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Reciprocal distance Laplacian spectral properties double stars
and their complements

Ganie H.A.1, Rather B.A.2, Aouchiche M.2

Several matrices are associated with graphs in order to study their properties. In such a study,
researchers are interested in the spectra of the matrix under consideration, therefore, the properties
are called spectral properties, with reference to the matrix. One of the interesting and hard problems
in the spectral study of graphs is to order the graphs based on some spectral graph invariant, like
the spectral radius, the second smallest eigenvalue, the energy, etc. Due to hardness of this problem
it has been considered in the literature for small classes of graphs. Here we continue this study
and add some more classes of graphs which can be ordered on the basis of spectral graph invari-
ants. In this article, we study spectral properties of trees of diameter three, called double stars, and
their complements through their reciprocal distance Laplacian eigenvalues. We give ordering of
these graphs based on their reciprocal distance Laplacian spectral radius, on their second smallest
reciprocal distance Laplacian eigenvalue, and on their reciprocal distance Laplacian energy.
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1 Introduction

All our graphs in this article are connected, simple and undirected graphs. We will use
standard notations and definitions in graph theory (see, e.g., [17, 18]).

A graph is denoted by G = G
(
V(G), E(G)

)
, where V(G) = {v1, v2, . . . , vn} is the vertex set

and E(G) is the edge set. The complement of G is denoted by G. By Kn and K1,n−1, we denote
the complete graph and the star graph, each on n vertices, respectively.

For positive integers a and b, the double star T(a, b) is the tree of order n = a + b + 2,
obtained by adding an edge between the vertices of maximum degrees of the stars K1,a and
K1,b. The vertices of degree a+ 1 and b+ 1 are the centers of T(a, b). Any tree T of diameter 3 is a
double star completely defined by the degrees of its two non-pendant vertices, i.e. T ∼= T(a, b),
where a + 1 and b + 1 are the degrees of its centers. See Figure 1 for T(3, 5).

The distance d(vi , vj) between two distinct vertices vi and vj in a connected graph G is de-
fined as the length of the smallest path connecting them. The diameter of G is the largest
distance among any two vertices of G. The distance matrix D(G) of a graph G is indexed by its
vertices and is defined as

(
D(G)

)

i,j
= d(vi, vj). For a survey of results on the distance matrix,

see [5].
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Figure 1. The double star T(3, 5)

The reciprocal transmission degree of the vertex vi is defined to be the sum of the inverse
distances from vi to all other vertices in G, i.e.

RTr(vi) = ∑
vj∈V(G)

1

d(vi, vj)
.

Let RTr(G) = diag
(

RTr(v1), RTr(v2), . . . , RTr(vn)
)

be the diagonal matrix of reciprocal
transmission degrees of G. The reciprocal distance matrix RD(G) (also known as Harary ma-

trix) is an n × n matrix whose (i, j)th entry is 1
d(vi,vj)

if vi 6= vj and 0 otherwise. The Harary

index H(G) of G is the sum of reciprocal distances between all unordered pairs of vertices.
Clearly,

2H(G) = ∑
v∈V(G)

RTr(v) = ∑
vi,vj∈V(G), i 6=j

1

d(vi, vj)
=

n

∑
i=1

n

∑
j=1, j 6=i

1

d(vi, vj)
.

The relation between the Harary matrix, the Harary index and the Harary energy can be
seen in [13] and some recent result in this direction in [1].

Movivated by the work introducing the signless Laplacian matrix of a graph [14–16], and
the distance Laplacian and distance signless Laplacian matrices of graphs [6–8], R. Bapat and
S.K. Panda [11] defined the reciprocal distance Laplacian matrix as RDL(G) = RTr(G)− RD(G).
Since each row sum of RDL(G) is zero, it follows that its eigenvalue is 0 and its associated
eigenvector is (1, . . . , 1). The reciprocal distance Laplacian matrix is a real symmetric positive
semi-definite matrix, so its eigenvalues can be indexed such that δ1 ≥ · · · ≥ δn−1 > δn = 0.

The set of all eigenvalues (including algebraic multiplicities) of RDL(G) is known as the
reciprocal distance Laplacian spectrum (or RDL-spectrum) of G, the largest RDL-eigenvalue
δ1 is known as the reciprocal distance Laplacian spectral radius or RDL-spectral radius of G.

The study of the spectral properties of the reciprocal distance Laplacian matrix RDL(G) of
a graph G attracted the attention of several researchers. For instance, L. Medina and M. Trigo
studied the problem of bounding the largest eigenvalue δ1(G) in [27] and that of bounding the
reciprocal distance Laplacian energy in [28]. Recently, the authors in [22] have extended the
concept of spectral spread of a matrix to the reciprocal distance Laplacian matrix and have ob-
tained some bounds for it. They have also obtained some estimates for the sum of the k largest
reciprocal distance Laplacian eigenvalues in [22]. The reciprocal distance signless Laplacian
matrix of a connected graph was introduced in [3] and its spectral properties were further
studied in [2, 10, 27].

In this paper, we investigate ordering of trees of diameter 3 (double stars) and their com-
plements on the basis of their reciprocal distance Laplacian largest eigenvalue, their second
smallest reciprocal distance Laplacian eigenvalue, and their reciprocal distance Laplacian
energy.
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Ordering graphs on the basis of their spectra is a widely studied topic in spectral graph
theory. For instance, ordering trees on the basis the distance Laplacian energy and distance
Laplacian spectral radius was considered in [19, 20, 26, 29, 30]. For other orderings of graphs
based on different spectra, see [24, 33] for the second largest Laplacian eigenvalue, [4, 9, 23] for
the second largest signless Laplacian eigenvalue, [12,21,25,31] for the adjacency spectral radius
and [32] for the adjacency energy of a signed graph.

The rest of the paper is organized as follows. In Section 2, we find the RDL-eigenvalues
of double star and its complement. We also discuss the ordering of graphs belonging to these
families based on RDL-spectral radius and the second smallest RDL-eigenvalue. In Section 3,
we find the reciprocal distance Laplacian energy of double stars and their complements. Fur-
ther, we show that the graphs belonging to these families can be ordered on the basis of their
reciprocal distance Laplacian energy.

2 Reciprocal distance Laplacian spectral properties of T(a, b) and T(a, b)

Any column vector X = (x1, x2, . . . , xn)T ∈ Rn can be regarded as a function defined on
V(G), which associates every vi to xi, that is X(vi) = xi for all i = 1, 2, . . . , n. Also, it is easy to
see that

XT RDL(G)X = ∑
i,j, i 6=j

1

d(vi, vj)
(xi − xj)

2.

A number δ is an eigenvalue of RDL(G) with its associated eigenvector X if and only if
X 6= 0 and for every vi ∈ V(G) we have

δX(vi) = ∑
vj∈V(G), j 6=i

1

d(vi , vj)

(
X(vi)− X(vj)

)
, (1)

or equivalently

δX(vi)− RTr(vi) = − ∑
vj∈V(G), j 6=i

1

d(vi, vj)
X(vj). (2)

Equations (1) and (2) are known as (δ, X)-eigenequations of RDL(G).
The next result is helpful in finding some RDL-eigenvalues of G, when G has an indepen-

dent set (a set of mutually non-adjacent vertices) sharing the same neighbourhood set.

Proposition 1. Let G be a connected graph with vertex set V(G) = {v1, v2, . . . , vn} and let
S = {v1, v2, . . . , vp} be an independent set of G such that N(vi) = N(vj) for all i, j ∈ {1, . . . , p}.
Then the vertices of S have the same reciprocal transmission degree, say δ. Moreover, δ + 1

2 is
the RDL-eigenvalue of G with multiplicity at least p − 1.

Proof. Since S = {v1, v2, . . . , vp} is an independent set sharing the same neighbourhood, so
d(vi, vj) = 2 for every i, j ∈ {1, . . . , p}. We first index the independent vertices, so that the
RDL-matrix of G with given hypothesis can be written as

RDL(G) =












δ −1
2 . . . −1

2
−1

2 δ . . . −1
2 Bp×(n−p)

...
...

. . .
...

−1
2 −1

2 . . . δ

(Bp×(n−p))
T C(n−p)×(n−p)












.
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For i = 2, 3, . . . , p, let Xi−1 =
(
− 1, xi2, xi3, . . . , xip, 0, . . . , 0

︸ ︷︷ ︸

n−p

)T
=
(
X, 0n−p

)T
be the vector in

R
n such that xij = 1 if i = j and 0 otherwise, where X =

(
−1, xi2, xi3, . . . , xip

)
and 0n−p is the

zero row vector of order n− p. For instance, X1 = (−1, 1, 0, 0, . . . , 0)T, X2 = (−1, 0, 1, 0, . . . , 0)T,
X3 = (−1, 0, 0, 1, . . . , 0)T and so on. It is clear from the definition of vectors X1, X2, . . . , Xp−1

that if the kth entry in any of these vectors is non-zero, then the kth entry of rest of the vectors
is zero, giving that these vectors are linearly independent vectors. We have

RDL(G)X1 =












δ −1
2 . . . −1

2
−1

2 δ . . . −1
2 Bp×(n−p)

...
...

. . .
...

−1
2 −1

2 . . . δ

(Bp×(n−p))
T C(n−p)×(n−p)






















−1
1
...
0

0T
n−p











=

(

−δ − 1

2
δ +

1

2
0 . . . 0 0 . . . 0

)T

=

(

δ +
1

2

)

X1.

To get the last equality we have used the fact Bp×(n−p)0
T
n−p = 0p, C(n−p)×(n−p)0

T
n−p = 0n−p

and
(

Bp×(n−p)

)T
XT = 0n−p. This last equality is true as any two vertices in the independent

set S share the same neighbourhood and so if the entry in
(

Bp×(n−p)

)T
corresponding to −1

is t, then the entry in
(

Bp×(n−p)

)T
corresponding to 1 is also t, giving that the contribution

from the product of these entries in Bp×(n−p)0
T
n−p is zero. Proceeding similarly by considering

the vectors X2, X3, . . . , Xp−1, we get that these vectors are also the eigenvectors of RDL(G)

corresponding to eigenvalue δ + 1
2 . Since, these vectors form an independent set, the result

follows.

The following result is helpful in finding some RDL-eigenvalues of G, when G has a clique
(a set of mutually adjacent vertices) sharing same neighbourhood set outside the clique.

Proposition 2. Let G be a connected graph on n vertices. If S =
{

v1, v2, . . . , vη

}
is a clique of

G such that N(vi) − S = N(vj) − S for all i, j ∈ {1, . . . , η}. Then the vertices of S have the
same reciprocal transmission degree, say η. Moreover, η + 1 is an eigenvalue of RDL(G) with
multiplicity at least η − 1.

Proof. Similar to Proposition 1 with the same set of eigenvectors.

Lemma 1. Let G be a connected graph with non-zero eigenvector X = (x1, x2, . . . , xn)
T corre-

sponding to the reciprocal distance Laplacain eigenvalue δ and let u, v ∈ V(G) be such that
N(u) \ {v} = N(v) \ {u}. Then xu = xv.

Proof. Clearly, RTr(u) = RTr(v). By using (2), we have

δxu − RTr(u)xu = − 1

d(u, v)
xv − ∑

vj∈V(G), vj 6=v,u

1

d(u, vj)
xj

and

δxv − RTr(v)xv = − 1

d(v, u)
xu − ∑

vj∈V(G), vj 6=v,u

1

d(v, vj)
xj.
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As N(u) \ {v} = N(v) \ {u}, so d(u, vj) = d(v, vj) for vj 6= u, v. Therefore, it follows that

δ(xu − xv) =
1

d(u, v)
(xu − xv),

which implies that xu = xv.

The next result gives the RDL-spectrum of T(a, b).

Theorem 1. The reciprocal distance Laplacian spectrum of T(a, b), a ≤ b, a + b = n − 2
consists of the eigenvalue 3a+2b+9

6 with algebraic multiplicity a − 1, the eigenvalue 2a+3b+9
6

with algebraic multiplicity b − 1 and the zeros of the following polynomial

x

12

(

12x3 − (22a + 22b + 60)x2 +
(

12a2 + 12b2 + 27ab + 71a + 71b + 99
)

x

−
(

2a3 + 2b3 + 7a2b + 7ab2 + 19a2 + 19b2 + 40ab + 57a + 57b + 54
))

.

Proof. Let V
(
T(a, b)

)
= {s1, s2, . . . , sa, u, v, t1, t2, . . . , tb} be the vertex set of T(a, b), where si,

1 ≤ i ≤ a, are the a pendent vertices adjacent to u and bi, 1 ≤ i ≤ b, are the b pendent vertices
adjacent to v. Clearly, {s1, s2, . . . , sa} is an independent set of T(a, b) sharing the same vertex
u, such that reciprocal transmission degree of each vertex is

1

2
+

1

2
+ · · ·+ 1

2
︸ ︷︷ ︸

a−1

+1 +
1

2
+

1

3
+

1

3
+ · · ·+ 1

3
︸ ︷︷ ︸

b

=
a

2
+

b

3
+ 1.

So, by Proposition 1, it follows that a
2 +

b
3 + 1+ 1

2 is the RDL-eigenvalue of T(a, b) with algebraic
multiplicity a − 1. Similarly, the b pendent vertices t1, t2, . . . , tb form another independent set
sharing the same vertex v with each vertex of reciprocal transmission degree a

3 + b
2 + 1 and

by Proposition 1, a
3 +

b
2 +

3
2 is the other RDL-eigenvalue of G with algebraic multiplicity b − 1.

In this way, we have found n − 4 reciprocal distance Laplacian eigenvalues of T(a, b). Also,
note that 0 is always RDL eigenvalue of G. For the remaining three RDL-eigenvalues of T(a, b),
we use (1). Let X be the eigenvector of T(a, b) with xi = X(vi) for i = 1, 2, . . . , n. Then by
Lemma 1, it follows that the components of X corresponding to vertices of the independent
set on a vertices is same and equal to x1 and the components of X corresponding to vertices
of the independent set on b vertices is same and equal to x4. The remaining two vertices of
degree a + 1 and b + 1 are assigned x2 and x3, respectively. By using (1), the (δ, X)-equations
of T(a, b) are given by

δx1 =

(
3a + 2b + 6

6

)

x1 −
(

a − 1

2

)

x1 − x2 −
1

2
x3 −

b

3
x4,

δx2 = −ax1 +

(
2a + b + 3

2

)

x2 − x3 −
b

2
x4,

δx3 = − a

2
x1 − x2 +

(
a + 2b + 2

2

)

x3 − bx4,

δx4 = − a

3
x1 −

1

2
x2 − x3 +

(
2a + 3b + 6

6

)

x4 −
(

b − 1

2

)

x4.
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The coefficient matrix of the above system of equations is







2b+9
6 −1 −1

2 − b
3

−a 2a+b+2
2 −1 − b

2
− a

2 −1 a+2b+2
2 −b

− a
3 −1

2 −1 2a+9
6








,

and its characteristic polynomial is given by
x

12
f (x), where

f (x) = 12x3 − (22a + 22b + 60)x2 +
(

12a2 + 12b2 + 27ab + 71a + 71b + 99
)

x

−
(

2a3 + 2b3 + 7a2b + 7ab2 + 19a2 + 19b2 + 40ab + 57a + 57b + 54
)

.
(3)

Next, we approximate the zeros of the polynomial f (x).

Corollary 1. Let z1 ≥ z2 ≥ z3 be the zeros of f (x). Then z1 ∈
(3n

4
, n
)

, z2 ∈
(n

2
,

3n

4

)

and

z3 ∈
(n

3
,

n

3
+ 1
)

, where a + b = n − 2 and a ≤ b.

Proof. For the polynomial

f (x) = 12x3 − (22a + 22b + 60)x2 +
(

12a2 + 12b2 + 27ab + 71a + 71b + 99
)

x

−
(

2a3 + 2b3 + 7a2b + 7ab2 + 19a2 + 19b2 + 40ab + 57a + 57b + 54
)

it is easy to verify that

f (a + b + 2) = 2ab(2 + a + b) > 0,

f

(
3(a + b + 2)

4

)

= − 5

16
(a − b)2(2 + a + b) < 0,

f

(
a + b + 2

2

)

=
1

2
(a + b + 2)(ab + a + b − 3) > 0,

f

(
a + b + 2

3
+ 1

)

=
1

9

(

2a2 + a(31b − 1) + (b − 1)(2b + 1)
)

> 0,

f

(
a + b + 2

3

)

= −10

9
(2 + a + b)(5 + a + b) < 0.

Therefore, by the intermediate value theorem, the result follows.

The next result shows that the reciprocal distance Laplacian spectral radius of the family
T(a, b) is a decreasing function of a, 1 ≤ a ≤ ⌊n−2

2 ⌋.

Theorem 2. For positive integers a, b such that a < b and a + b = n − 2, we have

δ1
(
T(a, b)

)
≤ δ1

(
T(a − 1, b + 1)

)
.

Proof. By Theorem 1, the RDL-spectral radius of T(a, b) is the largest root of

f (x, a, b) = 12x3 − (22a + 22b + 60)x2 +
(

12a2 + 12b2 + 27ab + 71a + 71b + 99
)

x

−
(

2a3 + 2b3 + 7a2b + 7ab2 + 19a2 + 19b2 + 40ab + 57a + 57b + 54
)

.
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By manual calculations, we see that f (x, a, b) − f (x, a − 1, b + 1) = (a − b − 1)(n − 3x). Since,
a ≤ b, so a − b − 1 ≤ 0 and by Proposition 3, we have 3n

4 < δ1
(
T(a, b)

)
< n for all a, b, it

follows that

f
(
δ1
(
T(a − 1, b + 1)

)
, a, b

)
= f

(
δ1
(
T(a − 1, b + 1)

)
, a, b

)
− f

(
δ1
(
T(a − 1, b + 1)

)
, a − 1, b + 1

)

= (a − b − 1)
(
n − 3δ1

(
T(a − 1, b + 1)

))
> 0.

Note that f
(
δ1
(
T(a − 1, b+ 1)

)
, a− 1, b+ 1

)
= 0. Now, f

(
δ1
(
T(a − 1, b+ 1)

)
, a, b

)
> 0 together

with the fact f
(

3n
4 , a, b

)
< 0 and f (n, a, b) > 0, gives that the largest eigenvalue of f (x, a, b)

lies between 3n
4 and δ1

(
T(a − 1, b + 1)

)
, by the intermediate value theorem. From this it is now

clear that δ1
(
T(a, b)

)
≤ δ1

(
T(a − 1, b + 1)

)
. This completes the proof.

For example, consider the trees T(2, 3) and T(1, 4). Put a = 2 and b = 3 in (3). It fol-
lows that the reciprocal distance Laplacian spectral radius of T(2, 3) is the largest zero of the
polynomial 12x3 − 170x2 + 772x − 1106. By direct calculation, we see that the reciprocal dis-
tance Laplacian spectral radius of T(2, 3) is 6.0644826442887. Similarly, putting a = 1 and b = 4
in (3), we obtain that the reciprocal distance Laplacian spectral radius of T(1, 4) is the largest
zero of the polynomial 12x3 − 170x2 + 766x − 1092, which is 6.5. It is now clear that
δ1
(
T(2, 3)

)
< δ1

(
T(1, 4)

)
.

Following assertion is the immediate consequence of Theorem 2 and gives the ordering
of the trees belonging to the family T(a, b) on the basis of their reciprocal distance Laplacian
spectral radius.

Corollary 2. For positive integers a, b such that a < b and a + b = n − 2, we have

δ1
(
T(a, b)

)
≤ δ1

(
T(a − 1, b + 1)

)
≤ · · · ≤ δ1

(
T(1, a + b − 1)

)
.

Proceeding similar to Theorem 2 together with the fact n
3 < δn−1

(
T(a, b)

)
<

n
3 + 1 for

all a, b, with f
(

n
3

)
< 0 and f

(
n
3 + 1

)
> 0, we get the following result for second smallest

reciprocal distance Laplacian eigenvalue δn−1 of the family T(a, b).

Theorem 3. For positive integers a, b such that a < b and a + b = n − 2, we have

δn−1
(
T(a, b)

)
≤ δn−1

(
T(a − 1, b + 1)

)
≤ · · · ≤ δn−1

(
T(1, a + b − 1)

)
.

Note that Theorem 3 gives the ordering of the trees belonging to the family T(a, b) on the
basis of their second smallest reciprocal distance Laplacian eigenvalue.

The complement of tree T(a, b) is denoted by T(a, b), where a ≤ b. The following result
gives the reciprocal distance Laplacian spectrum of T(a, b).

Proposition 3. The reciprocal distance Laplacian spectrum of T(a, b), a < b, a + b = n − 2,
consists of the eigenvalue 2a+2b+3

2 with multiplicity a + b − 2, the simple eigenvalue 0 and the

eigenvalues y1 ≥ y2 ≥ y3, where y1 ∈
(
n − 1, n

)
, y2 ∈

(3n

4
, n − 2

)

and y3 ∈
(n

2
,

3n

4

)

.

Proof. Labelling the vertices of T(a, b) as in Theorem 1, we get that T(a, b) consists of clique
on a + b, where a vertices share the same neighbourhood with common reciprocal transmis-
sion degree 2a+2b+1

2 . Likewise, b vertices of clique share the same neighbourhood with re-
ciprocal transmission degree 2a+2b+1

2 . Thus by Proposition 2, it follows that 2a+2b+3
2 is the
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RDL-eigenvalue with algebraic multiplicity a + b − 2. Let X be the eigenvector of T(a, b) with
xi = X(vi) for i = 1, 2, . . . , n. Then by Lemma 1, each coordinate of X corresponding to a

vertices is equal to x1, every coordinate of X corresponding to b vertices is x4 and coordinates
of X corresponding to vertices of degree a and b are x3 and x2, respectively. By using the
eigenequation (1), the coefficient matrix of (δ, X)-equation is








2b+3
2

−1
2 −1 −b

−a
2

3a+6b+2
6

−1
3 −b

−a −1
3

6a+3b+2
6

−b
2

−a −1 −1
2

2a+3
2








,

and its characteristic polynomial is
x

12
p(x), where

p(x) = 12x3 − x2(30a + 30b + 44) + x
(

24a2 + 24b2 + 51ab + 71a + 71b + 51
)

−
(

6a3 + 6b3 + 21a2b + 21ab2 + 27a2 + 27b2 + 60ab + 39a + 39b + 18
)

.

Let y1, y2 and y3 be the zeros of p(x). Then by manual calculation, we obtain

p(n) = p(a + b + 2) = 2(a + b + 2) = 2n > 0,

p(n − 1) = p(a + b + 1) = a + b + 1 − 3ab < 0,

p(n − 2) = p(a + b) = 6(2a + 2b − ab − 3) < 0,

p

(
3(a + b + 2)

4

)

= p

(
3n

4

)

=
3

16
(a − b)2n > 0,

p

(
a + b + 2

2

)

= p
(n

2

)

=
−n

2
(3ab − a − b − 1) < 0.

Therefore, by intermediate value theorem, it follows that y1 ∈
(
n − 1, n

)
, y2 ∈

(3n

4
, n − 2

)

and

y3 ∈
(n

2
,

3n

4

)

. This completes the proof.

The next result gives that the reciprocal distance Laplacian spectral radius of the family
T(a, b) is an increasing function of a, 1 ≤ a ≤ ⌊n−2

2 ⌋.

Theorem 4. For positive integers a, b such that a < b and a + b = n − 2, we have

δ1
(
T(a, b)

)
≥ δ1

(
T(a − 1, b + 1)

)
.

Proof. By Proposition 3, the RDL-spectral radius of T(a, b) is the largest root of

p(x, a, b) = 12x3 − x2(30a + 30b + 44) + x
(

24a2 + 24b2 + 51ab + 71a + 71b + 51
)

−
(

6a3 + 6b3 + 21a2b + 21ab2 + 27a2 + 27b2 + 60ab + 39a + 39b + 18
)

.

It is easy to see that p(x, a, b)− p(x, a − 1, b + 1) = 3(a − b − 1)(n − x).
Since a < b, by Proposition 3, we have n − 1 < δ1

(
T(a, b)

)
< n for all a, b. It follows that

p
(
δ1
(
T(a − 1, b + 1)

)
, a, b

)
= p

(
δ1
(
T(a − 1, b + 1)

)
, a, b

)
− p

(
δ1
(
T(a − 1, b + 1)

)
, a − 1, b + 1

)

= 3(a − b − 1)
(
n − δ1

(
T(a − 1, b + 1)

))
< 0.

Note that p
(
δ1
(
T(a − 1, b + 1)

)
, a − 1, b + 1

)
= 0. Now, p

(
δ1
(
T(a − 1, b + 1)

)
, a, b

)
< 0

together with p(n− 1, a, b) < 0 and p(n, a, b) > 0 implies that δ1
(
T(a, b)

)
≥ δ1

(
T(a− 1, b+ 1)

)
.

This completes the proof.
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Following assertion is the immediate consequence of Theorem 4 and gives the ordering of
the graphs belonging to the family T(a, b) on the basis of their reciprocal distance Laplacian
spectral radius.

Corollary 3. For positive integers a, b such that a < b and a + b = n − 2, we have

δ1
(
T(a, b)

)
≥ δ1

(
T(a − 1, b + 1)

)
≥ · · · ≥ δ1

(
T(1, a + b − 1)

)
.

Proceeding similar to Theorem 4 together with the fact n
2 < δn−1

(
T(a, b)

)
<

3n
4 for all a, b,

with f (n
2 ) < 0 and f (3n

4 ) > 0, we get the following result for second smallest reciprocal
distance Laplacian eigenvalue of T(a, b).

Theorem 5. For positive integers a, b such that a < b and a + b = n − 2, we have

δn−1
(
T(a, b)

)
≥ δn−1

(
T(a − 1, b + 1)

)
.

The next result is the immediate consequence of Theorem 5 and gives the ordering of the
graphs belonging to the family T(a, b) on the basis of their second smallest reciprocal distance
Laplacian eigenvalue.

Corollary 4. For positive integers a, b such that a < b and a + b = n − 2, we have

δn−1
(
T(a, b)

)
≥ δn−1

(
T(a − 1, b + 1)

)
≥ · · · ≥ δn−1

(
T(1, a + b − 1)

)
.

3 Reciprocal Distance Laplacian energy ordering of T(a, b) and T(a, b)

In this section, we discuss the reciprocal distance Laplacian energy of the families T(a, b)

and T(a, b). We prove that the graphs belonging to these families can be ordered on the basis
of their reciprocal distance Laplacian energy.

The reciprocal distance Laplacian energy is defined by

ERDL(G) =
n

∑
i=1

∣
∣
∣
∣
δi −

2H(G)

n

∣
∣
∣
∣

,

which is the same as a sum of singular values of the real symmetric matrix RDL(G)− 2H(G)
n In,

where In is the identity matrix. Note that
n

∑
i=1

(

δi − 2H(G)
n

)

= 0. We observe that ERDL(G) is

actually the trace norm of the matrix RDL(G)− 2H(G)
n In and is related with the Ky Fan k-norm

of RDL(G) (see Lemma 2 below). It is important problem in matrix theory and in spectral
graph theory to characterize the linear operators having maximum and minimum norms. For
some recent works on ERDL(G), we refer to [28]. Therefore, the following problem can be of
interest.

Problem 1. Among all connected graphs G of order n determine the graphs which attain the

extremal values for the trace norm
∥
∥
∥RDL(G)− 2H(G)

n In

∥
∥
∥
∗
.

In general, this problem is very hard and as such any partial characterization among a class
of graphs with some special symmetry will be highly appreciable.

Let σ be the largest positive integer such that δσ ≥ 2H(G)
n . That is, σ is the positive in-

teger with δσ ≥ 2H(G)
n and δσ+1 <

2H(G)
n . It is clear that σ gives the number of reciprocal
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distance Laplacian eigenvalues of G, which lie in
[

0, 2H(G)
n

]

, and the eigenvalues, which lie in
[

2H(G)
n , n

]

. It is an interesting and hard problem in linear algebra to find the distribution of

the eigenvalues of a given matrix. The problem of distribution of eigenvalues of a given ma-
trix has been considered for many graph matrices and various interesting results are obtained.
Like other graph matrices, the following problem can be of interest for the matrix RDL(G).

Problem 2. Among all connected graphs G of order n with a given parameter α (like the num-
ber of edges, the independence number, the matching number, the chromatic number, the
vertex covering number, the average Harary index, etc.) determine the number of reciprocal
distance Laplacian eigenvalues in the interval [0, α].

The next result shows that we express the reciprocal distance Laplacian energy ERDL(G) in
terms of Ky Fan k-norm of the matrix RDL(G).

Lemma 2. The reciprocal distance Laplacian energy of G satisfies the following relation

ERDL(G) = 2

(
σ

∑
i=1

δi −
2σH(G)

n

)

= 2 max
1≤k≤n

(
k

∑
i=1

δi −
2kH(G)

n

)

,

where
k

∑
i=1

δi is the sum of first k largest RDL-eigenvalues (Ky Fan k-norm) of G and σ is the

number of RDL-eigenvalues in
[

0, 2H(G)
n

]

.

Proof. Let σ be the largest positive integer such that δσ ≥ 2H(G)
n . Then by the definition of

reciprocal distance Laplacian energy ERDL(G) and the fact 2H(G) =
n

∑
i=1

δi, we have

ERDL(G) =
n

∑
i=1

∣
∣
∣
∣
δi −

2H(G)

n

∣
∣
∣
∣
=

σ

∑
i=1

(

δi −
2H(G)

n

)

+
n

∑
i=σ+1

(
2H(G)

n
− δi

) σ

∑
i=1

δi −
4σH(G)

n

+ 2H(G)−
n

∑
i=σ+1

δi = 2

(
σ

∑
i=1

δi −
2σH(G)

n

)

.

Next, we are required to prove that 2

(
σ

∑
i=1

δi − 2σH(G)
n

)

= 2 max
1≤k≤n

(
k

∑
i=1

δi − 2kH(G)
n

)

. Since

δi <
2H(G)

n
for i ≥ σ + 1, we have

k

∑
i=1

δi −
2kH(G)

n
=

σ

∑
i=1

δi +
k

∑
i=σ+1

δi −
2kH(G)

n

<

σ

∑
i=1

δi + (k − σ)
2H(G)

n
− k

2H(G)

n
=

σ

∑
i=1

δi −
2σH(G)

n

for k > σ. Similarly, for k ≤ σ, it can be easily verified that
k

∑
i=1

δi − k 2H(G)
n ≤

σ

∑
i=1

δi − 2σH(G)
n ,

that finishes the proof.

The next result calculates σ of T(a, b) for a < b, while the case a = b is discussed in
Theorem 6.
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Proposition 4. For the tree T(a, b) with a < b and a + b = n − 2, the value of σ is b + 1.

Proof. Let δ1 ≥ δ2 ≥ · · · δn−1 > δn = 0 be the reciprocal distance Laplacian eigenvalues of
T(a, b) and let σ = σ

(
T(a, b)

)
be the number of reciprocal distance Laplacian eigenvalues of

T(a, b), which are greater than or equal to 2H(T(a,b))
n . Since the sum of diagonal entries of the

matrix RDL(G) equals twice the Harary index, thus

2H
(
T(a, b)

)
= a

(
a

2
+

b

3
+ 1

)

+ b

(
a

3
+

b

2
+ 1

)

+ a + 1 +
b

2
+

a

2
+ b + 1

=
3a2 + 3b2 + 4ab + 15a + 15b + 12

6
,

and so average Harary index is 2H(T(a,b))
n = 3a2+3b2+4ab+15a+15b+12

6(a+b+2) . By Lemma 1 and Corol-

lary 1, the reciprocal distance Laplacian spectrum of T(a, b) consists of the eigenvalue 2a+3b+9
6

with multiplicity b − 1, the eigenvalue 2b+3a+9
6 with multiplicity a − 1, the simple eigenvalue

0 and the eigenvalues z1 ≥ z2 ≥ z3 with z1 ∈
(

3n
4 , n

)
, z2 ∈

(
n
2 , 3n

4

)
and z3 ∈

(
n
3 , n

3 + 1
)
. It is

clear that δ1 = z1, δn−1 = z3 for a ≥ 4. The RDL-spectral radius of T(a, b) is always greater

than 2H(T(a,b))
n . For the eigenvalue z3, we see that n

3 + 1 <
2H(T(a,b))

n . For the eigenvalue z2, we

see that a+b+2
2 ≥ 3a2+3b2+4ab+15a+15b+12

6(a+b+2) = 2H(T(a,b))
n gives that 2ab ≥ 3a + 3b, which further

gives that b ≥ 3a
2a−3 . Since 3a

2a−3 < a for all a ≥ 4, it follows that z2 ≥ 2H(T(a,b))
n . For the eigen-

value 2a+3b+9
6 , we see that 2a+3b+9

6 ≥ 3a2+3b2+4ab+15a+15b+12
6(a+b+2) = 2H(T(a,b))

n always holds. Lastly,

for the eigenvalue 2b+3a+9
6 , we see that 2b+3a+9

6 <
3a2+3b2+4ab+15a+15b+12

6(a+b+2) = 2H(T(a,b))
n gives that

b2 − (a − 2)b − 6 > 0. It is easy to see that this last inequality always holds for b > a. Thus
with this discussion, it follows that σ = 1 + 1 + b − 1 = b + 1. This completes the proof.

The next result gives the reciprocal distance Laplacian energy of T(a, b).

Theorem 6. For the graph T(a, b) with n − 2 = a + b, the reciprocal distance Laplacian
energy is

ERDL

(
T(a, b)

)
=

2(b + 1)(ab + 3)

3n
+

(
5b + 6a − ab + 12

3

)

− 2δn−1 if a < b,

and

ERDL

(
T(a, b)

)
= 4b +

1

6

√

25b2 + 66b + 9 +
28

3(b + 1)
if a = b ≥ 4.

Proof. Let δ1 ≥ δ2 ≥ · · · ≥ δn−1 > δn = 0, be the RDL-eigenvalues of T(a, b). Then by
Theorem 1, Proposition 4 and Lemma 2, the reciprocal distance Laplacian energy of T(a, b) is

ERDL

(
T(a, b)

)
= 2

(
b+1

∑
i=1

δi −
2(b + 1)H

(
T(a, b)

)

n

)

= 2

(

z1 + z2 + (b − 1)
2a + 3b + 9

6
− (b +1)(3a2+ 3b2+ 4ab + 15a + 15b +12)

6(a + b + 2)

)

= 2

(

z1 + z2 + (b − 1)
2a + 3b + 9

6
− (b + 1)

(
a + b + 3

2
− ab + 3

3n

))

.
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From (3), we see that z1 + z2 + z3 = 11a+11b+30
6 and it is clear that z3 is the smallest

RDL-eigenvalue of T(a, b). Thus, the reciprocal distance Laplacian energy of T(a, b), a < b,
is given by

ERDL (T(a, b)) =
2(b + 1)(ab + 3)

3n
−
(

ab − 5b − 6a − 12

3

)

− 2δn−1.

If a = b, then n = 2b + 2 and from Theorem 1 it follows that the RDL-spectrum of T(b, b) is

{

1

12

(

13b + 21 ±
√

25b2 + 66b + 9
)

,
3(b + 1)

2
,

(
5b + 9

6

)[2b−2]

, 0

}

and average of the RDL-eigenvalues is 2H(T(b,b))
n = 5b2+15b+6

6(b+1) = 5b+15
6 − 14

6(b+1) . Also, the

RDL-spectral radius 1
12

(
13b + 21 +

√
25b2 + 66b + 9

)
is always greater than 2H(T(b,b))

n . Further,

it is clear that 3(b+1)
2 ≥ 5b2+15b+6

6(b+1) and 5b+9
6 <

5b2+15b+6
6(b+1) for b ≥ 4. Thus, we have σ = 2 and so

the reciprocal distance Laplacian energy of T(a, b) is

ERDL

(
T(b, b)

)
= 2

(
1

12

(

13b + 21 +
√

25b2 + 66b + 9
)

+
3(b + 1)

2
− 2(5b2 + 15b + 6)

6b + 6

)

= 4b +
1

6

√

25b2 + 66b + 9 +
28

3(b + 1)
.

This completes the proof.

Since n
3 < δn−1 <

n
3 + 1, the following result is the immediate consequence of Theorem 6

and states that ERDL

(
T(a, b)

)
lies in an interval of length 2.

Corollary 5. The reciprocal distance Laplacian energy of T(a, b) with a < b and n − 2 = a + b

satisfies the following relations

ERDL

(
T(a, b)

)
>

2(b + 1)(ab + 3)

3n
+

(
3b + 4a − ab + 2

3

)

and

ERDL(T(a, b)) <
2(b + 1)(ab + 3)

3n
+

(
3b + 4a − ab + 8

3

)

.

For the family of trees T(a − t, b + t), where t = 0, 1, . . . , a − 3, the following result shows
that the reciprocal distance Laplacian energy of T(a − t, b + t) is strictly decreasing function
of t for some values of n and strictly increasing function of t for some other values of n.

Theorem 7. For t = 0, 1, 2, . . . , a − 3, a + b = n − 2 and b > a ≥ 3, the reciprocal distance
Laplacian energy ERDL

(
T(a− t, b+ t)

)
of the family T(a− t, b+ t) is a decreasing function of t,

provided that 2n ≥ 6a − 3l − 3k + 3 +
√

ψ(a, l, k) and an increasing function of t, provided
that 2n < 6a − 3l − 3k − 3 +

√

ψ(a, l, k)− 72a + 36k + 36l, where

ψ(a, l, k) = 12a2 − 12a(k + l + 1) + k2 + l2 + 10kl + 6k + 6l + 17

and 0 ≤ l < k ≤ a − 3 are positive integers.
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Proof. If b > a ≥ 3, then by Theorem 6, the reciprocal distance Laplacian energy of T(a, b) is
given by

ERDL

(
T(a, b)

)
=

2(b + 1)(ab + 3)

3n
−
(

ab − 5b − 6a − 12

3

)

− 2δn−1
(
T(a, b)

)
, (4)

where δn−1
(
T(a, b)

)
is the second smallest reciprocal distance Laplacian eigenvalue of T(a, b).

Since b = n − a − 2, therefore using this in (4), we can rewrite it as

ERDL

(
T(a, b)

)
=

(
a + 5

3

)

n − a2 − a +
8

3
+

1

3n

(

2a3 + 6a2 − 2a − 6
)

− 2δn−1(T(a, b)). (5)

Consider the trees T1 = T(a − l, b + l) and T2 = T(a − k, b + k), where 0 ≤ l < k. From (5),
we get

ERDL(T1)− ERDL(T2) = 2
(
δn−1(T2)− δn−1(T1)

)
+ (k − l)

(n

3
+ k + l − 2a − 1

+
1

3n

(
6a2 − 6ak − 6al + 12a + 2k2 + 2kl − 6k + 2l2 − 6l − 2

))

.
(6)

Since a ≥ 3, it follows from Theorem 3 that δn−1(T2) > δn−1(T1). Also,

(k − l)
(n

3
+ k + l − 2a − 1 +

1

3n

(
6a2 − 6ak − 6al + 12a + 2k2 + 2kl − 6k + 2l2 − 6l − 2

))

≥ 0

gives that 2n ≥ 3(2a − l − k + 1) +
√

12a2 − 12a(k + l + 1) + k2 + l2 + 10kl + 6k + 6l + 17.
This shows that ERDL(T1) > ERDL(T2), provided that 2n ≥ 6a − 3l − 3k + 3 +

√

ψ(a, l, k).
Again using the fact that n

3 < δn−1(T1), δn−1(T2) <
n
3 + 1, we get δn−1(T2) − δn−1(T1) < 1.

From this together with (6), we get ERDL(T1) < ERDL(T2), provided that

(k − l)
(n

3
+

2

k − l
+ k + l − 2a − 1

+
1

3n

(
6a2 − 6ak − 6al + 12a + 2k2 + 2kl − 6k + 2l2 − 6l − 2

))

< 0.

The above inequality gives

n2 −
(

6a + 3− 3k − 3l − 6

k − l

)

n +
(
6a2 − 6ak − 6al + 12a + 2k2 + 2kl − 6k + 2l2 − 6l − 2

)
< 0.

Since k − l ≥ 1, therefore this inequality will hold provided that the inequality

n2 − (6a − 3k − 3l − 3)n +
(

6a2 − 6ak − 6al + 12a + 2k2 + 2kl − 6k + 2l2 − 6l − 2
)

< 0

holds. From this inequality we get

2n < 6a − 3l − 3k − 3 +
√

12a2 − a(12k + 12l + 84) + k2 + l2 + 10kl + 42k + 42l + 17.

Thus it follows that ERDL(T1) < ERDL(T2), provided that

2n < 6a − 3l − 3k − 3 +
√

ψ(a, l, k)− 72a + 36k + 36l.

This completes the proof in this case.
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In particular, taking l = 1 and k = 2, it follows from Theorem 7 that

ERDL

(
T(a − 1, b + 1)

)
> ERDL

(
T(a − 2, b + 2)

)
,

provided that 2n ≥ 6a − 6 +
√

12a2 − 48a + 60 and

ERDL

(
T(a − 1, b + 1)

)
< ERDL

(
T(a − 2, b + 2)

)
,

provided that 2n < 6a − 12 +
√

12a2 − 120a + 168. That is,

ERDL

(
T(a − 1, b + 1)

)
> ERDL

(
T(a − 2, b + 2)

)

holds, provided that n ≥ 3a − 3 +
√

3a2 − 12a + 15 and

ERDL

(
T(a − 1, b + 1)

)
< ERDL

(
T(a − 2, b + 2)

)
,

provided that n < 3a − 6 +
√

3a2 − 30a + 42.
The following observation is immediate consequence of Theorem 7 and gives that we can

order the trees belonging to the family T(a, b) on the basis of their reciprocal distance Laplacian
energies.

Corollary 6. Among all trees in T(a, b) with b > a ≥ 3 and a + b = n − 2 the following holds.

(i) If 2n ≥ 3(2a − l − k + 1) +
√

ψ(a, l, k), where ψ(a, l, k) is defined in Theorem 7, then the
tree T(3, n − 3) has the minimum reciprocal distance Laplacian energy, while as the tree
T
(⌊

n−2
2

⌋
,
⌈

n−2
2

⌉)
if n is odd and the tree T

(⌊
n−2

2

⌋
− 1,

⌈
n−2

2

⌉
+ 1
)

if n is even has the
maximum reciprocal distance Laplacian energy.

(ii) If n > 2a + 2 and 2n < 6a − 3l − 3k − 3 +
√

ψ(a, l, k)− 72a + 36k + 36l, then the tree
T
(⌊

n−3
2

⌋
,
⌈

n−3
2

⌉)
if n is odd and the tree T

(⌊
n−3

2

⌋
− 1,

⌈
n−3

2

⌉
+ 1
)

if n is even has the
minimum reciprocal distance Laplacian energy, while as the tree T(3, n− 3) has the max-
imum reciprocal distance Laplacian energy.

The next result gives the reciprocal distance Laplacian energy of the complement of T(a, b).

Theorem 8. For the graph T(a, b) with n − 2 = a + b, 3 ≤ a < b, the reciprocal distance
Laplacian energy is ERDL

(
T(a, b)

)
= 2δ1 + n − 28

3 + 4
n and

ERDL

(
T(b, b)

)
=

1

6

(

33b − 23 +
√

9b2 + 66b + 25
)

− 2(2b − 1)

3b + 3
if a = b.

Proof. Let δ1 ≥ δ2 ≥ · · · ≥ δn−1 > δn = 0 be the reciprocal distance Laplacian eigenvalues
of T(a, b). Then by Proposition 3, we have δ1 = y1, δi = a + b + 3

2 for i = 2, 3, . . . , a + b − 1,
δa+b = y2, δa+b+1 = y3 and δa+b+2 = 0, where y1 ∈

(
n − 1, n

)
, y2 ∈

(
3n
4 , n − 2

)
and y3 ∈

(
n
2 , 3n

4

)
. Let σ = σ

(
T(a, b)

)
be the number of reciprocal distance Laplacian eigenvalues of

T(a, b), which are greater than or equal to 2H(T(a,b))
n . The average of RDL-eigenvalues of T(a, b)

is 2H(T(a,b))
n = 3a2+3b2+6ab+6a+6b+2

3(a+b+2) . The RDL-spectral radius δ1 of any graph G is always greater

or equal to 2H(G)
n . For the eigenvalue 2a+2b+3

2 , we see that 2a+2b+3
2 ≥ 3a2+3b2+6ab+6a+6b+2

3(a+b+2) =

2H(T(a,b))
n , provided that 9a + 9b + 14 ≥ 0, which is always true. For the eigenvalues y2, we see
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that n − 2 = a + b <
3a2+3b2+6ab+6a+6b+2

3(a+b+2) = 2H(T(a,b))
n , giving that −2 < 0, which always true.

From this discussion it follows that σ = 1 + a + b − 2 = a + b − 1. Therefore, the reciprocal
distance Laplacian energy of T(a, b) is given by

ERDL

(
T(a, b)

)
= 2

(
a+b−1

∑
i=1

δi −
2(a + b − 1)H

(
T(a, b)

)

n

)

= 2

(

δ1 + (a + b − 2)

(

a + b +
3

2

)

− (a + b − 1)
3a2+ 3b2+ 6ab + 6a + 6b + 2

3(a + b + 2)

)

= 2

(

δ1 + (a + b − 2)

(

a + b +
3

2

)

− (a + b − 1)

(

a + b +
2

3(a + b + 2)

))

= 2δ1 + n − 28

3
+

4

n
.

If a = b, then by Proposition 3 the RDL-spectrum of T(b, b) is given by

{
1

12

(

21b + 13 ±
√

9b2 + 66b + 25
)

,

(
4b + 3

2

)[2b−2]

,
3(b + 1)

2
, 0

}

and 2H(T(b,b))
n = 12b2+12b+2

6(b+1) . It is easy to verify that 4b+3
2 ≥ 2H(T(b,b))

n and 3(b+1)
2 <

2H(T(b,b))
n for

b ≥ 3. Thus, σ = 2b − 1 and reciprocal distance Laplacian energy is given by

ERDL

(
T(b, b)

)
=

1

6

(

33b − 23 +
√

9b2 + 66b + 25
)

− 2(2b − 1)

3b + 3
.

This completes the proof.

For the family T(a, b), we have the following result which gives ordering of graphs belong-
ing to this family based on their reciprocal distance Laplacian energies.

Theorem 9. Among all graphs in T(a, b) with b > a ≥ 3 and a+ b = n− 2, the graph T(3, n−3)
has the minimum reciprocal distance Laplacian energy, while the graph T

(⌊
n−2

2

⌋
,
⌈

n−2
2

⌉)
if n

is odd and the graph T
(⌊

n−2
2

⌋
− 1,

⌈
n−2

2

⌉
+ 1
)

if n is even has the maximum reciprocal distance
Laplacian energy.

Proof. For t = 0, 1, 2, . . . , a − 3, a + b = n − 2 and 3 ≤ a < b, consider the family
T(a − t, b + t). To prove the result, we need to show that the reciprocal distance Laplacian
energy of T(a − t, b + t) is an decreasing function of t. Let H1 = T(a − l, b + l) and
H2 = T(a − k, b + k), where 0 ≤ l < k ≤ a − 3 are any to members of the family T(a − t, b + t).
Clearly, the reciprocal distance Laplacian energy of T(a − t, b + t) is an decreasing function
of t, if we show ERDL(H1) > ERDL(H2). From Theorem 8, it is clear that

ERDL(H1)− ERDL(H2) =

(

2δ1(H1) + n − 28

3
+

4

n

)

−
(

2δ1(H2) + n − 28

3
+

4

n

)

= 2
(
δ1(H1)− δ2(H2)

)
.

Since a ≥ 3, it follows from Theorem 4 that δ1(H1) > δ1(H2). With this the result follows.
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The following result is immediate consequence from Theorems 8 and 9.

Theorem 10. Let G1 = T(a1, b1) and G2 = T(a2, b2) with a1 + b1 = a2 + b2 = n− 2, b1 > a1 ≥ 3
and b2 > a2 ≥ 3. Then the following assertions are equivalent:

(i) δ1(G1) > δ1(G2),

(ii) ERDL(G1) > ERDL(G2),

(iii) a1 > a2.

From this result it is clear that for the family of graphs T(a, b), the reciprocal distance spec-
tral radius and the reciprocal distance Laplacian energy increases with increase in a.

4 Conclusion

Let Mn(C) be the set of all square matrices of order n with complex entries. The Ky-Fan

k-norm of a matrix M ∈ Mn(C) is defined as ‖M‖k =
k

∑
i=1

σi(M), where σ1(M) ≥ · · · ≥ σn(M)

are the singular values of M. For k = 1, the Ky-Fan k-norm gives the spectral norm of M.
For k = n, the Ky-Fan k-norm gives the trace norm of M. It is well known that for a symmetric
matrix M, we have σi(M) =

∣
∣λi(M)

∣
∣, σi(M) is the ith singular value and λi(M) is the ith eigen-

value of M. Using the fact that the matrix RDL(G) is symmetric and positive semi-definite,
it follows that the spectral radius of the matrix RDL(G) is same as its spectral norm. Also,
in the light of this definition, it follows that the reciprocal distance Laplacian energy ERDL(G)

of a connected graph G is the trace norm of the matrix RDL(G) − 2H(G)
n In, where In is the

identity matrix of order n. It is an interesting problem in matrix theory to determine among a
given class of matrices the matrix (or the matrices) which attain the maximum value and the
minimum value for the spectral norm/trace norm. Another problem is to order the matrices
among a given class of matrices based on their spectral norm/trace norm. These problems are
considered for many graph matrices and a number of papers can be found in the literature in
this direction.

In this article our aim was to study these problems for the reciprocal distance Laplacian ma-
trix of a connected graph. Formally, we considered these problems for the reciprocal distance
Laplacian matrix of trees of diameter three, called double stars, and their complements. We
give ordering of these graphs based on their reciprocal distance Laplacian spectral radius, on
their second smallest reciprocal distance Laplacian eigenvalue, and on their reciprocal distance
Laplacian energy.

It will be an interesting direction for the researchers to add some new class of graphs which
can be ordered based on their spectral norm and/or trace norm of the reciprocal distance
Laplacian matrix of a connected graph.
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Ґанi Х.А., Ратхeр Б.А., Аучiче М. Подвiйнi зiрковi графи зi спектральними властивостями Лапласа

взаємної вiдстанi та їх доповнення // Карпатськi матем. публ. — 2023. — Т.15, №2. — C. 576–593.

Декiлька матриць можуть бути асоцiйованi з графами для вивчення їхнiх властивостей.
У такому дослiдженнi дослiдникiв цiкавлять спектри матриць, що розглядаються, тому вiд-
повiднi властивостi називаються спектральними властивостями вiдносно матриць. Однiєю з
цiкавих i складних проблем у спектральному дослiдженнi графiв є задача впорядкування гра-
фiв на основi деяких iнварiантiв спектрального графа, таких як спектральний радiус, друге
найменше власне значення, енергiя тощо. Через складнiсть цiєї проблеми вона розглядалася
в лiтературi для малої кiлькостi класiв графiв. Тут ми продовжуємо цi дослiдження та до-
даємо ще кiлька класiв графiв, якi можна впорядкувати на основi iнварiантiв спектральних
графiв. У цiй статтi ми вивчаємо спектральнi властивостi дерев дiаметра три, якi називаються
подвiйними зiрковими графами, та їх доповнення через власнi лапласiвськi значення взаєм-
ної вiдстанi. Ми впорядковуємо цi графи на основi спектрального радiуса Лапласа взаємної
вiдстанi, другого найменшого власного значення Лапласа взаємної вiдстанi та лапласiвської
енергiї взаємної вiдстанi.

Ключовi слова i фрази: матриця Лапласа взаємної вiдстанi, подвiйний зiрковий граф, спе-
ктральне впорядкування, енергiя.


