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Reciprocal distance Laplacian spectral properties double stars
and their complements

Ganie H.A.l, Rather B.A.%, Aouchiche M.?

Several matrices are associated with graphs in order to study their properties. In such a study,
researchers are interested in the spectra of the matrix under consideration, therefore, the properties
are called spectral properties, with reference to the matrix. One of the interesting and hard problems
in the spectral study of graphs is to order the graphs based on some spectral graph invariant, like
the spectral radius, the second smallest eigenvalue, the energy, etc. Due to hardness of this problem
it has been considered in the literature for small classes of graphs. Here we continue this study
and add some more classes of graphs which can be ordered on the basis of spectral graph invari-
ants. In this article, we study spectral properties of trees of diameter three, called double stars, and
their complements through their reciprocal distance Laplacian eigenvalues. We give ordering of
these graphs based on their reciprocal distance Laplacian spectral radius, on their second smallest
reciprocal distance Laplacian eigenvalue, and on their reciprocal distance Laplacian energy.

Key words and phrases: reciprocal distance Laplacian matrix, double star, spectral ordering,
energy.

1 Department of School Education, Jammu and Kashmir Government, Kashmir, India

2 Mathematical Science Department, United Arab Emirates University, Al Ain, United Arab Emirates

E-mail: hilahmadl119kt@gmail.com(Ganie H.A.), bilalahmadrr@gmail.com (Rather B.A.),
maouchiche402@gmail.com(Aouchiche M.)

1 Introduction

All our graphs in this article are connected, simple and undirected graphs. We will use
standard notations and definitions in graph theory (see, e.g., [17,18]).

A graph is denoted by G = G(V(G), E(G)), where V(G) = {v1,v2,...,v,} is the vertex set
and E(G) is the edge set. The complement of G is denoted by G. By K,, and Kj ,,_1, we denote
the complete graph and the star graph, each on n vertices, respectively.

For positive integers a and b, the double star T(a,b) is the tree of order n = a + b+ 2,
obtained by adding an edge between the vertices of maximum degrees of the stars K; , and
Kj p. The vertices of degree a + 1 and b+ 1 are the centers of T(a, b). Any tree T of diameter 3isa
double star completely defined by the degrees of its two non-pendant vertices, i.e. T = T(a, b),
where a + 1 and b + 1 are the degrees of its centers. See Figure 1 for T(3,5).

The distance d(v;, v;) between two distinct vertices v; and v; in a connected graph G is de-
fined as the length of the smallest path connecting them. The diameter of G is the largest
distance among any two vertices of G. The distance matrix D(G) of a graph G is indexed by its
vertices and is defined as (D(G)) = d(v;,v;). For a survey of results on the distance matrix,
see [5].
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Figure 1. The double star T(3,5)

The reciprocal transmission degree of the vertex v; is defined to be the sum of the inverse
distances from v; to all other vertices in G, i.e.

RTr(vi): Z dvz, b)Y

Let RTr(G) = diag(RTr(vl),RTr(vz),...,RTr(vn)) be the diagonal matrix of reciprocal
transmission degrees of G. The reciprocal distance matrix RD(G) (also known as Harary ma-
trix) is an n x n matrix whose (i, j)th entry is d( 1f v; # vj and 0 otherwise. The Harary
index H(G) of G is the sum of reciprocal dlstances between all unordered pairs of vertices.
Clearly,

= ) RTr(v )

n
veV(G) v,,ijV( ), i#] d(vz’vj) Z ' Z

The relation between the Harary matrix, the Harary index and the Harary energy can be
seen in [13] and some recent result in this direction in [1].

Movivated by the work introducing the signless Laplacian matrix of a graph [14-16], and
the distance Laplacian and distance signless Laplacian matrices of graphs [6-8], R. Bapat and
S.K. Panda [11] defined the reciprocal distance Laplacian matrix as RD'(G) = RTr(G) — RD(G).
Since each row sum of RD(G) is zero, it follows that its eigenvalue is 0 and its associated
eigenvector is (1,...,1). The reciprocal distance Laplacian matrix is a real symmetric positive
semi-definite matrix, so its eigenvalues can be indexed such thaté; > --- > 6,1 > J,, = 0.

The set of all eigenvalues (including algebraic multiplicities) of RD(G) is known as the
reciprocal distance Laplacian spectrum (or RD-spectrum) of G, the largest RD*-eigenvalue
51 is known as the reciprocal distance Laplacian spectral radius or RD*-spectral radius of G.

The study of the spectral properties of the reciprocal distance Laplacian matrix RD*(G) of
a graph G attracted the attention of several researchers. For instance, L. Medina and M. Trigo
studied the problem of bounding the largest eigenvalue J1(G) in [27] and that of bounding the
reciprocal distance Laplacian energy in [28]. Recently, the authors in [22] have extended the
concept of spectral spread of a matrix to the reciprocal distance Laplacian matrix and have ob-
tained some bounds for it. They have also obtained some estimates for the sum of the k largest
reciprocal distance Laplacian eigenvalues in [22]. The reciprocal distance signless Laplacian
matrix of a connected graph was introduced in [3] and its spectral properties were further
studied in [2,10,27].

In this paper, we investigate ordering of trees of diameter 3 (double stars) and their com-
plements on the basis of their reciprocal distance Laplacian largest eigenvalue, their second
smallest reciprocal distance Laplacian eigenvalue, and their reciprocal distance Laplacian
energy.
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Ordering graphs on the basis of their spectra is a widely studied topic in spectral graph
theory. For instance, ordering trees on the basis the distance Laplacian energy and distance
Laplacian spectral radius was considered in [19, 20, 26,29, 30]. For other orderings of graphs
based on different spectra, see [24,33] for the second largest Laplacian eigenvalue, [4,9,23] for
the second largest signless Laplacian eigenvalue, [12,21,25,31] for the adjacency spectral radius
and [32] for the adjacency energy of a signed graph.

The rest of the paper is organized as follows. In Section 2, we find the RD*-eigenvalues
of double star and its complement. We also discuss the ordering of graphs belonging to these
families based on RD!-spectral radius and the second smallest RD-eigenvalue. In Section 3,
we find the reciprocal distance Laplacian energy of double stars and their complements. Fur-
ther, we show that the graphs belonging to these families can be ordered on the basis of their
reciprocal distance Laplacian energy.

2 Reciprocal distance Laplacian spectral properties of T(a,b) and T(a,b)

Any column vector X = (x1,xp,..., xn)T € R” can be regarded as a function defined on
V(G), which associates every v; to x;, that is X(v;) = x; foralli =1,2,...,n. Also, it is easy to

see that
2

XTRD*(G)x = ) d(vu ) — xj)%.

Lj, i#]
A number § is an eigenvalue of RD'(G) with its associated eigenvector X if and only if
X # 0 and for every v; € V(G) we have

0X(v;) = Z
eV(G), j#i

1
d(vl,v )

(X(01) — X(vj)), e

or equivalently
1

Xo) ~RTro) == ¥ g5y

ev(G), j#i
Equations (1) and (2) are known as (9, X )—eigenequatlons of RDY(G).
The next result is helpful in finding some RD*-eigenvalues of G, when G has an indepen-
dent set (a set of mutually non-adjacent vertices) sharing the same neighbourhood set.

X(vj). )

Proposition 1. Let G be a connected graph with vertex set V(G) = {v1,vy,...,v,} and let
S = {v1,v2,...,vp} be an independent set of G such that N(v;) = N(vj) foralli,j € {1,...,p}.
Then the vertices of S have the same reciprocal transmission degree, say 6. Moreover, § + 1 is
the RD!-eigenvalue of G with multiplicity at least p — 1.

Proof. Since S = {v1,vy,...,0p} is an independent set sharing the same neighbourhood, so
d(v;,v;) = 2 for every i,j € {1,...,p}. We first index the independent vertices, so that the
RD!-matrix of G with given hypothesis can be written as

o -
) —

NI—

NI=N—=

px(n—p)

NI—

RDY(G) =

NI—
NI—

(Bp(n—p))” Clnp)x(n—p)
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Fori=2,3,...,p,letX; 1 = (—1,xp,xj3,.. .,xl-p,O,...,O)T = (X,On,p)T be the vector in
n—p
IR" such that Xij = 1if i = j and 0 otherwise, where X = (—1, Xin, Xi3,+ - -, xip) and 0, p is the
zero row vector of order n — p. Forinstance, X; = (—1,1,0,0,...,0)T, X, = (-1,0,1,0,...,0)7,
X3 = (-1,0,0,1,...,0)T and so on. It is clear from the definition of vectors X1, Xy, ..., Xp1
that if the kth entry in any of these vectors is non-zero, then the kth entry of rest of the vectors
is zero, giving that these vectors are linearly independent vectors. We have

51 —% —% 1
3 0 —3| Byx(uop) 1
RDYG)X; = | :
2 2 ) 0
(Bpx(n—p))" Clupytnp) | \Onp
T
:<—5—% 5—|—% 0 ...0 0 ... O) :<5+%>X1-

To get the last equality we have used the fact Bpx(n,p)og,p = 0y, C(n,p)x(n,p)og,p = On—p
and (BpX (n_p)) TXT = 0n—p. This last equality is true as any two vertices in the independent
set S share the same neighbourhood and so if the entry in (Bpx(n,p))T corresponding to —1

is t, then the entry in (Bpx(n_p))T corresponding to 1 is also t, giving that the contribution
from the product of these entries in B, (;,, p)OZ, p is zero. Proceeding similarly by considering
the vectors X, X3,..., X, 1, we get that these vectors are also the eigenvectors of RDL(G)
corresponding to eigenvalue § + 1. Since, these vectors form an independent set, the result

follows. O

The following result is helpful in finding some RD*-eigenvalues of G, when G has a clique
(a set of mutually adjacent vertices) sharing same neighbourhood set outside the clique.

Proposition 2. Let G be a connected graph on n vertices. If S = {v1,vy,...,v,} is a clique of
G such that N(v;) =S = N(v;) — S for alli,j € {1,...,1}. Then the vertices of S have the
same reciprocal transmission degree, say 11. Moreover, 11 + 1 is an eigenvalue of RD'(G) with
multiplicity at least 7 — 1.

Proof. Similar to Proposition 1 with the same set of eigenvectors. O

Lemma 1. Let G be a connected graph with non-zero eigenvector X = (x1,x,..., xn)T corre-
sponding to the reciprocal distance Laplacain eigenvalue 6 and let u,v € V(G) be such that
N(u) \{v} = N(v) \ {u}. Then x,, = xy.

Proof. Clearly, RTr(u) = RTr(v). By using (2), we have

1 o 1
d(u,v) "’

0xy — RTr(u)x, = — Xj

v, €V(G), vj£v,u d(u’ Uj)

and
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As N(u) \ {v} = N(v) \ {u}, sod(u,v;) = d(v,v;) for v; # u,v. Therefore, it follows that

5(xy — xp) = (xu — xv),

d(u,v)
which implies that x,, = xy. O
The next result gives the RD%-spectrum of T(a, b).

Theorem 1. The reciprocal distance Laplacian spectrum of T(a,b), a < b, a+b = n—2
consists of the eigenvalue ?’”sz*g with algebraic multiplicity a — 1, the eigenvalue W
with algebraic multiplicity b — 1 and the zeros of the following polynomial

X

= <12x3 — (220 +22b + 60)x + (124 + 126 + 27ab + 71a + 71b +99) x

- <2a3 + 203 + 7a%b + 7ab® + 1942 + 19b* + 40ab + 57a + 57b + 54) > .

Proof. Let V(T(a, b)) = {s1,52,...,54,u,v,t1,ts,...,t,} be the vertex set of T(a,b), where s;,
1 <i < a, are the a pendent vertices adjacent to u and b;,1 < i < b, are the b pendent vertices
adjacent to v. Clearly, {s1,5,...,54} is an independent set of T(a, b) sharing the same vertex
u, such that reciprocal transmission degree of each vertex is

LI N S +1—5+é+1
2 2 2 3 3 3 2 3

~

1 b

+

N =

-
So, by Proposition 1, it follows that 4 + 2 + 1+ 1 is the RD!-eigenvalue of T(a, b) with algebraic
multiplicity @ — 1. Similarly, the b pendent vertices t1, t5, ..., t;, form another independent set
sharing the same vertex v with each vertex of reciprocal transmission degree 5 + g +1 and
by Proposition 1, § + % + 3 is the other RD!-eigenvalue of G with algebraic multiplicity b — 1.
In this way, we have found n — 4 reciprocal distance Laplacian eigenvalues of T(a,b). Also,
note that 0 is always RD" eigenvalue of G. For the remaining three RD*-eigenvalues of T(a, b),
we use (1). Let X be the eigenvector of T(a,b) with x; = X(v;) fori = 1,2,...,n. Then by
Lemma 1, it follows that the components of X corresponding to vertices of the independent
set on a vertices is same and equal to x; and the components of X corresponding to vertices
of the independent set on b vertices is same and equal to x4. The remaining two vertices of
degree a + 1 and b + 1 are assigned x, and x3, respectively. By using (1), the (J, X)-equations
of T(a, b) are given by

3a4+2b+6 a—1 1 b
ox1 = — )" T R A Rt

2 3
2
2 2
2b+2
ox3 = —%xl — Xy + (%) X3 — bxy,

5x—_gx_1x _x+ M X4 — b_—l X
4 — 31 22 3 6 4 > 4-



Reciprocal distance Laplacian spectral properties double stars and their complements 581

The coefficient matrix of the above system of equations is

2b+9 -1 _1 _b
6 2a+b+2 2 %
—a HTJF -1 —3
a a+2b+2 ’
_a _1 -1 2a+9
3 2 6

and its characteristic polynomial is given by % f(x), where

f(x) =125 — (220 +22b + 60)x* + (120% + 126 4 27ab + 71a +71b + 99 x
3)
- <2a3 + 263 + 7a%b + 7ab? + 1942 + 1962 + 40ab + 57a + 57b + 54) :

O
Next, we approximate the zeros of the polynomial f(x).
Corollary 1. Let zy > zp > z3 be the zeros of f(x). Then z; € <??Tn’ n), zy € (g, %) and
z3 € <g,g+1),wherea+b:n—2anda < b.
Proof. For the polynomial
f(x) = 125 — (220 + 22b + 60)x* + (120% + 126+ 27ab + 71a +71b +99) x
— (26 +26% + 7a%b + 7ab? + 1907 + 1967 + 40ab + 57a + 57b + 54

it is easy to verify that

fla+b+2)=2ab(2+a+b) >0,

f (W) _ —%(a _b)P(2+atb) <0,

f (#) = %(a+b+2)(ab+a+b—3) >0,

f (”3& + 1) = é <2a2 +a(31b—1) + (b - 1)(2b+1)) >0,

f (#) _ —%(2+a+b)(5+a+b) <.
Therefore, by the intermediate value theorem, the result follows. O

The next result shows that the reciprocal distance Laplacian spectral radius of the family
T(a,b) is a decreasing function of a, 1 < a < |Z32].

Theorem 2. For positive integers a, b such thata < b anda + b = n — 2, we have
61(T(a,b)) <6 (T(a—1,b+1)).
Proof. By Theorem 1, the RD-spectral radius of T(a, b) is the largest root of
f(x,8,b) = 125> — (22a +22b + 60)x* + (124% +126% + 27ab + 71a +71b +99) x

- <2a3 + 203 + 7a%b + 7ab® + 1942 + 196> + 40ab + 57a + 57b + 54) .
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By manual calculations, we see that f(x,a,b) — f(x,a —1,b+1) = (a — b —1)(n — 3x). Since,
a < b,soa—b—1 < 0and by Proposition 3, we have % < 61(T(a,b)) < n for all a,b, it
follows that

f(61(T(a—1,b+1)),a,b) = f(61(T(a—1,b+1)),a,b) — f(6(T(a—1,b+1)),a—1,b+1)
=(a—b—-1)(n—36(T(a—1,b+1))) > 0.

Note that f (6, (T(a —1,b+1)),a—1,b+1) = 0. Now, f(61(T(a —1,b+1)),a,b) > 0 together
with the fact f (%T”,a, b) < 0and f(n,a,b) > 0, gives that the largest eigenvalue of f(x,a,b)
lies between 3 and 61 (T(a — 1,b + 1)), by the intermediate value theorem. From this it is now
clear that é; (T(a,b)) < 61(T(a —1,b+1)). This completes the proof. O

For example, consider the trees T(2,3) and T(1,4). Puta = 2 and b = 3 in (3). It fol-
lows that the reciprocal distance Laplacian spectral radius of T(2,3) is the largest zero of the
polynomial 12x3 — 170x? + 772x — 1106. By direct calculation, we see that the reciprocal dis-
tance Laplacian spectral radius of T(2, 3) is 6.0644826442887. Similarly, puttinga = land b = 4
in (3), we obtain that the reciprocal distance Laplacian spectral radius of T(1,4) is the largest
zero of the polynomial 12x% — 170x? + 766x — 1092, which is 6.5. It is now clear that
61(T(2,3)) < 6(T(1,4)).

Following assertion is the immediate consequence of Theorem 2 and gives the ordering
of the trees belonging to the family T(a, b) on the basis of their reciprocal distance Laplacian
spectral radius.

Corollary 2. For positive integers a, b such thata < b and a +b = n — 2, we have
61(T(a,b)) <6 (T(a—1L,b+1)) <--- <5 (T(L,a+b-1)).

Proceeding similar to Theorem 2 together with the fact 5 < 6,_1(T(a,b)) < %+ 1 for
all a,b, with f (%) < Oand f (% + 1) > 0, we get the following result for second smallest
reciprocal distance Laplacian eigenvalue d,,_1 of the family T'(a, b).

Theorem 3. For positive integers a, b such thata < b anda + b = n — 2, we have
6n-1(T(a,b)) <6,-1(T(a—1,b+1)) <--- <8,1(T(1,a+b—-1)).

Note that Theorem 3 gives the ordering of the trees belonging to the family T(a, b) on the
basis of their second smallest reciprocal distance Laplacian eigenvalue.

The complement of tree T(a,b) is denoted by T(a,b), where a < b. The following result
gives the reciprocal distance Laplacian spectrum of T (a, b).

Proposition 3. The reciprocal distance Laplacian spectrum of T(a,b),a < b,a+b = n —2,
consists of the eigenvalue 2223 with multiplicity a + b — 2, the simple eigenvalue 0 and the
n 3n>

3
eigenvalues yy > Yy > y3, wherey; € (n—1,n), 2 € <_Tl,n - 2) and y3 € <§' 4

4
Proof. Labelling the vertices of T(a,b) as in Theorem 1, we get that T(a,b) consists of clique
on a + b, where a vertices share the same neighbourhood with common reciprocal transmis-
sion degree 2“%2[’“. Likewise, b vertices of clique share the same neighbourhood with re-
ciprocal transmission degree Z‘HZﬁ. Thus by Proposition 2, it follows that %b” is the
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RD*!-eigenvalue with algebraic multiplicity a + b — 2. Let X be the eigenvector of T(a, b) with
x; = X(v;) fori = 1,2,...,n. Then by Lemma 1, each coordinate of X corresponding to a
vertices is equal to x1, every coordinate of X corresponding to b vertices is x4 and coordinates
of X corresponding to vertices of degree a and b are x3 and xp, respectively. By using the
eigenequation (1), the coefficient matrix of (J, X)-equation is

s -1 —b

2 2
—a  3a+6b+2 =1 —b
2 6 3
—a =1 6a+3b+2 b |~
3 61 2 %L?)
— a
—a -1 - T

and its characteristic polynomial is % p(x), where

p(x) = 12> — x*(30a + 30b + 44) + x <24a2 4 24b% + 51ab + 71a + 71b + 51)
_ <6a3 1 6b% + 21a2b + 21ab? + 27a% + 27b + 60ab -+ 39a + 39b + 18) .

Let y1,y2 and y3 be the zeros of p(x). Then by manual calculation, we obtain
p(n) =pla+b+2)=2(a+b+2)=2n>0,
p(n—1)=pla+b+1)=a+b+1-3ab <0,
p(n—2)=pla+b)=6(2a+2b—ab—3) <0,

4@) :pg“) = 2 (a—bpPn >0,

a+b+2 n —n
p<?> —p<§> —7(3ab—a—b—1) <0.

Therefore, by intermediate value theorem, it follows that y; € (n -1, n) , Y2 € <3?Tn’ n— 2) and
n 3n
Y3 € < > ) This completes the proof. O

The next result gives that the reciprocal distance Laplacian spectral radius of the family

T(a, b) is an increasing function of a, 1 < a < |%52].

Theorem 4. For positive integers a, b such thata < b anda 4+ b = n — 2, we have
61(T(a,b)) > 61(T(a—1,b+1)).

Proof. By Proposition 3, the RD%-spectral radius of T (a, b) is the largest root of

p(x,a,b) = 12x> — x(30a + 30 + 44) + x (24a2 + 2412 + 51ab + 71a + 71b + 51)

— (66 + 6b° + 2107 + 21ab® + 27a% + 27b* + 60ab + 39a + 39 +18)

It is easy to see that p(x,a,b) —p(x,a —1,b+1) =3(a—b—1)(n —x).

Since a < b, by Proposition 3, we have n — 1 < §; (T(a b)) < nforall a, b. It follows that
p(61(T(a—1,b+1)),a,b) =p(61(T(a—1,b+1)),a,b)—p(6(T(a—1, b+1)),a—1,b+1)

=3a—-b-1)(n—56(Ta-1,b+1))) <

Note that p(&(T(a —1,b+1)),a—1,b+1) = 0. Now, p(& (T a—1,b+1)),ab) <0
together with p(n —1,4,b) < 0and p(n,a,b) > 0implies that & (T(a,b)) > 6;(T(a —1,b+1)).
This completes the proof. O
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Following assertion is the immediate consequence of Theorem 4 and gives the ordering of
the graphs belonging to the family T(a,b) on the basis of their reciprocal distance Laplacian
spectral radius.

Corollary 3. For positive integers a, b such thata < band a+b = n — 2, we have
61(T(a,b)) > 61 (T(a—1,b+1)) >--->6(T(1,a+b—1)).

Proceeding similar to Theorem 4 together with the fact 7 < 6,1 (T(a, b)) < ?{T” forall a, b,
with f(4) < 0and f(32) > 0, we get the following result for second smallest reciprocal
distance Laplacian eigenvalue of T(a, b).

Theorem 5. For positive integers a, b such thata < b anda + b = n — 2, we have
6u-1(T(a,b)) > 6,-1(T(a—1,b+1)).

The next result is the immediate consequence of Theorem 5 and gives the ordering of the
graphs belonging to the family T(a, b) on the basis of their second smallest reciprocal distance
Laplacian eigenvalue.

Corollary 4. For positive integers a,b such thata < b anda+b = n — 2, we have

Sp-1(T(a,b)) > 6, 1(T(a=1,b+1)) > --- > 6, 1(T(La+b—1)).

3 Reciprocal Distance Laplacian energy ordering of T(a,b) and T(a,b)

In this section, we discuss the reciprocal distance Laplacian energy of the families T'(a, D)
and T(a, b). We prove that the graphs belonging to these families can be ordered on the basis
of their reciprocal distance Laplacian energy.

The reciprocal distance Laplacian energy is defined by

< 2H(G
Expi(G) =) |6 — (6) ,
i=1 n
which is the same as a sum of singular values of the real symmetric matrix RD*(G) — ZHéc) Iy,
n
where I, is the identity matrix. Note that }_ (51‘ — %(G)) = 0. We observe that Ezp.(G) is
i=1
2H(G)

actually the trace norm of the matrix RDL(G) — =—=1,, and is related with the Ky Fan k-norm
of RDY(G) (see Lemma 2 below). It is important problem in matrix theory and in spectral
graph theory to characterize the linear operators having maximum and minimum norms. For
some recent works on Expi(G), we refer to [28]. Therefore, the following problem can be of
interest.

Problem 1. Among all connected graphs G of order n determine the graphs which attain the

extremal values for the trace norm HRDL(G) - %(G)In

*

In general, this problem is very hard and as such any partial characterization among a class

of graphs with some special symmetry will be highly appreciable.
Let o be the largest positive integer such that 6, > %(G)

ZHIEG) and 6,1 < ZHIEG)

. That is, o is the positive in-

teger with §y > . It is clear that ¢ gives the number of reciprocal



Reciprocal distance Laplacian spectral properties double stars and their complements 585

2H(G)

distance Laplacian eigenvalues of G, which lie in [O, ], and the eigenvalues, which lie in

[ZH’EG)

the eigenvalues of a given matrix. The problem of distribution of eigenvalues of a given ma-
trix has been considered for many graph matrices and various interesting results are obtained.
Like other graph matrices, the following problem can be of interest for the matrix RD(G).

, n] . It is an interesting and hard problem in linear algebra to find the distribution of

Problem 2. Among all connected graphs G of order n with a given parameter « (like the num-
ber of edges, the independence number, the matching number, the chromatic number, the
vertex covering number, the average Harary index, etc.) determine the number of reciprocal

distance Laplacian eigenvalues in the interval [0, «].

The next result shows that we express the reciprocal distance Laplacian energy Exp.(G) in

terms of Ky Fan k-norm of the matrix RD*(G).

Lemma 2. The reciprocal distance Laplacian energy of G satisties the following relation

%
ERDL —2(2(5 -

20H( G) k
> 1<k<n (;5 B

2kH( G))

1

k
where Y §; is the sum of first k largest RD"-eigenvalues (Ky Fan k-norm) of G and ¢ is the

i=1
number of RD"-eigenvalues in {O,

2H(G)]

Proof. Let o be the largest positive integer such that J, >
reciprocal distance Laplacian energy Expr(G) and the fact 2H(G) =

2H(G)

. Then by the definition of

n
Y 6;, we have
i=1

n H(G o 2H(G 7 40H(G
Expr(G) = Y |6, - ”‘zz@-_ﬁw y <7( )Z(sz— (G)
i=1 i=1 h i=r+1 i=1
o
+2H(G Za:z(chI—z”H G)>
i=0+1 i=1
o k
Next, we are required to prove that 2 ( ) 6; — 2HEG) ) — 2 max Y 6 — 2H(G) ) Gince
i n 1<k<n \; =1 !
0; < 2H(G) fori > o+ 1, we have
k
2kH(G 2kH(G
Y 65— 25 + Z 5 — ( )
i=1 i=0+1
2H(G g 20H(G
<Z‘5i+(k_‘7) 15 ) 25— oH(G)
i=1 i=
k
for k > ¢. Similarly, for k < o, it can be easily verified that ) §; — k%(c) < i o — Z‘ﬂfl(c),
i=1 i=1
that finishes the proof. O
The next result calculates o of T(a,b) for a < b, while the case a = b is discussed in

Theorem 6.
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Proposition 4. For the tree T(a,b) witha < banda+ b = n — 2, the value of 0 isb + 1.

Proof. Let 61 > 6, > ---6,1 > 6, = 0 be the reciprocal distance Laplacian eigenvalues of
T(a,b) and let c = o(T(a,b)) be the number of reciprocal distance Laplacian eigenvalues of

T(a,b), which are greater than or equal to w. Since the sum of diagonal entries of the
matrix RD!(G) equals twice the Harary index, thus

3 2 22
_ 3a% 4 3b* + 4ab + 15a + 15b + 12
- ; ,

2H(T(a,b)) =a<§+é+1>+b< +b+1>+a+1+é+f+b+1

2H(T(a,b)) _ 3a2+3b%+4ab+15a+15b+12
n - 6(a+b+2)

lary 1, the reciprocal distance Laplacian spectrum of T (a, b) consists of the eigenvalue
with multiplicity b — 1, the eigenvalue W with multiplicity a — 1, the simple eigenvalue
0 and the eigenvalues z; > zp > zz withz; € (3¥,n), 20 € (4,3) and z3 € (4,2 +1). Itis
clear that 61 = z1, 0,1 = z3 fora > 4. The RDL—spectral radius of T(a,b) is always greater

. By Lemma 1 and Corol-
2a+3b+9
6

and so average Harary index is

than w For the eigenvalue z3, we see that 7 +1 < w. For the eigenvalue z,, we

see that “+b+2 > 3a 2+3b%+4ab+150+15b+12 _ 2H(7;1(”’b)) gives that 2ab > 3a + 3b, which further

(u+b+2)
gives that b > m. Since 2 3 < g for all a > 4, it follows that z, > w

2a+3b+9 t2a+3b+9 > 3a%+3b%+4ab+15a+15b+12 __ H(T(a,b))
6 6(a+b+2)
t2b+3a+9 < 3a2+3b2+4ab+15a+15b+12 2H(T(a,b))
6(a+b+2) n

b> — (a —2)b — 6 > 0. It is easy to see that this last inequality always holds for b > a. Thus
with this discussion, it follows that c =1+ 1+ b —1 = b + 1. This completes the proof. = [

. For the eigen-

, we see tha always holds. Lastly,

2b+3a+9
6

value

for the eigenvalue , we see tha gives that

The next result gives the reciprocal distance Laplacian energy of T(a, ).

Theorem 6. For the graph T(a,b) with n —2 = a+ b, the reciprocal distance Laplacian
energy is

2(b+1)(ab+3 50 +6a —ab+12
ERDL<T(Q, b)) = ( t g;ia + ) + < + o 3 ot ) _25;171 if a< b,
and . ’
Ept(T(a,b)) = 4b+ £v/2562 + 660 +9 + e f e-bze

Proof. Let 6y > 0y > -+ > 8,1 > 6, = 0, be the RD*-eigenvalues of T(a,b). Then by
Theorem 1, Proposition 4 and Lemma 2, the reciprocal distance Laplacian energy of T(a, b) is

b+l 2(b+1)H(T(a,b)
ERDL< —2(25— n< )
2a+3b+9  (b+1)(3a%+ 3b%+ 4ab + 15a + 15b +12
2a+3b+9 b+3 ab+3
:2<zl+zz+(b—1)%—(b+l)<a+2+ _a3;|1— ))
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From (3), we see that z1 + 2z, +z3 = W and it is clear that z3 is the smallest

RD!-eigenvalue of T(a,b). Thus, the reciprocal distance Laplacian energy of T(a,b), a < b,
is given by

2(b+1)(ab+3 ab —5b —6a —12
Egpt (T(a, b)) = ( 3)”(1 )—< 3 )—25n1.

Ifa = b, then n = 2b + 2 and from Theorem 1 it follows that the RD-spectrum of T (b, b) is

1 3(b+1) (5b+9\22
_ 2
{12<13b+21i\/25b +66b+9>, — ( - ) ,0

and average of the RD"-eigenvalues is 2H(Tn(b’b)) = 5bzﬁlfi’)+ 6 — obld 6(bljf1). Also, the

RD!-spectral radius 75 (13b + 21 + v/25b2 + 66b + 9) is always greater than w. Further,

Y 3(b+1) < 5b2+15b+6 5b+9 _ 5b2+15b+6
it is clear that =—— > 8(6+1) and >~ < 6(6+1)
the reciprocal distance Laplacian energy of T(a, b) is

for b > 4. Thus, we have 0 = 2 and so

1 3(b+1) 2(5b*+15b +6)
— _ 2 .
Erpt (T(D, D)) —2<12<13b+21+\/25b +66b+9>+ 5 e
1 28
prm— — 2
4b + 6\/25b +66b+9+ G
This completes the proof. O

Since 5 < 6,1 < 5 + 1, the following result is the immediate consequence of Theorem 6
and states that Egpi (T(a, b)) lies in an interval of length 2.

Corollary 5. The reciprocal distance Laplacian energy of T(a,b) witha < bandn—2=a+1b
satisfies the following relations

Erpr (T(a, b))

2(b+1)(ab+3) 3b+4a—ab+2
> +
3n 3

and
Egpt(T(a, b))

2(b+1)(ab+3) <3b+4a—ab+8>
< + .
3n 3

For the family of trees T(a —t,b +t), where t = 0,1, ...,a — 3, the following result shows
that the reciprocal distance Laplacian energy of T(a — t,b + t) is strictly decreasing function
of t for some values of n and strictly increasing function of ¢ for some other values of .

Theorem 7. Fort = 0,1,2,...,a—3,a+b =n—2and b > a > 3, the reciprocal distance
Laplacian energy Egpi (T(a —t,b+t)) of the family T(a — t, b + t) is a decreasing function of t,
provided that 2n > 6a — 3] — 3k + 3 + \/¢(a,l, k) and an increasing function of t, provided
that2n < 6a — 31 — 3k — 3+ /(a,1,k) — 72a + 36k + 361, where

w(a, 1, k) = 124> — 12a(k +141) + k> + I + 10kl + 6k + 6] + 17

and 0 <[ < k < a — 3 are positive integers.
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Proof. If b > a > 3, then by Theorem 6, the reciprocal distance Laplacian energy of T(a,b) is
given by

2(b+1)(ab+3) <ab—5b—6a—12

Expr (T(a,)) = 201 . ) 26, 4(T(a,b), @)

where 6,_1(T(a, b)) is the second smallest reciprocal distance Laplacian eigenvalue of T(a, b).
Since b = n — a — 2, therefore using this in (4), we can rewrite it as

_fatd\ 5, 8 1 /5 o5 N
Expe (T(a, b)) = ( . )n @ —at S+ <2a + 64 —2a 6) 26,_1(T(a,b)). (5)

Consider the trees Ty = T(a —I,b+1) and T, = T(a — k, b + k), where 0 < I < k. From (5),
we get

n
Erpt(T1) — Erpe(Ta) = 2(8,_1(T) — 8,_1(T1)) + (k= 1) (5 fk4l—2a—1
) ©®)
+ 3—n(
Since a > 3, it follows from Theorem 3 that §,,_1(T2) > 6,_1(Ty). Also,

6% — 6ak — 6al +12a + 2k + 2kl — 6k + 212 — 61 - 2) ).

(k—1) E—l—k—l—l—211—1—|—i(6a2—6ak—6al+12a~|—2k2+2kl—6k+2lz—6l—2) >0
3 3n

gives that 2n > 3(2a — I —k + 1) + /1242 — 12a(k + 1 + 1) + k2 + I2 + 10k + 6k + 6] + 17.
This shows that Expr(T1) > Egpr(T2), provided that 2n > 6a — 31 — 3k + 3 + \/(a, [, k).
Again using the fact that § < 6, 1(T1), d,-1(T2) < 5 +1, we get 6,_1(T2) — 3,—1(T1) < L.
From this together with (6), we get Expr(T1) < Expr(T2), provided that

2
(k—l)(g—Fm—Fk—Fl—Zﬂ—l
+%(6a2—6ak—6al+12a+2k2+2kl—6k—|—2lz—6l—2)> <0.

The above inequality gives

n? — (6a—l—3—3k—3l— >n+(6112—6ak—6al+12a—|—2k2+2kl—6k—|—212—6l—2) <0.

k—1
Since k — | > 1, therefore this inequality will hold provided that the inequality
n? — (62 — 3k — 31 — 3)n + (6% — 6ak — 6al +12a + 2k + 2kl — 6k + 212 — 61 —2) < 0

holds. From this inequality we get

21 < 6a — 31 — 3k — 3+ /120 — a(12K + 121 +84) + k2 + 12 + 10KI -+ 42k + 421 + 17.

Thus it follows that Expr.(T1) < Egxpr(T2), provided that

21 < 6a 31 — 3k — 3+ /(a1 k) — 720 + 36k + 36l.

This completes the proof in this case. O
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In particular, taking / = 1 and k = 2, it follows from Theorem 7 that

provided that 21 > 6a — 6 + v/12a% — 48a + 60 and

provided that 2n < 6a — 12 4+ /1242 — 120a + 168. That is,

Erpr(T(a—1,b41)) > Egpr(T(a —2,b+2))

holds, provided that n > 3a — 3 + /342 — 12a + 15 and

Erpr(T(a—1,b+1)) < Egpr(T(a —2,b+2)),

provided that n < 3a — 6 + /342 — 30a + 42.

The following observation is immediate consequence of Theorem 7 and gives that we can
order the trees belonging to the family T(a, b) on the basis of their reciprocal distance Laplacian
energies.

Corollary 6. Among all trees in T(a,b) withb > a > 3 and a + b = n — 2 the following holds.

(i) If 2n > 3(2a — 1 —k+1) + \/¢(a,l, k), where (a, 1, k) is defined in Theorem 7, then the
tree T(3,n — 3) has the minimum reciprocal distance Lap]acian energy, while as the tree
T ( L”T_ZJ , [”—ZD if n is odd and the tree T (L—J 1, [ W + 1) if n is even has the
maximum reciprocal distance Laplacian energy.

(i) If n > 2a+2 and 2n < 6a — 31 — 3k — 3+ /9 (a,1, k) — 72a + 36k + 361, then the tree
T (|252],[%52]) if n is odd and the tree T (|%52] — 1, [%52] + 1) if n is even has the
minimum reciprocal distance Laplacian energy, while as the tree T (3, n — 3) has the max-
imum reciprocal distance Laplacian energy.

The next result gives the reciprocal distance Laplacian energy of the complement of T(a, ).

Theorem 8. For the graph T(a,b) withn —2 = a+b, 3 < a < b, the reciprocal distance
Laplacian energy is Egpi (T(a,b)) =26, +n— 2 + 1 and

2(2b —1)

B3 if a=0>.

Exot (T(b,b)) = % (336 — 23+ V9B + 66b + 25 ) —

Proof. Let 61 > 0y > .-+ > 6,1 > 6, = 0 be the reciprocal distance Laplacian eigenvalues

of T(a,b). Then by Proposition 3, we have 6; = v, 6; = a+b + % fori =2,3,...,a+b—1,

Satb = Y2, Ogpi1 = Y3 and b,y pyp = 0, where yy € (n—1,n),12 € (‘if,n — ) and y;3 €

(4,21). Let ¢ = o(T(a,b)) be the number of reciprocal distance Laplacian eigenvalues of
b),

T(a,b), which are greater than or equal to @

2H(T(ab)) _ 3a243b2+6ab+6a+6b+2 L
n 3(a+b+2) - The RD
( )

. For the eigenvalue

. The average of RD*-eigenvalues of T(a, b)

is -spectral radius é; of any graph G is always greater

2a+2b+3 2a+2b+3 3a% 3% +6ab+6a+6b+2
, we see that > 3(a-+h12) =

or equal to

M, provided that 9a 4 9b + 14 > 0, which is always true. For the eigenvalues y,, we see
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thatn —2 = a+ b < 32+ 3”;&?21%1%%2 — 2H(7;1(“'b)), giving that —2 < 0, which always true.

From this discussion it follows that c = 1+a+b —2 = a + b — 1. Therefore, the reciprocal
distance Laplacian energy of T(a, b) is given by

a+b—1 2(a+b— 1)H(T(ﬂrb))>

Erpi(T(a, b)) = 2( ; 6 — -

2 2
:2(51+(a+b—2) <a—|—b—|—;> —(a+b—1)3ﬂ +3b —I—6ab+6a—|—6b+2>

3(a+b+2)

Ao foss) s

:2(51—{—1’l—§—{—é
3 n

If a = b, then by Proposition 3 the RD-spectrum of T(b, b) is given by

2b—2]
{i(z1b+13j:¢9b2+66b+25),<4b—+3> ,S(b“),o}

12 2 2
and 22 (Tn(b’b)) = 12[’62(?;31}’)”. It is easy to verify that 4b2+ 3 > ZH(Tn(b’b)) and 3(b2+ b < ZH(Tn(b’b)) for
b > 3. Thus, ¢ = 2b — 1 and reciprocal distance Laplacian energy is given by
= 1 2(2b—1)
—— _ 2 _ a0
Exps (T(b,b)) = ¢ (330 — 23+ V/9W2 + 66b +25) — ==
This completes the proof. O

For the family T(a, b), we have the following result which gives ordering of graphs belong-
ing to this family based on their reciprocal distance Laplacian energies.

Theorem 9. Among all graphsinT(a,b) withb > a > 3 anda+b = n—2, the graph T(3,n —3)
has the minimum reciprocal distance Laplacian energy, while the graph T (|52 |, [%52]) ifn
isodd and the graph T (| 52| — 1, [%52] + 1) ifn is even has the maximum reciprocal distance
Laplacian energy.

Proof. For t = 0,1,2,...,a -3, a+b = n—2and 3 < a < b, consider the family
T(a —t,b+t). To prove the result, we need to show that the reciprocal distance Laplacian
energy of T(a —t,b+t) is an decreasing function of t. Let Hi = T(a —1,b+1) and
Hy =T(a —k,b+k), where 0 < < k < a — 3 are any to members of the family T(a —t,b+t).
Clearly, the reciprocal distance Laplacian energy of T(a —t,b + t) is an decreasing function

of t, if we show Egpi(Hy) > Egpt(Hz). From Theorem 8, it is clear that
28 4 28 4
ERDL(Hl) - ERDL(HZ) = <2(51(H1) +n— ? + E) - <2(51(H2) +n— ? + E)
=2(01(H1) — 62(Hp)).

Since a > 3, it follows from Theorem 4 that 61 (H1) > 01 (Hy). With this the result follows. [
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The following result is immediate consequence from Theorems 8 and 9.

Theorem 10. Let G; = T(ay,by) and Gy = T(ap, by) withay +by =ay +by =n—2,by > a; >3
and by > ap > 3. Then the following assertions are equivalent:

(i) 61(G1) > 61(G2),
(ii) ERDL(Gl) > ERDL(GZ)/
(iii) a1 > ap.

From this result it is clear that for the family of graphs T(a, b), the reciprocal distance spec-
tral radius and the reciprocal distance Laplacian energy increases with increase in a.

4 Conclusion

Let M, (C) be the set of all square matrices of order n with complex entries. The Ky-Fan
k

k-norm of a matrix M € M,,(C) is defined as | M|y = ¥ 0;(M), where o1(M) > --- > 0,(M)
=1

are the singular values of M. For k = 1, the Ky—FanZk-norm gives the spectral norm of M.
For k = n, the Ky-Fan k-norm gives the trace norm of M. It is well known that for a symmetric
matrix M, we have 0;(M) = |A;(M)|, 0;(M) is the ith singular value and A;(M) is the ith eigen-
value of M. Using the fact that the matrix RD*(G) is symmetric and positive semi-definite,
it follows that the spectral radius of the matrix RD'(G) is same as its spectral norm. Also,
in the light of this definition, it follows that the reciprocal distance Laplacian energy Exp(G)
of a connected graph G is the trace norm of the matrix RDL(G) - %(G)In, where [, is the
identity matrix of order . It is an interesting problem in matrix theory to determine among a
given class of matrices the matrix (or the matrices) which attain the maximum value and the
minimum value for the spectral norm/trace norm. Another problem is to order the matrices
among a given class of matrices based on their spectral norm/trace norm. These problems are
considered for many graph matrices and a number of papers can be found in the literature in
this direction.

In this article our aim was to study these problems for the reciprocal distance Laplacian ma-
trix of a connected graph. Formally, we considered these problems for the reciprocal distance
Laplacian matrix of trees of diameter three, called double stars, and their complements. We
give ordering of these graphs based on their reciprocal distance Laplacian spectral radius, on
their second smallest reciprocal distance Laplacian eigenvalue, and on their reciprocal distance
Laplacian energy.

It will be an interesting direction for the researchers to add some new class of graphs which
can be ordered based on their spectral norm and/or trace norm of the reciprocal distance
Laplacian matrix of a connected graph.
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AekirbKa MaTpuIIb MOXYTb 6yTM acolliifoBaHi 3 rpadpamMy AASI BUBYEHHSI iXHiX BAACTMBOCTEIL.
Y TaxoMy AOCAIAXKEeHHI AOCAIAHMKIB IIKaBASITh CIIEKTPY MaTpMIIb, IO PO3rASIAAIOTHCS, TOMY BiA-
TIOBiAHI BAACTMBOCTI Ha3MBAIOTHCSI CIIEKTPAABHMMM BAACTMBOCTSIMM BiAHOCHO MaTpyib. OaHieo 3
IiKaBMX i CKAaAHVX TPOOAEM Y CHIEKTPaABHOMY AOCAiAXeHHi TpadpiB € 3apaya BIOPSIAKYBaHHS I'pa-
diB Ha OCHOBI AesIKMX iHBapiaHTIiB CIIeKTpPaAbHOro rpadpa, TaKMX SIK CIIeKTpaAbHMIA paaiyc, Apyre
HaliMeHIIle BAACHe 3HaUeHHsI, eHepris Tomo. Yepe3 ckaaaHICTS I1iel mpobaeMy BOHA PO3TAsIAAAACs
B AiTepaTypi AAst Maroi KiabkocTi kaaciB rpadpis. TyT My MPOAOBXYEMO IIi AOCAIAXKEHHS Ta AO-
AaeMo I1e KiabKa KAaciB rpacpis, sIKi MOXXHa BIOpSIAKYBaTM Ha OCHOBi iHBapiaHTiB CIleKTpaAbHMX
rpadpis. Y 1iit cTaTTi MM BMBYAEMO CIIEKTPaAbHI BAACTUBOCTI AepeB AlameTpa TpH, SIKi Ha3MBaKOThCS
MTOABIVHMMMY 3ipKOBMMU I'padpaMit, Ta iX AOIMOBHEHHsI Yepe3 BAACHI AalAaciBChbKi 3HAaUEHHSI B3a€M-
HOi BiacTaHi. MM BIOPSIAKOBYEMO 1Ii Tpadby Ha OCHOBi CITeKTpaABHOTO paaiyca Aamaaca B3aeMHOI
BiACTaHi, APyTOro Hay¥iMeHIIIOrO BAACHOTO 3HaueHHsl /AaIlaaca B3a€MHOI BiACTaHi Ta AalAaciBChbKOl
eHeprii B3a€MHO]I BiACTaHi.

Kontouosi crosa i ¢ppasu: maTpwmils Aarinaaca B3a€MHOI BiACTaHI, TIOABIVHMIT 3ipKoBMIt Tpadp, crre-
KTpaAbHE BIIOPSIAKYBaHHsI, eHepris.



