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Application of symmetric analytic functions to spectra of
linear operators

Burtnyak I.1, Chernega I.2, , Hladkyi V.1, Labachuk O.1, Novosad Z.3

The paper is devoted to extension of the theory of symmetric analytic functions on Banach se-

quence spaces to the spaces of nuclear and p-nuclear operators on the Hilbert space. We introduced

algebras of symmetric polynomials and analytic functions on spaces of p-nuclear operators, de-

scribed algebraic bases of such algebras and found some connection with the Fredholm determinant

of a nuclear operator. In addition, we considered cases of compact and bounded normal operators

on the Hilbert space and discussed structures of symmetric polynomials on corresponding spaces.
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1 Introduction and preliminaries

Investigations of symmetric analytic function of infinitely many variables is important re-

garding to possible applications in Data Science, Statistical Mechanics, Neural-Networks and

other branches of knowledge [18,29]. By this reason, symmetric polynomials and analytic func-

tions give us useful tools. On the other hand, the amount and behavior of symmetric analytic

functions on a Banach space with a symmetric structure essentially depend on the particular

space [21].

Symmetric polynomials in classic algebra means polynomials on C
n which are invariant

with respect to the group of permutations of basis vectors. There are two natural generaliza-

tions of the group of permutations of basis vectors for the case of Banach spaces with some

symmetric structures. We consider here the cases when X = ℓp, 1 ≤ p < ∞, or L∞[0; 1],

or c0. For the cases of sequence spaces like ℓp or c0 it is naturally to consider the group S∞

of all permutations (bijections) of N. Every element s ∈ S∞ acts on a sequence space X by

s(x) = (xs(1), . . . , xs(n),...), where x = (x1, . . . , xn, . . .) ∈ X. In the case X = L∞[0; 1], we use

the group Ξ of all measurable automorphisms of [0; 1] that preserve the Lebesgue measure.

Elements s ∈ Ξ act on L∞[0; 1] by s(x) = x ◦ s, where x = x(t) ∈ L∞[0; 1]. Let C be a group S∞

or Ξ on X = ℓp or L∞[0; 1], respectively. A scalar-valued function f on X is said to be symmetric
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if f (s(x)) = f (x) for every x ∈ X and s ∈ C.

Let us recall that a function P on a Banach space X is an n-homogeneous polynomial if there is

an n-linear map B on the nth Cartesian power Xn such that P(x) = B(x, . . . , x). A continuous

function f on X is analytic if its restriction to any finite dimensional subspace is analytic. Every

analytic mapping can be represented by its Taylor series expansion

f (x) =
∞

∑
n=0

fn(x),

where fn are n-homogeneous polynomials. If an analytic function on X is bounded on all

bounded subsets, then it is called a function of bounded type, otherwise it is a function of un-

bounded type. For details on polynomials and analytic functions on Banach spaces we refer the

reader to [22].

Symmetric analytic functions on Banach spaces for various symmetry groups, algebras of

symmetric analytic functions and their spectra were considered by many authors [3–6,8–10,12,

14–17, 19, 23, 25, 26].

It is known [17, 23] that polynomials

Fk(x) =
∞

∑
n=1

xk
n, k = ⌈p⌉, ⌈p⌉ + 1, . . . ,

form an algebraic basis in the algebra of all symmetric continuous polynomials on ℓp,

1 ≤ p < ∞, where ⌈p⌉ is the smallest integer not less than p. In other words, every sym-

metric continuous polynomial on ℓp can be uniquely represented as an algebraic combination

of polynomials Fk, k ≥ ⌈p⌉. On the other hand, only constants are symmetric continuous poly-

nomials on c0. In [17] it is proved that a continuous function on ℓp, 1 ≤ p < ∞, is symmetric if

and only if it is S∞
0 -symmetric, where S∞

0 ⊂ S∞ is the subgroup of finite permutations. Note

that in ℓ∞ it is not so [14]. Also, in [17] it is proved that polynomials

Rn(x) =
∫

[0;1]
(x(t))n dt, x ∈ L∞[0; 1], n ∈ N,

form an algebraic basis in the algebra of all symmetric continuous polynomials on L∞[0; 1].

The algebra of all symmetric continuous polynomials on X is denoted by Ps(X). The classical

combinatorial approach to symmetric polynomials can be found in [20].

Let X = ℓp, 1 ≤ p < ∞, or c0. We can consider every element x = (x1, . . . , xn, . . .) ∈ X as

an operator Ax of coordinate-wise multiplication on x in the Hilbert space ℓ2. In other words,

Ax(h) =
∞

∑
n=1

xnhnen, h ∈ ℓ2, (1)

where (en) is the standard orthonormal basis in ℓ2. Clearly, Ax is bounded and normal. If

X = ℓp, 1 ≤ p < ∞, Ax is p-nuclear. If x = c0, then Ax is a compact operator. Conversely, from

the spectral theorem for compact operators [24, p. 64], we have that every normal p-nuclear or

compact operator can be represented by (1) in an orthonormal basis (en) for some x in ℓp or c0,

respectively.
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If X = L∞[0; 1], for every x(t) ∈ L∞[0; 1], operator Ax on L2[0; 1], defined by

Ax(h) = x(t)h(t), h(t) ∈ L2[0; 1],

is normal and bounded. Also, from the spectral theorem for normal operators [13, p. 444],

we know that for any normal and bounded operator A on a Hilbert space H there exists a

topological space Ω, a measure µ and an isometry U : L2(Ω, µ) → H such that U−1AU is a

multiplication operator on L2(Ω, µ).

The main idea of this paper is to study symmetric polynomials and analytic functions on

normal operators on Hilbert spaces using the representation Ax, x ∈ X. Such approach allows

us to get an interplay between symmetric analytic functions and the Operator Theory, having

some benefits for both of them. Basically, we consider the case of normal nuclear and p-nuclear

operators. In the case of nuclear operators, symmetric polynomials can be represented by the

trace of a given operator and so the definition of symmetric polynomials can be extended to

the space of all nuclear operators.

Since we proceed with symmetric polynomials Ps(X), it is natural to introduce the relation

of equivalence on X. We say that x ∼ y if and only if P(x) = P(y) for every P ∈ Ps(X) (see,

e.g. [8]). We denote by MX the quotient set X/ ∼ . Hence, the equivalence on X induces an

equivalence on corresponding spaces of normal operators by Ax ∼ Ay if and only if x ∼ y.

We denote by [x] the class of equivalence, containing x, and by [A] the class of equivalence,

containing A.

Let A be a compact operator on ℓ2. Then σ(A) \ {0} is a point spectrum of A and each

element of it has a finite multiplicity. Let us denote by S(A) the multiset of all elements of

σ(A) \ {0} accounted with their multiplicities. That is, if σ(A) \ {0} = {λ1, . . . , λn, . . .}, then

S(A) = {λ1, . . . , λ1︸ ︷︷ ︸
k1

, . . . , λn, . . . , λn︸ ︷︷ ︸
kn

, . . .},

where kn is the multiplicity of λn. If x ∈ c0 is such that A = Ax in some orthonormal basis of

ℓ2, then we can identify the multiset S(A) and the class of equivalence [x].

2 Main results

2.1 Nuclear and p-nuclear operators

If A is a normal nuclear operator on ℓ2, then the multiset S(A) is absolutely summable and

tr A = ∑
λn∈S(A)

λn

is the trace of A. Let x ∈ ℓ1 be such that A = Ax, then

tr A = tr Ax =
∞

∑
n=1

xn = F1(x).

Moreover, in this case, Fk(x) = tr Ak for every k ∈ N. The similar situation is in the case of

p-nuclear operators for k ≥ ⌈p⌉.

Let us denote by Np(ℓ2) the linear space of all p-nuclear operators and by NNp(ℓ2) the

subspace of all normal p-nuclear operators on ℓ2.

Np(ℓ2) is a Banach space with respect to the nuclear norm ‖A‖p := (tr |Ap|)1/p, where

|A| =
√

AA∗, and NNp(ℓ2) is a closed subspace of Np(ℓ2). We call a function f : Np(ℓ2) → C

symmetric if f (A) = f (B) for every A, B such that S(A) = S(B).
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Proposition 1. If f is a symmetric function on Np(ℓ2), then for every unitary operator U on ℓ2,

f
(
UAU−1

)
= f (A).

Proof. The proof immediately follows from the fact that S(A) = S
(
UAU−1

)
.

Let P ∈ P(ℓp). Denote by P̃ = ι(P) a polynomial on NNp(ℓ2) such that P(x) = P̃(Ax)

for every x ∈ ℓp. We denote by Ps(NNp(ℓ2)) the algebra of all symmetric polynomials on

NNp(ℓ2).

Theorem 1. The mapping ι is an algebra isomorphism from Ps(ℓp) to Ps(NNp(ℓ2)). In par-

ticular, polynomials F̃k(A) = tr Ak form an algebraic basis in the algebra of all continuous

symmetric polynomials on NNp(ℓ2).

Proof. Let P ∈ Ps(ℓp), and deg P = m. Then P is an algebraic combination of polynomials

{Fk}, that is, there is a polynomial q of m − ⌈p⌉+ 1 variables such that

P(x) = q
(

F⌈p⌉(x), F⌈p⌉+1(x), . . . , Fm(x)
)
.

Then

P̃(A) = q
(
tr A⌈p⌉, tr A⌈p⌉+1, . . . , tr Am

)
.

Hence, P̃ is a symmetric polynomial on NNp(ℓ2), and if P 6= 0, then P̃ 6= 0, and so, ι is injective.

If Q ∈ Ps(NNp(ℓ2)), then we can define P(x) = Q(Ax) and so Q = P̃. Thus, P is surjective. In

addition, it is easy to see that ι is linear and multiplicative. So it is an algebra isomorphism.

Corollary 1. The isomorphism ι can be extended to a continuous isomorphism from the al-

gebra of all entire symmetric function Hs(ℓp) to the algebra of entire symmetric functions

Hs(NNp(ℓ2)) by

f̃ (A) =
∞

∑
n=0

f̃n(A), (2)

where fn are the Taylor’s polynomials of f ∈ Hs(ℓp). If f is of bounded type, then f̃ is of

bounded type.

Proof. Since fn(x) = f̃n(Ax) for every x ∈ ℓp, the series (2) converges at A = Ax for every

x ∈ ℓp. Thus f̃ is well-defined on NNp(ℓ2) and analytic. If f is bounded on all bounded

subsets of ℓp, then the radius of boundedness at zero is equal to

̺0( f ) =
(

lim sup
n→∞

‖ fn‖1/n
)−1

= ∞.

But ‖Ax‖p = ‖x‖ℓp
and so ‖ fn‖ = ‖ f̃n‖, hence, ̺0( f̃ ) = ∞. That is, f̃ is of bounded type.

Note that on every infinite dimensional Banach space always there are analytic functions

of unbounded type [1, 2]. Also there are symmetric analytic functions of unbounded type on

ℓp, 1 ≤ p < ∞, [11, 27], but no on L∞[0; 1] [28].

From Theorem 1 we have the following criterium, if [A] = [B] for some A, B ∈ NNp(ℓ2).
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Corollary 2. Let A, B ∈ NNp(ℓ2). Then [A] = [B] if and only if there is some m0 ∈ N such that

tr Am = tr Bm for every m ≥ m0.

Proof. Suppose that tr Am = tr Bm for every m ≥ m0. Let A = Ax and B = By for some x, y ∈ ℓp.

Then, Fm(x) = Fm(y) for every m ≥ m0. By [3, Theorem 1.3] [x] = [y] and so [A] = [B]. The

inverse statement is clear.

From Corollary 2 it follows that if tr Am = 0 for all m which are greater than a given natural

number m0, then A = 0. However, using ideas in [3, 9] it is possible to construct a sequence

(An) ⊂ NNp(ℓ2) such that

lim
n→∞

tr Am
n 6= 0

for a finite number of m. Indeed, let m ≥ p and

A
(m)
n (h) =

1
m
√

n

n

∑
i=1

hiei.

Then,

tr
(

A
(m)
n

)k
=

n

nk/m
= n1−k/m.

Thus, for k > m, tr
(

A
(m)
n

)k → 0 as n → ∞ and for k = m,

lim
n→∞

tr
(

A
(m)
n

)m
= 1.

Note, that the sequence
(

A
(m)
n

)
is bounded for a fixed m only if p is integer and m = p.

Since symmetric polynomials of A ∈ NNp(ℓ2) can be defined by the trace of Ak, k ≥ p,

they formally may be applied to any operators in Np(ℓ2). Let us denote by P̂ the extension of a

symmetric polynomial P to Np(ℓ2) such that F̂k = tr Ak, k ≥ p, and the operator ι̂ : P 7→ P̂ as an

algebra homomorphism. Clearly, that ‖P̂‖Np(ℓ2) = ‖P‖ℓp
, and the restriction of P̂ to NNp(ℓ2)

is equal to P̃.

Corollary 3. Every symmetric analytic function f on ℓp can be extended to a symmetric func-

tion f̂ on Np(ℓ2), and if f is of bounded type, then f̂ is of bounded type too.

Proof. Like in the proof of Corollary 1, we can see that

f̂ (A) =
∞

∑
n=0

f̂n(A), A ∈ Np(ℓ2),

is the required extension.

Let us consider the case p = 1 more detailed. In the algebra of symmetric polynomials on

ℓ1 we have other algebraic bases, the basis of elementary symmetric polynomials

Gn(x) = ∑
i1<···<in

xi1 · · · xin
, x ∈ ℓ1,

and the basis of complete symmetric polynomials

Hn(x) = ∑
i1≤···≤in

xi1 · · · xin
, x ∈ ℓ1.
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The relation between (Fn), (Hn) and (Gn) can be given by the Newton formulas

nGn(x) =
n

∑
k=1

(−1)k+1FkGn−k, nHn(x) =
n

∑
k=1

Fk Hn−k, n ∈ N.

Thus setting Ĝ1 = Ĥ1 = F̂1, we can define Ĝn and Ĥn by induction using the Newton formulas.

It is known [10] that for every fixed x ∈ ℓ1,

G(x)(t) =
∞

∑
n=1

tnGn(x) =
∞

∏
n=1

(1 + xnt), t ∈ C, G0 = 1, (3)

is an entire function of exponential type. Moreover (see, e.g. [19]),

G(x)(t) = exp

(
∞

∑
n=1

(−1)n+1 tnFn(x)

n

)
(4)

and

H(x)(t) =
∞

∑
n=1

tnHn(x) =
1

G(−x)(t)
(5)

in the domain, where the right sides are defined.

Of course, these relations are true if we apply the isomorphism ι̂. But for this case, we

can rewrite it in a different form. Indeed, we know that if ‖tA‖ < 1, then, in the means of

functional calculus, we can write

ln(I + tA) =
∞

∑
n=1

(−1)n+1 tn An

n
.

Thus

tr
(

ln(I + tA)
)
=

∞

∑
n=1

(−1)n+1 tnF̂n(x)

n
.

Hence, we have the following result.

Proposition 2. Let A and B are in NN1(ℓ2). Then [A] = [B] if and only if

etr (ln(I+tA)) = etr (ln(I+tB))

for all t ∈ C such that |t| < min(‖A‖, ‖B‖).

Proof. As it was shown above,

etr (ln(I+tA)) = Ĝ(A)(t) =
∞

∑
n=1

tnĜn(A). (6)

So, if etr (ln(I+tA)) = etr (ln(I+tB)) for all t in some neighbourhood of zero, then G̃n(A) = G̃n(B),

n ∈ N. Since (G̃n) is an algebraic basis in Ps(NN1(ℓ2)), [A] = [B].

Let us recall that the Fredholm determinant of a given nuclear operator A can be defined

by (see [7])

det(I + tA) = ∏
λn∈S(A)

(1 + tλn). (7)

Combining formulas (3)–(7) we have the following theorem.
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Theorem 2. The Fredholm determinant and its inverse of a given nuclear operator A can be

computed by

det(I + tA) = etr (ln(I+tA)) =
∞

∑
n=1

tnĜn(A) = exp

( ∞

∑
n=1

(−1)n+1 tntr An

n

)
(8)

and

(det(I + tA))−1 = Ĥ(−A)(t) =
∞

∑
n=1

tnĤn(−A). (9)

Note that formula (8) is well-known [7, p. 880]. However, using symmetric polynomi-

als we can easily compute (8) and (9) for some nuclear operator A. Indeed, let A ∈ N1(ℓ2).

First, we can calculate F̂n(A) = tr An and using the Newton formulas, find Ĝn(A) and Ĥn(A),

n ∈ N. Next, the finite series

N

∑
n=1

tnĜn(A) and
N

∑
n=1

tn(−1)n Ĥn(A)

will approximate det(I + tA) and
(

det(I + tA)
)−1

, respectively, as N → ∞.

Let now A be a self-adjoint operator in NNp(ℓ2). Then σ(A) ⊂ R and if x ∈ ℓp is such

that A = Ax, then all coordinates xn of x are real. In this case, G̃n(A) are real numbers for

all n ∈ N. The inverse statement is not true. For a given vector x = (x1, . . . , xn, . . .) ∈ ℓp we

denote by x̄ := (x̄1, . . . , x̄n, . . .), where x̄n is the complex conjugate to xn.

Proposition 3. For a given operator A = Ax ∈ NNp(ℓ2) the values G̃n(A) are real if and only

if [x] = [x̄]. Equivalently, if λ ∈ σ(A) and λ /∈ R, then λ̄ ∈ σ(A) having the same multiplicity.

Proof. From (3) we have that

G̃(Ax)(t) = G(x)(t) =
∞

∏
n=1

(1 + xnt).

Thus, if xn = λ /∈ R and for some k, xk = λ̄, then their product is real. Conversely, if all

coefficients of an entire function are real, then its zeros are either real or for every non-real

zero λ the zero λ̄ has the same multiplicity. But zeros of G(x)(t) are of the form an = 1/xn for

xn 6= 0.

Corollary 4. An operator A = Ax ∈ NNp(ℓ2) is self-adjoint if and only if all zeros of

det(A + tI) = G̃(Ax)(t) are real.

2.2 More general cases of operators

If A is a normal compact operator on ℓ2, then there exists an orthonormal basis in ℓ2 such

that A can be represented in this basis as an operator Ax of multiplication by some vector

x ∈ c0. But there are no symmetric polynomials on c0 excepting constants (see e.g. [17]). In [21]

were introduced slice-symmetric polynomials and slice-symmetric G-analytic functions on the

real c0, which we denote by cR
0 , by the following way. For a given ε > 0 we denote by Jε the

following mapping from cR
0 to itself

Jε

( ∞

∑
n=1

xnen

)
=

∞

∑
n=1

ynen,
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where

yn =





0, if |xn| < ε,

xn − ε, if xn ≥ ε,

xn + ε, if − xn ≥ ε.

In [21] it is proved that Jε is continuous and even 1-Lipschitz. Moreover, if ε → 0, then

Jε(x) → x uniformly on cR
0 . It is easy to see that the range of Jε is in the subspace c00 of

finite sequences. Let P be a symmetric polynomial on c00 and ε > 0. We define P(ε)(x) =

P(Jε(x)) and call it an symmetric ε-slice-polynomial. In [21] it is shown that P(ε) is symmetric

and continuous. Of course, P(ε) is not a polynomial.

Since symmetric polynomials Fn are well defined on c00 for every n ∈ N and form an

algebraic basis in the algebra P(c00) of all symmetric polynomials on c00, we can define slice

symmetric polynomials F
(ε)
n on cR

0 . Let us denote by KS(ℓ2) the linear space of compact self-

adjoint operators on ℓ2. From the spectral theorem for compact self-adjoint operators we have

that if A ∈ KS(ℓ2), then A = Ax for some x ∈ cR
0 . Thus, for every ε > 0, we can define

P̃(ε)(Ax) := P(ε)(x). In particular, F̃
(ε)
n (A) = tr (A ◦ Jε)n. The next proposition follows from

definitions.

Proposition 4. For every ε > 0, the set of symmetric ε-slice-polynomials is an algebra of func-

tions and the mapping P(ε) 7→ P̃(ε) is an algebra homomorphism. Slice-polynomials F
(ε)
n form

an algebraic basis in the algebra of symmetric ε-slice-polynomials.

Corollary 5. Let A, B ∈ KS(ℓ2). If for every ε > 0, tr (A ◦ Jε)n = tr (B ◦ Jε)n, then [A] = [B].

Proof. As in Corollary 2 we can prove that [A ◦ Jε] = [B ◦ Jε] for every ε > 0. If [A] 6= [B], then

there is c > 0 such that

inf
s∈S∞

0

‖x − s(y)‖ ≥ c > 0,

where x and y are such that A = Ax and B = B(y), and s(y) = (ys(1), . . . , ys(n), . . .). Taking

ε < c we get a contradiction.

The general case of normal linear operators leads to the representation of any bounded

normal operator as an operator of multiplication in L2[0; 1] by a function in L∞[0; 1]. In this

case, the group of symmetry is the group of measurable automorphisms Ξ of the interval [0; 1]

to itself which preserve the Lebesgue measure. Polynomials

Rn(x) =
∫

[0;1]
(x(t))n dt, x ∈ L∞[0; 1],

form an algebraic basis in the algebra of all symmetric polynomials on L∞[0; 1]. However, for

the complex L∞[0; 1] the equalities Rn(x) = Rn(y) for all n ∈ N does not imply that [x] = [y].

For example, if x(t) = e2πit, then Rn(x) = 0 for every n, but x 6= 0. For the real case, the

situation is different. Indeed, if x ∈ LR
∞[0; 1], then x ∈ LR

2 [0; 1] and R2(x) = ‖x‖L2
= 0 if and

only if x = 0. We do not know does Rn(x) = Rn(y) for every n ∈ N implies [x] = [y] in the

real case.
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[29] Zaheer M., Kottur S., Ravanbakhsh S., Póczos B., Salakhutdinov R.R., Smola A.J. Deep sets. In: Luxburg

U.V., Guyon I., Bengio S., Wallach H., Fergus R. (Eds.) Proc. of the 31st Intern. Conf. on Neural Information

Processing Systems, Long Beach, California, USA, December 4–9, 2017. Curran Associates, Inc., Red Hook,

NY, 2017, 3394–3404.

Received 14.02.2021

Revised 15.10.2021

Буртняк I., Чернега I., Гладкий В., Лабачук О., Новосад З. Застосування симетричних аналiти-

чних функцiй до спектрiв лiнiйних операторiв // Карпатськi матем. публ. — 2021. — Т.13, №3.

— C. 701–710.

Робота присвячена розширенню теорiї симетричних аналiтичних функцiй на банахових

просторах послiдовностей на випадок просторiв ядерних i p-ядерних операторiв гiльберто-

вого простору. Введено алгебри симетричних полiномiв i аналiтичних функцiй на просторах

p-ядерних операторiв, описано алгебраїчнi базиси в таких алгебрах, знайдено зв’язки з визна-

чником Фредгольма ядерного оператора. Крiм того, розглянуто випадки компактних i обме-

жених нормальних операторiв гiльбертового простору i обговорено структуру симетричних

полiномiв на вiдповiдних просторах.

Ключовi слова i фрази: симетрична аналiтична функцiя на банаховому просторi, p-ядерний

оператор, визначник Фредгольма.


