversely, from
the spectral theorem for compact operators [24, p. 64], we have that every normal p-nuclear or
compact operator can be represented by (1) in an orthonormal basis (e, ) for some x in £, or co,
respectively.
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If X = Loo[0; 1], for every x(t) € Leo[0; 1], operator Ay on L;|0; 1], defined by
Ax(h) = x(t)h(t), h(t) € Lp[0;1],

is normal and bounded. Also, from the spectral theorem for normal operators [13, p. 444],
we know that for any normal and bounded operator A on a Hilbert space H there exists a
topological space (), a measure y and an isometry U: Ly(Q, ) — H such that U"'AU is a
multiplication operator on Ly (Q, jt).

The main idea of this paper is to study symmetric polynomials and analytic functions on
normal operators on Hilbert spaces using the representation Ay, x € X. Such approach allows
us to get an interplay between symmetric analytic functions and the Operator Theory, having
some benefits for both of them. Basically, we consider the case of normal nuclear and p-nuclear
operators. In the case of nuclear operators, symmetric polynomials can be represented by the
trace of a given operator and so the definition of symmetric polynomials can be extended to
the space of all nuclear operators.

Since we proceed with symmetric polynomials Ps(X), it is natural to introduce the relation
of equivalence on X. We say that x ~ y if and only if P(x) = P(y) for every P € Ps(X) (see,
e.g. [8]). We denote by Mx the quotient set X/ ~ . Hence, the equivalence on X induces an
equivalence on corresponding spaces of normal operators by Ay ~ Ay if and only if x ~ y.
We denote by [x] the class of equivalence, containing x, and by [A] the class of equivalence,
containing A.

Let A be a compact operator on ¢;. Then o(A) \ {0} is a point spectrum of A and each
element of it has a finite multiplicity. Let us denote by G(A) the multiset of all elements of
o(A)\ {0} accounted with their multiplicities. That is, if 0(A) \ {0} = {A41,..., Ay, ...}, then

6(A> — {Al,...,Al,...,An,...,)\n,...},
kq kn

where k;, is the multiplicity of A,. If x € cg is such that A = A, in some orthonormal basis of
05, then we can identify the multiset §(A) and the class of equivalence [x].

2 Main results

21 Nuclear and p-nuclear operators

If A is a normal nuclear operator on ¢, then the multiset §(A) is absolutely summable and
AMEGS(A)
is the trace of A. Let x € /1 be such that A = Ay, then

trA=trA; =) x, = F(x).
n=1

Moreover, in this case, Fy(x) = tr A* for every k € IN. The similar situation is in the case of
p-nuclear operators for k > [p].

Let us denote by N,(/>) the linear space of all p-nuclear operators and by 9N, (¢;) the
subspace of all normal p-nuclear operators on /5.

N, (£2) is a Banach space with respect to the nuclear norm ||A|, := (tr [AP|)}/?, where
|A| = VAA*, and MN,({2) is a closed subspace of Ny (¢,). We call a function f: N,(f2) = C
symmetric if f(A) = f(B) for every A, B such that 5(A) = &(B).
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Proposition 1. If f is a symmetric function on Ny({5), then for every unitary operator U on {5,

F(UAUT) = £(A)

Proof. The proof immediately follows from the fact that §(A) = &(UAU ). O

Let P € P({,). Denote by P = ((P) a polynomial on 9N, (¢,) such that P(x) = P(A,)
for every x € £,. We denote by Ps(9N,({2)) the algebra of all symmetric polynomials on

Theorem 1. The mapping ¢ is an algebra isomorphism from Ps({y) to Ps(MNy(¢3)). In par-
ticular, polynomials F,(A) = tr A¥ form an algebraic basis in the algebra of all continuous
symmetric polynomials on NN, ({>).

Proof. Let P € Ps({p), and deg P = m. Then P is an algebraic combination of polynomials
{Fy}, that is, there is a polynomial g of m — [p] + 1 variables such that

P(x) = q(Fp)(x), Frp11(x), -+, Fu(x)).

Then
P(A) = q(trA[p],trA(le, AT

Hence, Pisa symmetric polynomial on 91N, (¢2),and if P # 0, then P # 0, and so, ¢ is injective.
If Q € Ps(MN,(£2)), then we can define P(x) = Q(Ax) and so Q = P. Thus, P is surjective. In
addition, it is easy to see that ¢ is linear and multiplicative. So it is an algebra isomorphism. [

Corollary 1. The isomorphism | can be extended to a continuous isomorphism from the al-
gebra of all entire symmetric function Hs(¢y) to the algebra of entire symmetric functions
Hs (9N, (62)) by

fla) = fo Fu(A), @

where f, are the Taylor’s polynomials of f € Hs({;). If f is of bounded type, then f is of
bounded type.

Proof. Since f,(x) = fu(Ay) for every x € {p, the series (2) converges at A = A, for every
x € Lp. Thus f is well-defined on NN, (¢2) and analytic. If f is bounded on all bounded
subsets of £}, then the radius of boundedness at zero is equal to

oo(f) = <limsup anHl/”)l = o0.

n—oo

But [|Ax|p = [[x||¢, and so || ]| = || fu|l, hence, 0o(f) = co. Thatis, f is of bounded type. O

Note that on every infinite dimensional Banach space always there are analytic functions
of unbounded type [1,2]. Also there are symmetric analytic functions of unbounded type on
lp,1 < p < o0,[11,27], but no on Le[0; 1] [28].

From Theorem 1 we have the following criterium, if [A] = [B] for some A, B € 0N, ({3).
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Corollary 2. Let A, B € MIN,({2). Then [A] = [B] if and only if there is some my € N such that
tr A™ = tr B" for every m > my.

Proof. Suppose that tr A™ = tr B™ for every m > my. Let A = Ayand B = B forsome x,y € /.
Then, Fy,(x) = Fu(y) for every m > myg. By [3, Theorem 1.3] [x] = [y] and so [A] = [B]. The
inverse statement is clear. U

From Corollary 2 it follows that if tr A” = 0 for all m which are greater than a given natural
number mg, then A = 0. However, using ideas in [3,9] it is possible to construct a sequence
(An) C MN,(L2) such that

lim tr A" #0

n—oo

for a finite number of m. Indeed, let m > p and

APy = Ly e
n = —=) he.
vn &
Then, "
b () = i

Thus, for k > m, tr (A,S’“))" —0asn — oo and for k = m,

m

lim tr (A,(J”)) =1.

n—oo

Note, that the sequence (A,S’“)) is bounded for a fixed m only if p is integer and m = p.

Since symmetric polynomials of A € 9IN,(/2) can be defined by the trace of Ak k> p,
they formally may be applied to any operators in N, (/2). Let us denote by P the extension of a
symmetric polynomial P to N, (¢2) such that fk = tr AF, k > p, and the operator 7: P — Pasan
algebra homomorphism. Clearly, that ||P|| N,(6) = |IPll,, and the restriction of Pto NNy (£2)

is equal to P.

Corollary 3. Every symmetric analytic function f on {), can be extended to a symmetric func-
tion f on N,(¢>), and if f is of bounded type, then f is of bounded type too.

Proof. Like in the proof of Corollary 1, we can see that

fla) = io fuA), AN (b),

is the required extension. O

Let us consider the case p = 1 more detailed. In the algebra of symmetric polynomials on
{1 we have other algebraic bases, the basis of elementary symmetric polynomials

Gu(x) = Z Xiy X, X €L,

i< <iy

and the basis of complete symmetric polynomials

Hy,(x) = Z Xi X, X € /.

ilS"'Sin
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The relation between (F,), (H,) and (G;,) can be given by the Newton formulas

n n
nGu(x) = Y_(-1)*"'FG,_y, nHu(x)=)Y FH, neN.
k=1 k=1

Thus setting G; = H; = F, we can define G, and H, by induction using the Newton formulas.
It is known [10] that for every fixed x € ¢4,

G)(H) = Y 1"Gu(x) = [[(1 +xul), t€C, Go=1, 3)
n=1

n=1
is an entire function of exponential type. Moreover (see, e.g. [19]),

G(x)(t) = exp ( 2(—1)““w) @

n

and

H(x)(t) = )“jlt”Hn<x> - ©)

in the domain, where the right sides are defined.

Of course, these relations are true if we apply the isomorphism 7. But for this case, we
can rewrite it in a different form. Indeed, we know that if ||fA|| < 1, then, in the means of
functional calculus, we can write

G(=x)(t)

00 ti’lAi’l
In(I+tA) =Y (—1)"H1—.
Thus ~
e} n
tr (In(I +tA)) = (—1)"“%.
n=1

Hence, we have the following result.

Proposition 2. Let A and B are in 91Ny ({;). Then [A] = [B] if and only if

ot (In(I+tA)) _ et (In(I+tB))

forallt € C such that |t| < min(||Al|,||B]|)-

Proof. As it was shown above,
ot (In(I+tA)) _ G\(A)(t) _ Z tnén(A). (6)
n=1

So, if etr (IN([+t4)) — (tr (In(I+£B)) for 4]l t in some neighbourhood of zero, then Gn(A) = Gu(B),
n € N. Since (Gy,) is an algebraic basis in Ps(9IN;(42)), [A] = [B]. O

Let us recall that the Fredholm determinant of a given nuclear operator A can be defined
by (see [7])
det(I+tA)= J] (1+tAn). (7)
AES(A)

Combining formulas (3)—(7) we have the following theorem.
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Theorem 2. The Fredholm determinant and its inverse of a given nuclear operator A can be
computed by

r (In(I+tA)) = n = n+1 ttr A
det(I +tA) = Z t"Gn(A) = exp Z — (8)

and
(det(I +tA)) 1 =H(-A)(t) = Y t"Hy(—A). 9)

n=1
Note that formula (8) is well-known [7, p. 880]. However, using symmetric polynomi-
als we can easily compute (8) and (9) for some nuclear operator A. Indeed, let A € N (/7).
First, we can calculate fn(A) = tr A" and using the Newton formulas, find én(A) and HH(A),
n € IN. Next, the finite series

N R N R
Y #1Gy(A) and Y #"(~1)"H,(A)
n=1 n=1

will approximate det(I 4 tA) and (det(I + tA)) ! respectively, as N — oo.

Let now A be a self-adjoint operator in 9Ny (¢2). Then ¢(A) C R and if x € ¢, is such
that A = Ay, then all coordinates x, of x are real. In this case, G,(A) are real numbers for
all n € IN. The inverse statement is not true. For a given vector x = (x1,...,Xp,...) € ly we
denote by X := (X1,..., %y, ...), where %, is the complex conjugate to x;.

Proposition 3. For a given operator A = A, € 9NN, ({>) the values Gn(A) are real if and only
if [x] = [x]. Equivalently, if A € 0(A) and A ¢ R, then A € 0(A) having the same multiplicity.

Proof. From (3) we have that
G(A)(t) = H 1+ xut).

Thus, if x, = A ¢ R and for some k, x; = A, then their product is real. Conversely, if all
coefficients of an entire function are real, then its zeros are either real or for every non-real
zero A the zero A has the same multiplicity. But zeros of G(x)(t) are of the form a,, = 1/x,, for
xn # 0. O

Corollary 4. An operator A = Ay € MNy({) is self-adjoint if and only if all zeros of
det(A +tI) = G(Ax)(t) are real.

2.2 More general cases of operators

If A is a normal compact operator on ¢, then there exists an orthonormal basis in ¢, such
that A can be represented in this basis as an operator A, of multiplication by some vector
x € co. But there are no symmetric polynomials on cy excepting constants (see e.g. [17]). In [21]
were introduced slice- symmetric polynomials and slice-symmetric G-analytic functions on the
real ¢y, which we denote by cR, by the following way. For a given ¢ > 0 we denote by 7, the
following mapping from cX to itself

\78( Z xnen> = Z Ynln,
n=1 n=1
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where
0, if |x,| <e,
Yn = xp—¢, if x, >,

x”+€, 1f _.Xn 28.

In [21] it is proved that J; is continuous and even 1-Lipschitz. Moreover, if ¢ — 0, then
Je(x) — x uniformly on cX. It is easy to see that the range of J; is in the subspace coy of
finite sequences. Let P be a symmetric polynomial on cgg and & > 0. We define P(®)(x) =
P(J.(x)) and call it an symmetric e-slice-polynomial. In [21] it is shown that P(¢) is symmetric
and continuous. Of course, P(®) is not a polynomial.

Since symmetric polynomials F, are well defined on cq for every n € IN and form an
algebraic basis in the algebra P(cqo) of all symmetric polynomials on ¢y, we can define slice
symmetric polynomials P,ES) on cX. Let us denote by KS(¢) the linear space of compact self-
adjoint operators on /5. From the spectral theorem for compact self-adjoint operators we have
that if A € KS({), then A = A, for some x € c]loa. Thus, for every ¢ > 0, we can define

I;E(Ax) := P (x). In particular, F,gg)(A) = tr (A o J¢)". The next proposition follows from
definitions.

Proposition 4. For every ¢ > 0, the set of symmetric e-slice-polynomials is an algebra of func-

tions and the mapping P(®) +— P¢) is an algebra homomorphism. Slice-polynomials P,ES) form
an algebraic basis in the algebra of symmetric e-slice-polynomials.

Corollary 5. Let A, B € KS({,). If forevery e > 0, tr (Ao J;)" = tr (Bo J;)", then [A] = [B].

Proof. As in Corollary 2 we can prove that [A o J;] = [Bo J| for every ¢ > 0.If [A] # [B], then
there is ¢ > 0 such that

inf [[x — >c>0,

inf [+ s(s) > ¢

where x and y are such that A = Ay and B = B(y), and s(y) = (Ys(1),---/Ys(n), - - -)- Taking
€ < ¢ we get a contradiction. O

The general case of normal linear operators leads to the representation of any bounded
normal operator as an operator of multiplication in L;[0;1] by a function in Le[0;1]. In this
case, the group of symmetry is the group of measurable automorphisms E of the interval [0; 1]
to itself which preserve the Lebesgue measure. Polynomials

Ru(x) = /[O;”(x(t))”dt, x € Loo[0;1],

form an algebraic basis in the algebra of all symmetric polynomials on L [0; 1]. However, for
the complex Lo [0; 1] the equalities Ry, (x) = R, (y) for all n € IN does not imply that [x] = [y].
For example, if x(t) = e?*, then R,(x) = 0 for every n, but x # 0. For the real case, the
situation is different. Indeed, if x € LX[0;1], then x € LR[0;1] and Ry(x) = ||x||, = 0 if and
only if x = 0. We do not know does R, (x) = R, (y) for every n € N implies [x] = [y] in the
real case.
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PoboTa mpucBsiueHa pO3MIMPEHHIO TeOPil CMMETPUYHMX aHAATUIHMX (PYHKIIN Ha 6aHaXOBIMX
IIPOCTOpaXx ITOCAIAOBHOCTEN Ha BMITAAOK IIPOCTOPIB SIACPHMX i p-SIAepHMX OllepaTOpiB TiabbepTo-
BOTO IIPOCTOPY. BBeA€HO aArebpy CMeTPpUYHIIX TOATHOMIB i aHaAITMYHMX PYHKIIN Ha IPOCTOpax
p-SIA€PHMX OIlepaTopiB, OIMMCaHO aATebpaiuni 6a3mcy B TakMx aArebpax, 3HaliAeHO 3B’SI3KM 3 BU3HA-
uaMKoM @pearonbMa siaepHOTO omepaTopa. KpiM Toro, posrastHyTO BUIIaAKYM KOMIIAKTHMX i 06Me-
JKEeHJX HOPMaABHMX OIIePaTOPiB TiAbO6epTOBOTO IPOCTOPY i OOrOBOPEHO CTPYKTYPY CMMETPUIHIX
TIOAIHOMIB Ha BiAIIOBIAHMX IIPOCTOPAX.

Kntouosi crnosa i ¢ppasu: cvMeTpUIHa aHaAITHIHA (PYHKIIiSI Ha 6aHaXOBOMY IIPOCTOPi, p-sSIAePHMI
omneparop, BusHauHMK @peArorbma.



