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Accelerated Krasnoselski-Mann type algorithm for
hierarchical fixed point and split monotone variational
inclusion problems in Hilbert spaces

Ugwunnadi G.C.»?, Haruna L.Y.3, Harbau M.H.*

In this paper, a new accelerated extrapolation Krasnoselski-Mann type algorithm for finding
common element in the solution set of the hierarchical fixed point and split monotone variational in-
clusion problems are introduced in the setting of a real Hilbert space. We then prove that a sequence
generated by the algorithm converges strongly to such common element which also approximates
solution of some fixed point problem of demimetric mapping in the space. Finally, some applica-
tions and numerical experiment are given to show effectiveness of the proposed algorithm over the
recently known related results in the literature. The established results extend and generalize many
recent ones announced in the literature.
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Introduction

Let H; and Hj be two real Hilbert spaces. Let C and Q be nonempty, closed and con-
vex subsets of H; and Hj, respectively. A mapping T : C — H is called nonexpansive if
|Tu — To|| < ||u —v|| forall u,v € C. Let F(T) denotes the fixed point set of T, i.e.

F(T)={ue€C: u=Tu}.

The theory of variational inequalities which was first studied by G. Grillo and G. Stam-
pacchia [15] is one of the important tool in the study of different classes of problems arising
in several branches of pure and applied sciences in a unified and general framework. There
are currently many efficient methods for solving variational inequalities in the literature (see,
e.g., [1-3,10,11,13,15,17,32] and the references therein).

Let A : C — H be a nonlinear mapping. The variational inequality problem (VIP for short)
associated with C and A is defined as follows:

find u* € C such that (Au*,u* —u) <0 VueC. (1)
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In particular, if C in VIP (1) is replaced with the set F(T) of fixed points of a nonexpansive
self mapping T on C and A is of the form A := I — S, where I denotes the identity mapping
on C and S is a nonexpansive self map of C, then VIP (1) is of the form

find u* € C suchthat (u* —Su™,u* —u) <0 Vu e F(T). ()

This problem (2) is called hierarchical fixed point problem (HFPP for short) which was first
introduced and studied by A. Moudafi and P.-E. Mainge [22].

Let ® := {u* € C: (Pp)oS)u” = u*} denotes the solution of HFPP (2). Then finding
solution of (2) is equivalent of solving the fixed point problem:

find u* € C such that u* = (Pp(r)oS)u”. 3)

Furthermore, observe that by employing the normal cone Np(r) of F(T) defined by

N — {weH: (wov—u)<0,VveF(T)}, ifueF(T),
ED) a, otherwise,

it can easily be proved that the HFPP (2) is equivalent to the following variational inclusion
problem: find u* € C such that 0 € Nppyu* + (I — S)u*. We know that HFPP (2) includes
as special case a variational inequality problem over a fixed point set, that is, the so called
hierarchical variational inequality problem (HVIP for short). In fact, if F is k-strongly mono-
tone and L-Lipschitzian with 7y € (0,2k/L?), then by setting S = I — yF we get the following
HVIP studied by I. Yamada and N. Ogura [32]: find u* € F(T) such that (Fu*,u* —u) < 0
for all u € F(T). Based on the relation (3), the HFPP (2) is noted to have an iterative algo-
rithm x,, 1 = (Pp(7) © S)xs. If the mapping S is averaged rather than just a nonexpansive and
the fixed point of Pr(r) o S exists, then the algorithm converges. This method is observed to
have disadvantage due to some difficulty in computing the operator Pr() o S. To overcome
the difficulty, A. Moudafi [23] introduced the following Krasnoselski-Mann type algorithm for
solving HFPP (2)

X1 = (1 — an)xn + 2y (02Sxy + (1 — 04)Txy), V>0,

where {a,} and {0, } are two real sequences in (0,1). It is worthy to note that some algo-
rithms in signal processing and image reconstruction can be written as the Krasnoselski-Mann
iterative algorithm, which provides a unified frame for analysing various concrete algorithms
(see, e.g., [8,12,33]). Since then, many researchers developed and analysed iterative algorithms
for finding common element of solution sets of HFPP (2) and other problems. For example,
K.R. Kazmi et al. [18] developed and analysed the following Krasnoselski-Mann type algo-
rithm

xo € C,

up = (1 — )X + an (02 Sxn + (1 — 04) Txy), 4)

Xpp1 = U(up + yA*(V = 1)Au,) Vn >0,
where U = TF (I —r,f), V=TS (I —ryg), F: Cx C —» Rand G : Q x Q — R are bifunctions,

f:Hy — Hyand g : Hy — Hj are 6; and 6, inverse strongly monotone mappings respec-
tively, S, T : C — C are nonexpansive with step size A € (0,1/||A||?) and {a,}, {¢,} are real

sequences in (0, 1) satisfying: Y 0, < oo, lim ||x, — uy||/(2n0n) = 0 and liminfr, > 0.
=0 n—roo n—oo
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They proved that the algorithm (4) approximates to a common element in the solution sets
of the HFPP (2) and the following split mixed equilbrium problem of finding x € C such that

F(x*,x)+ (fx*,x —x*) >0, VxeC,
and such that y* = Ax* € Q solves

Gly*y)+ gy, y—y") >0, VyeQ.

In another development, they extended their study to include the following split monotone
variational inclusion problem (SMVIP for short) which was first introduced and studied by
A. Moudafi [21]:

find x* € Hy suchthat 0 € f(x*) + M(x*) (5)

and such that
y* = Ax* € H, solves 0 € g(y*) + N(y*), (6)

where M : H; — 2 and N : H, — 2™ are multi-valued maximal monotone mappings,
A : Hy — Hj is a bounded linear operator. Let the solution set of the SMVIP (5)—(6) be
denoted by ), i.e. QO = {x* € Hy : x* € Sol(MVIP (5)) and Ax* € Sol(MVIP (6))}. They
prove that the sequence {x, } iteratively generated by

Xo € Hl/
un — (1 — “n)x;/l + “n(o—nsx;q + (1 — o—n)Tx”), (7)
X1 = U(uy +yA*(V = 1)Au,) Yn>0,

converges weakly to x € @ N (), where U = JM(I — Af), V = JN(I - Ag) and A C (0,&) with
a = 2min{6y,6,}.

J.K. Kim and P. Majee [19] modified algorithm (4) by replacing the nonexpansive self map-
ping T with averaged of finite family {T;}, of k;-strictly pseudocontractive non-self map-
pings and choosing a step size that does not require prior knowledge of the operator norm.
They proved that the algorithm

X0 € C,
un - (1 - “n)x;/l + “n(’l—nsx” + (1 - Tn)TK]TK[ﬁl oo Tlrlx”), (8)
Xpi1 = Uluy + yA*(V = 1)Au,) Vn >1,

approximates to a common solution of the split mixed equilibrium problem and hierarchical
fixed point problem. To speed up the rate of convergence of algorithm (8), P. Chuasuk and
A. Kaewcharoen [9] recently proposed and analysed the following inertial Krasnoselki-Mann
type algorithm for approximating a common solution of a hierarchical fixed point problems for
k-strictly pseudocontractive non-self mappings and the split generalized mixed equilibrium

X0, x1 € C,

Wn = Xn + Op(Xn — Xp-1),

up = (1 — ap)wy + ay(BnSwy + (1 — Bp)TNTNL ... Trw,),
Xpi1 = Uy + 0, A (V —1)Au,) Vn>1,
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with step size &, := 0y || (TS (I — rug) — I) Aun||*/ | A* (TS (I — rag) — I)Auy||?. Very recently,
D.-J. Wen [31] modified algorithm (7) by replacing the nonexpansive self mapping T with
(1 — uyD) and prove that the sequence {x, } iteratively generated by

Xo € Hy,
up = (1 —an)xn + an(04Sxn + (1 — ) (1 — pnD)xy), )
Xp+1 = U(uy + YA (V —1)Au,) VY n >0,

converges strongly to an element of © N (), where D is a strong monotone operator and {, }
is a positive real sequence satisfying: lun 0y = 0, Z Uy = oo and hm (],tn Hn—-1)/tn = 0.

Motivated and inspired by the results of A. Moudafl [21], K.R. Kazm1 et al. [18], P. Chuasuk
and A. Kaewcharoen [9], K.P. Kim and K. Majee [19] and D.-J. Wen [31], we introduce a new
accelerated extrapolation Krasnoselski-Mann type algorithm (see algorithm 1 below) for find-
ing common element in the solution set of the HFPP and SMVIP which also approximates
some solution of fixed point problem of demimetric mapping in the setting of real Hilbert
spaces. In respect to this, the following motivations that signify the contributions of our pro-
posed method (algorithm) are highlighted:

(a) the proposed method involves inertia term that speed up the convergence rate;

(b) the implementation of our iterative algorithm does not need any prior knowledge about
bounded linear operator norms;

(c) the algorithm involves a class of demimetric mappings which is known to include as spe-
cial cases, many important classes of nonlinear mappings such as nonexpansive, quasi-
nonexpansive and demicontractive etc. (see [28] for more details);

(d) the established result extend and generalize the corresponding ones in A. Moudafi [21]
and K.R. Kazmi et. al. [18], from weak convergence to strong convergence;

(e) the result improved the corresponding ones in D.-]. Wen [31] and K.P. Kim and K. Ma-
jee [19], in the sense that it solves some fixed point problem of demimetric mapping in
addition to HFPP and SMVIP with faster rate of convergence;

(f) as application, we used our proposed algorithm to solve the split variational inequality
problem and split convex minimization problem;

(g) finally, we give numerical example to illustrate the convergence behaviour of our pro-
posed algorithm with efficiency over some related results in literature.
1 Preliminaries

Throughout this section, the symbols “—" and “—" represent the strong and weak conver-
gences, respectively. A mapping T : C — H is called

(1) L-Lipschitz continuous with L > Qif forall x,y € C
ITx = Tyl < Lllx —yll;

if L =1, then T is called nonexpansive;
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(2) quasi-nonexpansive if ||Tx —y|| < |[x —y|| forallx € C,y € F(T);
(3) generalized hybrid [20] if there exist a, B € R such that

af|Tx = Tyl + (1 = a)llx — Tyl* < BITx =yl + (1= B)llx —y|*, VxyeC
(4) h-demicontractive [16] if F(T) # @ and there exists i € [0,1) such that

| Tx —y||2 < || —y||2 + h||x — TxH2 forall x e C,ye€ F(T);

(6) h-demimetric [27] if F(T) # @ and there exists 1 € (—oo,1) such that for any x € C and
y € F(T), we have
1—h
2

(x —y,x—Tx) > |x — Tx|?.

Observe that (1, 0)-generalized hybrid mapping is nonexpansive and every generalized hy-
brid mapping with nonempty fixed point set is quasi-nonexpansive. Also, the class of h-de-
micontractive covers that of nonexpansive and quasi-nonexpasive. The class of h-demimet-
ric mappings includes that of i-demicontractive and generalized hybrid mappings as special
cases. In fact, every generalized hybrid mapping with nonempty fixed point is a 0-demimetric

mapping.

Definition 1. Let B be a nonlinear operator from H into H and x,y € H. Then B is said to be
(a) monotone if (Bx — By, x —y) > 0;
(b) a-inverse strongly monotone, if there exists « > 0 such that (Bx—By, x—y) > «||Bx—By||?;
(c) B-strongly monotone if there exists a constant B > 0 such that (Bx—By, x—y) > B||x—y||%.

The variational inequality problem introduced and studied by G. Grillo and G. Stampacchia
[15] is to find u € C such that (Bu,v — u) > 0 for all v € C, where C is a nonempty closed and
convex subset of H. We denot the set of solution of variational inequality problem by VI(C, B).

Note that if B is a-inverse strongly monotone mapping, then:

(i) Bis monotone and 1/a-Lipschitz continuous;
(i) I —AB : C — H is nonexpansive for any A € (0,2«).

See [5,29] for more results of inverse strongly monotone mapping.

If the operator B is multivalued, that is B : H — 2! with effective domain denoted by
D(B) := {x € H: Bx # @}, then B is said to be monotone operator on H if (x —y,u —v) >0
for x,y € D(B), u € Bx, v € By. A monotone operator B on H is said to maximal if its graph is
not contained in the graph of any other monotone operator on H. For any maximal monotone
operator B on H and r > 0, we define a single-valued operator called resolvent operator of B
forras J, ;= (I+rB)~' : H— D(B) . Itis well known that the resolvent operator J, of B for
r > 0 is firmly nonexpansive that is

1rx = Jiyll> < (x—y, Jox — J;y) Vx,y€H.

And the set of null points of B is defined as B~10 = {z € H: 0 € Bz}. It is known that
B~10 = F(J,) and B~'0is closed and convex (see [26]).
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Definition 2 (7,22]). A sequence {B,,} of maximal monotone mappings defined on H is said to
be graph convergent to B if {graph(B,)} converges to {graph(B)} in the sense of Kuratowski-
Painleve’s, i.e. lim sup graph(B,,) C graph(B) C li}grl> inf graph(By,).

n—oo

Lemma 1 ([7]).

(1) Let B be a maximal monotone mapping on H, then {t,B} graph converges to Ng-1(g) as
ty — 0 provided that B=1(0) # @.

(2) Let {B,} be a sequence of maximal monotone mappings on H which graph converges
to B defined on H. If A is a Lipschitz maximal monotone operator on H, then {A + B, }
graph converges to A + B and A + B is maximal monotone.

Lemma 2 ([29]). Let H be a real Hilbert space. Then for all x,y € H and « € R, the following
hold:

@) llx+yll? < x>+ 20y, x +y);
@) flax + (1 = a)y|* = allx]* + (1 — @) ly[l> — a(1 — a)[x — yI*

Lemma 3 ([14]). Let T : C — H be a nonexpansive mapping, then T is demiclosed on C in
the sense that if {x, } converges weakly to x € C and {x, — Tx, } converges strongly to 0 then
x € F(T).

Lemma 4 (28,30]). Let H be a Hilbert space and let C be a nonempty, closed and convex subset
of H. Letk € (—o0,0) and let T be a k-demimetric mapping of C into H such that F(T) # @.
Let A be a real number with0 < A <1 — k and defined S = (1 — A) + AT. Then:

(i) F(T) = F(S);
(ii) F(T) is closed and convex;
(iii) S is a quasi-nonexpansive mapping of C into H.
The following lemmas play key role in the prove of our main results.

Lemma 5 ([4]). Let H be a real Hilbert space and F : H — H a B-strongly monotone and
L-Lipschitz continuous mapping on H. Ifa € (0,1),7 € [0,1—«] and u € (0,28/L?), then for
allx,y € H, we have

[[(1 =n)x —apF(x)] = [(T=n)y —apFy)]l| < (1 -1 —ad)|x -yl
where 6 =1 — /1 —u(28 — uL?) € (0,1].

Lemma 6 ([25]). Let {a,} be a sequence of nonnegative real numbers, {«,} be a sequence of

real numbers in (0,1) with condition Y} a, = oo and {b,} be a sequence of real numbers.
n=1
Assume that

apr1 < (1 —ay)ay +apb, Vn>1

If limsup by, < 0 for every subsequence {a,, } of {a,} satisfying the condition
k—o00

. _ S . _o
h;gg‘f(“nﬁl ap,) >0, then r}gl;oan 0
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2 Main results

We begin this with the following assumptions under which the strong convergence results
are established.

Assumption 1. Let H; and H; be two real Hilbert spaces and C and Q nonempty closed and
convex subsets of H| and Hj, respectively. Suppose the following conditions are satisfied:

(C1) E : Hy — 2M and G : Hy — 2™ are maximal monotone operators with resolvents
]5 = (I+uE)~! and TyG = (I +uG)~! for E and G, respectively; f : C — H; and
g : Q = H, are a1- and a;,- inverse strongly monotone mappings; U := ] (I — uf) and
V = TVG(I —ug), where y € (0,a), & := min{2min{ay,az},1}, and S,T : C — C are
nonexpansive mappings; A : Hy — H, is a bounded linear operator such that A # 0;

(C2) F : Hy — H; is B-strongly monotone and L-Lipschitz continuous operator on Hy with
L > O such thatt =1— /1 —5(28 — L2), where 7 € (0,28/L?);

(C3) W : Hy — H; is an h-demimetric mapping withh € (—oo,1) such that W is demiclosed
at zeroand K := (1 — x) + kW, wherex € (0,1 — h);
(C4) {cn} is a positive sequence with ¢, = o(vyn), {Bn} C (7,1 — yu) for some v > 0, a

(e 9]

sequence {v,} C (0,1) satisfies lgn Yn =0, ¥ v» = o0 and {{,} is a sequence in (0,1)
n—oo n=1
such that {, € [a,b] C (0,1);
(C5) solutionset I = ® N QN F(W) is nonempty.

In this section, using accelerated extrapolation Krasnoselski-Mann type method, a mod-
ified iterative algorithm for solving hierarchical fixed point and split monotone variational
inclusion problems is constructed. It also approximates some solution of fixed point problem
of demimetric mapping.

Algorithm 1.
Initialization. Choose xo, x1 € H; to be arbitrary.

Iterative Steps. Calculate x,,11 as follows. )
Step 1. Given the iterates x,,_1 and x, for eachn > 1, choose 6,, such that0 < 0, < 0,,

where

5, — {min{@, cn/|lxn — xp_1l|},  ifxy # x4-1, (10)

0, otherwise.
Step 2. Compute

Wn = Xn + On (X0 — Xn-1),
vy = (1 — an)wy + an(0,Swy + (1 — o) Twy,), (11)
up = U(vy — AyA*(1 — V) Avy),
where {«, } and {0, } are real sequences in (0, 1) and for any fixed value € > 0, the step
size A, is chosen as follows

|1 = V)Aou>
[A- (= V) A0, 2~ ©

0<e<A, < (12)

if Av, # VAv,, otherwise A, = A, A > 0.
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Step 3. Compute

{zn = (1= Cn)Ktiy + Cntin, (13)

Xn1 = BuXn + (1 — Bu)zn — yuF(zn), n €.
Setn := n + 1 and return to Step 1.

Remark. We know that from (C4) of Assumption 1, ¢, = o(yn), i.e. limysecn/vn = 0.
Also, from (10), 0, < 6, < c¢,/||xy —x,_1]| foralln > 1 and x, # x,_1. This implies
00 < cn/llxn — xy_1]|. Thus,

— |2y — 251 <9 0 as n— oo (14)
Xn Xn

We begin with the following lemma that the step size of Algorithm 1 is well-defined.
Lemma 7. The step size in (12) is well-defined.

Proof. By (C1) of Assumption 1, is easy to see that (I — r,g) and TS are nonexpansive map-
pings. Hence V := T2 (I — r,g) is also nonexpansive mapping. Since by (C5),T # @, letp €T,
then VAp = Ap, so V is nonexpansive mapping with nonempty fixed point, which means that
V is 0-demimetric mapping, thus

lon = plll| A (Avy — VAva)|| = (vn — p, A*(Avy — VAv,))

(15)
= (Av, — Ap, Av, — VAv,) > %HAvn — VAv, |2

If Av, # VAv,, then ||Av, — VAv,| > 0, so from (15) we have |[u, — p||||Aun — VAu,|| > 0.
Hence, ||A*(Av, — VAv,)|| # 0 and therefore the step size A, in (12) is well-defined. O

Next, we show that the sequence defined by Algorithm 1 is bounded.

Lemma 8. Let {x,} be the sequence generated by Algorithm 1 such that Assumption 1 holds,
then {x,} is bounded.

Proof. Let p € T, from (11) of Step 2, we have

lon — pll = [[(1 — an)wn + an(onSwy + (1 — 03) Twy) — p||

(16)
< (1= an)[wn = pll + an(on||Sw = n|| + (1 = ) [ Twy — pl}) < [lwn = pl|

But
lwn — pll = [|xn + On(xn — x4—1) — p|

0
< lxn = pll 4+ Onllxn — xp—1ll = X0 — pll + ’Yn-_,yn 260 — 1]
n

We know from (14) that {(6,/vx)||xn — x,—1||} converges to zero as n — co. Therefore, it is
bounded and so there exists M > 0 such that (6, /v )||xn — x,—1|| < M for all n # 1. Hence,

|wn = pll < [|xn = pll + 712 M. (17)
It follows from (16) and (17) that

lon —pll < [lxu — pll + vaM. (18)
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Also, from the step size A, in (12), we have

A < —
"= ||A*(Av, — VAv,)|2
if and only if
€| A* (Av, — VAv,)||? < ||Avy — VAv, |2 — Ay ||A*(1 = V) Aoy |2 (19)

Thus with left side of A, in (12) and (19), we get

€*||A* (Avy, — VAv,)|? < Ane||A* (Av, — VAD,)|?

. (20)
< A [l|Avy — VAU, || — A || A* (T — V) Aoy |2].

Using the fact that p € T', we have Up = p and VAp = Ap. Now lety, = v, — A, A*(I - V)Av,
so that with the condition that V is 0-demimetric, (19) and (20), we get
lyn = pII* = [low — A A*(I ~ V) Avy — p|?
= llon — plI* = 2An(on — p, A*(I = V) Avy) + A A* (I — W) Aoy ||?
= [lon = pII* — 2An<Avn Ap, (I = V) Avy) + AZ | AP (I(T = V) Av, ||
< Jlon = plI? = Aull(I = V) Avy > + AT A*(I = V) Avy ||?
= low = pIP = A (| A0 — VD 12 = s} A% (1 = V) Ay ?)
< an—sz—eZHA*(Avn _VAUn>”2 (21)
< flow — pII*. (22)

Using the fact that U = ]5(1 — uf), where ]5 is nonexpansive and f is aj-inverse strongly
monotone mapping, we get

la=plI> = Uyn = Upl® = (1] (I = pf)yn — I (I = uf)pl®
< yn—p—pu(fyn) — F(P)I?
= llyn = plI> + 121 £ (yn) = FOI* = 20Cyn — p. f(yn) — F(P))
< lyn — plI* — p(201 — )| f(yn) — fF(p)II? (23)
< [lyn — pII* (24)

It follows from (18), (22) and (24) that
lun = pll < llxn = pll + 1uM. (25)
And combining (21) and (23), we obtain
lun = plI* < llon = plI* — € A*(Avy — VAo)|? = (21 = p)llf(yn) = f(P)IZ. (26)

Also, using (C3), Lemma 4 and (25), we obtain

zn — pll = |(1 = Cn)Kuy + Cntin — p|

(27)
< (1= 8n)IKun = pll + Cullxn = pll = [lun = pll < lxn = pll +72M
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Similarly, with the use of Lemma 5, (13) and (27), we have

%011 = pll = 1Bnxn + (1 = Bn)zn — YupF(zn) — p|
= [|(1 = Bu)zn — Yun1F(zn) = [(1 = Bu)p — Yt F(p)] + Bu(xn — p) — yunF(p)||
< [(T = Bu)zn — v F(zn) — [(1 = Bu)p — vut F(P)I| + Bullxn — pll + vupl|E(p) |
< (1= Bn— 1Tz = pll + Bullxn — pll + vun || F(p)|
< (1= Bun = 1) [llxn = pll + vaM] + Bullxn — pll + vuy[IF(p)|l
< (@ = yu?)|Jxn — pll + M + vy |[E(p) |l

M +n||F
= (=)l = pll + e D

< max{||xu — pll, 7 (M + p[[E(p)|)}-

Thus, by induction for all n > 1 we obtain |x, — p|| < max{|x; — p||, 7= (M + u||F(p)|)}.
Therefore, {x,} is bounded. Hence, the sequences {Sx,,}, {Tx,}, {wn}, {vn}, {un} and {z,}
are all bounded. This completes the proof. O

Lemma 9. Let {x,} be the sequence generated by Algorithm 1 such that Assumption 1 holds,
then for any p € I', the following relations hold:

xn1 = pII> < (1= v0T) 20 — pIP + Oullxn — X1 ]1* + 277 (F(p), p — Xnt1)
— (1= Bu—vuT)(1 = Cn)[an (1 — an) ||wn — annHZ + €2||A* ((I=V)Av,) ||2
+ G| Kt — x> = 1201 — )| f(yn) = f(p)|I7)

and
11 = plI* < (1 =y llxn = plI? + Oullxn — x01]]?
+ 27 (F(p), p = Xut1) + 20000 (1 = B = 1nT)(p = Sp, Tuwn — p),
where Ty, = 0,S+ (1 — 0,)T.
Proof. Let T, = 0,S + (1 — 0,)T. So for p € T we get

I Twwy — pl|* = [lon(Swy — p) + (1 — o) (Tw, — p)|1?
= On||Swn — P”Z + (1 — o) || Twn — P”Z — (1 — on)|[Swn — Twn”z
< ||wn_P||2_‘7n(1_‘7n)||swn_TwnHZ (28)
< Jlwn — plllI*. (29)

But
[wn = plI> = [0 = p + 6 (20 — x51) ||
= Jtn — pII? + 260 (%0 — P, X0 — X5_1) + 62|10 — 212
< lxn = plI® 4260|130 — pllllxn = xu1ll + 63 [0 — xu11Plef|xn — pl? (30)
+ Onl[xn — xn—1[|[2[|12n — pI + On |20 — xn—1]l]
< flxn — P”Z + O llxn — x—1]| M1

for some constant M; > 0. It follows from (29) and (30) that

| Tywn — plI* < [lxn — pII* + Ol xn — x0—1 | M.
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Also, using (29), we obtain

[on — P”Z = [[(1 — an)(wy — p) + an(Tywy — P)HZ
< ||wn_P”Z_“n(l_“n)nwn_annHZ (31)
< lxn = plI* + Oullxn — xp—1l|M1 — (1 — @) ||wn — Ty .

It follows from (26) and (31) that

ltn — plI* < llxn — pII> + Oullxn — xp—1 ]| M1 — an (1 — @) | wn — Tywy|)?

* (32)
— | A*((I = V) Avn) |* = u(ey — 1) | f (yn) — f(p) I
And by Lemmas 2 and 4, we obtain
llzn — P”Z = [|(1 = Zn)Kuy + Tty — P”Z
= (1 —Cn)||Kuy — P”Z + Cnllun — P”Z — Cn(1 = Cu)||Kup — ”n”Z
< ””n_P”2_gn(l_gn)”K”n_”n”z (33)
< lun = pl*. (34)
Combining (32) and (33), we obtain
|20 — P”Z < lxn — P”Z + Onllxn — xp—1|My — (1 = ) [wn (1 — o) || w0 — ann”z (35)
+ | A (1= V) Avy) 1P + Zul Kuty — un||* + (200 — ) | f () — F(P)II7].
On the other hand, by using Lemma 2, we obtain
I Tywn — plI* = [low(Swy — Sp) + (1 — 0u)(Tw — n — p) + 04(Sp — p)|*
< lou(Swn = Sp) + (1 = 00) (Tw —n — p) [+ 20u(p —Sp, Tuww —p) o0

< on||Swy, — PH2 + (1= o) || Tw, — PH2 + 200 (p — Sp, Tnwn — p)
< |lwy — p”z + 20 (p — Sp, Tawn — p).

Also, with the use of (30) and (36), we get

[on — P”Z = [|(1 — an)(wn — p) + an(Tpwn — P)HZ
< (1—an)|lwn — P”Z + an|| Tawn — P”Z
< (1= an)l|wn — plI® + an[llwn — plI* + 204 (p — Sp, Tuwn — p)] (37)
= [|wn — pI* + 2000 (p — Sp, Tywn — p)
< l%n =PI + 6ullxn — X1 ]| M1 + 20,03 (p — Sp, Tt — p).-

It follows from (24) and (37) that
(|10 — P”Z < lxn — PHZ + Onl2xn — xp—1[M1 + 20000 (p — Sp, Tywn — p). (38)
Combining (34) and (38), we obtain

Iz — plI* < llxn = pII* + Oullxn — xp—1[|M1 + 20400 (p — Sp, Tuwn — p). (39)
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Similarly, using (13), Lemma 5, (C1) and (C2), we obtain

X041 — PHZ = ||Bnxn + (1 = Bu)zn — yunF(zn) — P”Z
= [[[(X* = Bu)zn — Yuy1F(zn)] — [(1 = Bu)p — Yyt E(p)] + Bu(xn — p) — WHWF(P)”Z
<X = Bu)zn — v F(za)] = [(1 = Bu)p — vunF(p)] + Bn(xn — P)”Z
+ 271 (F(p), P — Xnt1)
< I = Bu)za — vunF(za)] = [(1 = Bu)p = vanF (P + Bullxn — plI}?
+ 29 (E(p), p — Xn+1)
< {1 = Bu = D)z — Pl + Bullxn — pII}> + 27u1(F(p), p — Xn11)
< (1= Bu = 1)z — pI* + Bullxw = pII* + 27u1(F(p), p — xu11)-
It follows from (35) and (40) that

(40)

%01 = pI* < (1= Bu = vaOlllxn — plI* + Oullxn — xp-1[|M1] + Bullxn — pl?
+ 27 (F(p), p — Xn+1) — (1= Cu) (1 = Bu — 7 T)
X [an (1 = ay) [wn — Tywy ||> + €3[| A*((I = V)) Aoy ||?
+ Gl Kuty — | = (201 — )1 f (yn) = f(p)IP] (41)
< (1= ya0)|lxn = plI* + 6nllxn — xu_1|M1 + 2717 (F(p), p — Xu31)
— (1 =Cn) (X = B — vuT)[wn (1 — ay) ||y — annHz
+ | A*((I = V) Avy||* + Zu| Kuty — uy?
— u(2a = W)l f(yn) — F(P)IP).

It also follows from (39) and (40) that

xp41 = pII* < (1= Bn— 1) [llxn — pII* + Onllxn — x0—1[| My
+ 20400 (p — Sp, Tuwn — p)] + Bullxn — plI* + 29 (F(p), p — Xn31)

) (42)
< (=70 [[xn = plI” + Oullxn — xp—1[| My
+ 27utf(F(p), P — Xn41) + 20000 (1 = Bu — 1uT)(p — Sp, Tawn — p).
Hence inequalities (41) and (42) yield the result. This completes the proof. O

Theorem 1. Let Assumption 1 holds. Then the sequence {x,} generated by Algorithm 1 con-
verges strongly to an element p € I', where p is a unique solution of the hierarchical fixed point
problem (2).

Proof. From (42) we see that ||x,11 — p||*> < (1 — y47)||xn — P> + 71 TSy, where

0 2 an0u (1 — Bn — YnT
= o L{E () p = ) + 221 B2 10,

Hxn - xnfll‘Ml + —
T YnT

p—Sp, Tuwn — P>]
Let p € T, then following Lemmas 5 and 9, we only need to show that limsup S,,;, < 0 for
i—00
every subsequence {||x;, — p||} of {||x, — p||} satisfying liminf (||x,, 41 — p|| — ||xn, — p||) = 0.
1— 00
But from (41), we see that

11 = plI? < (1= Y02 = Pl + 6|2, — %, -1 | M1+ 290,31 (F (), p — Xn 1)
- “”f(l - “n,'>(1 - :Bni - 'YniT)(l - an‘)Hwni - Tniwnin (43)
- gﬂl(l - gﬂj)HKu”i - u”i||2
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and

%01 = plIP < (1= Y02, = Pl + O[3, — X1 | M1 + 29021 (F(p), p — Xn41)
— (1= Bu, — 1n, D)L = Gny) [EX|A™((I = V) Ay, )| (44)
+ 2y = )| f (yn,) = F()II1P]-
Let {||x,, — p|| } be a subsequence of {||x, — p||} such that iminf (||x,,+1 — p|| — ||xn;, — p[|) >0
1— 00
holds, then
Lim inf([|x, 41 — plI* = 2w, — pl?)
= Lim inf{([[,+1 = pl| + lxn, = pID 21 = pll = ll2n; = pl)} 2 0.
Combining (43) and (45), we obtain

hmsupa”i(l - a”z‘)(l - 13”1‘ o 'Y"iT)Hw”i o T"iw”i”Z + gni(l - gﬂj)HKuni - uniHZ

1— 00

< limsupl[xs, 41 = plI* = % — pII?]
1— 00
. 1,

- 1im sup | Y, { B = %, — %1 1M1 — Tl = pIP + VIR lp = 2}
i—00 ')/”i
= —liminf{|lx, 11 = pl|* = 2, = p[?] <0.
This implies that

hm”wni - Tniwni” =0= 1im|‘Kunf - uni”' (46)
i—0o0 =00
Similarly, combining (44) and (45), we get

limsup (1 = B, — Y, T) (1 = )€ | A*((1 = V) Avu) | + p2a — @) | f (yn)) — F(p)II?

1—00

< lim sup|xy, 41 — plI* = l|xn; — pII*)
11—

. O,
+limsup |y, { - o — 31| My = Tl = I+ A IE )l = 3]}

i—00 n;

= —liminf[||x, 1 = p|* = [|xn, = p[*] < 0.

This implies that
Tim | 4° (1 = V) Av,) | = 0 = lim | f(y) = f(p)]|. @)

Thus, from (15) and with boundedness of {v, }, there exists M, > 0 such that ||v, — p|| < My,
then
| Av,, — VA, ||* < 2M,||A* (Av, — VAD,)|. (48)

Combining (47) and (48), we obtain lim || Av,, — VAo, ||*> = 0. So,
1—00
lim || Avy,, — VAv,, || = 0. (49)
1—00

From (11) and (46), we get

.hmeni - vni” = .hm[xninni - Tniwni” =0. (50)
1— 00 1— 00
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It follows from (10) and (11) that

0,
=[x — xp_1]| > 0 as i oo, (51)
nj

”wni - xni” = Qninni - xﬂﬁlH = Tn

Also, from (50) and (51) we obtain
lim [|xy; — vy,[| = 0. (52)
11—

Since vy, := v, — Ay A*((I — V) Avy,), then using (12), (47) and (49), we get
1im||yﬂ1 - v”i” =0. (53)
1— 00

Thus, with U := ]I}f (I —uf)and] 5 been firmly nonexpansive mappings, we have

2/|un — plI* = 2[|Uyn — Upl*> = 215 (I = uf) (yn) — Ty (1= uf) (p)|I?

<2((I = pf)yn — (I = uf)p, un — p)

= (I = pf)yn — (I = uf)pI* + llun — pI* = lun — yu — n(f(ya) — f£(p))II?

<y = pIP + lwn = pI> + 20(yn — 1, f(yn — F(P))) — #llf () = F()II?

< lyn = plI* + lltn — plI* = (L= 1)y — uall* + (1 = W)l f (va) — £(P)II,
hence

itn = pI* < [lyn — pII> = 0= 1) llyn — wnl* + (1 = @)1 f(yn) — F(P)II*. (54)
Combining (22), (31) and (54), we get
[tn = plI> < llxn = plI® 4 Oullxn = xp 1M1 = |1 — yall®

— (1= ) llyn — unll®> + p(1 = W f (ya) = F(P)II*

And with (34), (40) and (55), we have

(55)

xp41 = plI* < (1= 70T 120 — Pl + Bullxn — pII* + 27up(F(p), p — xps1)
+ 9n||xn - xn—1||M1 - (1 —Bn — 'YnT)(l - 77)””" - ]/n”Z (56)
+u(1 = flyn) — F(p)II*

Combining (45), (47) and (56), we obtain

limSUP(l = By — 1, T) (1 — 1) [, — yni”z
1—00

< limsup[l|xni+1 —plI® = [l2n; — pIP + (1 = )|l f () — F(P)IP]
1— 00
. 9 1

+ lim sup |:’)/Vli{5”i - = X |M1 = Tllxu, = plI* + v [ F(p)lllp — x”i“”}]
i—c0 Tn;
— _nggf[uxniﬂ —pl? = |xe, — pl*] <0
Thus

lim ”u”i — Yn | =o0. (57)
1—00

And combining (52), (53) and (57), we obtain
lim [|uy, — x| = 0. (58)
1— 0
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With (53) and (57), we have lim ||u,,, — vy,,|| = 0. Also, from (C3) and (46), we get
1— 00

lim ||Wuy, — uy,|| = 0. (59)
1—00
Since z, = (1 — {)Kuy + {nxp, then ||z, — uy|| = (1 — Zn)||Kuy — uy ||, it follows from (46) that
lim ||z,,, — uy,|| = 0. Combining this with (58), we obtain
1—00
lim ||z, — xp,|| = 0. (60)
1—00

We know from (13) that |[x,41 — xu|| < (1 — Bu)l|xn — zu|| + ¥uT||F(2z4)||, thus, with (60) we
get
fim [ 1 — 0| = 0. (1)
1—00

With the use of (46) and (51), we get lim ||x,;, — Ty, wy, || = 0. It follows from (61) and (62) that
1— 00
.hmeniJrl - TniwniH =0. (62)
1—00
Using (28) and Cauchy-Schwartz inequality, we get

Uni(l - U”i)”SZUni - Twnin < Hwni - p”z - ”Tniw”f - p”z
= |lwy, — Tniwnin + 2(wn; — Ty;wn,, T wn, — p)
< ”w”i o T"iwﬂin +2Hw”i_ Tniw”iH HTniw"i - PH — 0 as n — oo.

Therefore, we obtain lim||Sw;,, — Twy,|| = 0. This equality together with (46) implies
1— 00
”wni B Twni” < ”wni - Tniwni” + ”Tniw”f B Twni” = ”wni - Tniwni” +Uni|‘swni B Twni” — 0

as n — oo. Thus,
lim ||wy,, — Twy,|| = 0. (63)
1—00

Since {x,} is bounded, there exists a subsequence {xnij} of {xy,} such that {xnij} converges
weakly to g € Hy as j — oo. It follows from (51) that {wnij} converges weakly to 4. This together
with (63), nonexpansivity of T and Lemma 3 implies g € F(T).

Let us show that g solves HFPP (2). Using (11) we get

1_0—;/11.

vni — wni — “nio—ni <(I — S) + (I — T))wni.

U'ni

Thus,
1

Ocni Uni

1 _O-ni

(U”i - w”i) = <(I - S) + (I - T)>w"1'

By (1) of Lemma 1, the operator sequence {((1 — ¢;)/0y,)(I — T)} graph converges to Ng ).
The operator sequence {(I — S) + ((1 — 0w,)/0n;)(I — T)} graph converges to (I — S) + Ng (7).
Using (50) and the fact that the graph of (I — S) + Np(r) is weakly strongly closed, we get that
0 € (I —S)q+ Np(r)q, thus g € Q.

We next show that g € (). Since X, — g, then from (57) and (58), we know that Yn;, —q

n;

and Uy = q as j — oo. Note that Uy = U(ynij), where U := ]5(1 —uf) and J; := (I + uE),

can be written as

(]/nfj - unij) - Vf(ynij)
” € E(”ni].)-
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By taking limit as j — oo in the above formula and using the fact that f is (1/a4)-Lipschitz
continuous and the graph of a maximal monotone operator is weakly-strongly closed, we get
0 € f(q) + E(g). Since from (52) we have that U, = 4, with A been continuous, we have
Av,, — Aq. By nonexpansivity of V := ]E(I — 1g), we get that V is demiclosed at zero
]
together with (49) we obtain 0 € g(Aq) + G(Ag). Also, since x,,, — g, it follows form (58) that
]

Uy = q and from (59) we know that lim]-HWunij =ty || = 0. Since T”ijw”ij — g, then

limsup(p = Sp, p = Tuton;) = lim(p = Sp, p = T, way ) = (p = Sp,p = 4)

1—00

for any p that solves HFPP (2). Then

limsup(p — Sp, p — Tyy;wn,) = (p — Sp.p —q) < 0. (64)

1— 00

Since F is k-strongly monotone and L-lipschitzian with u € (0,2k/L?), we can set S = I — uF
so that if p solves HVIP (3), i.e. (F(p),p —q) < 0. Thus, with the use of (62) we get

limsup(F(p), p — xn,+1) = Hm(F(p), p — X, +1)
i—00 J— J (65)
= Um [(F(p), p — T, @Wn; ) + (F(p), Ty wn;, — 2, 41)] <0

j—oo

It follows from (C4), (64) and (65) that lim sup S,;; < 0, where

1—00

0 2 .00 (1— By, — Y. T
Sn; = me—xni—1HM1+—P[<F(P),p—xni+1>+ (1= P = 7o )<

—Sp, Ty wu—7p)|,
T’)/}’l,' T ’)/I’ZjT p P nlwnz p>

and we know from (42) that

1,41 — sz < (L= 7, 7)[l2n; — sz + Y, TSn;- (66)
Therefore, applying Lemma 5 in (66), we have that the sequence {x,} converges strongly to
p € I'. This completes the proof. O

3 Application
3.1 Split variational inequality problem

Let C and Q be two nonempty, closed and convex subsets of real Hilbert spaces H; and H»,
respectively. Let N¢(x) denotes the normal cone of C at point x € C, that is

Nc(x) :=={a € Hy: (a,y—x) <0}.

From (5) and (6), we let M = Nc and N = Ng, where N is the normal cone of Q. If A : H; —
Hj is bounded linear operator, then SMVIP (5)-(6) reduces to a problem of finding x* € H;
such that for any y > 0

x* = (I+puNe) 7! (x" — pf(x")) (67)

and
Ax* = (I + uNg) 1(Ax* — ug(Ax*)). (68)
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But we know that
y=(I+uNc)'x & x e (y+uNey) < x € (y+ puNcy) & x —y € uNcy
69
@%(x—y,z—y}§O<:><x—y,z—y)§0(:)yzpcx, VzeC. 69)

Thus, using (69) and the projection technique in [29], (67) and (68) reduces to the following
split variational inequality problem (SVIP for short):

find x* € C suchthat (f(x*),x—x*) >0 VxeC (70)
and

y* = Ax" € Q solves (¢(y*),y—y*) >0 VyeQ. (71)

Denote the solution set of (70)—(71) by
0y :={x* € C:x" € Sol(VIP (70)) and y* = Ax™ € Sol(VIP (71))}.

Hence, using (70)—(71), Algorithm 1 reduces to the following inertial Krasnoselki-Mann type
method for solving SVIP and HFPP.

Algorithm 2.

Initialization. Choose x(, x; € H; to be arbitrary.

Iterative Steps. Calculate x,, 1 as follows. .
Step 1. Given the iterates x,,_1 and x, for eachn > 1, choose 6,, such that 0 < 6,, < 0,,
where

g, — {min{@, Vﬂ/”xn - xn—ln}' if Xy # Xy—1,
0, otherwise.
Step 2. Compute

Wy = Xy + Qn(xn - xnfl)r
vn = (1 — ay)wy + ay(0,Swy, + (1 — 0y) Twy,),
up = Pc(I = pf)(vn — ApA*(I = Po(I — ug))Av),

where {«, } and {0, } are real sequences in (0, 1) and for any fixed value € > 0, the step
size A, is chosen as follows

I(I = Po(I — pg)) Ava||?

0<€§)\ S — €,
"7 AT = Po(I — ug)) Avy |2

if Avy, # Po(I — ug)Avy, otherwise A, = A, A > 0.
Step 3. Compute

{Zn = (1 - gn)Kun + C?lul’lr
Xpt1 = BnXn + (1 — Bn)zn — yupF(z4), n €N

Setn := n + 1 and return to Step 1.
Using Algorithm 2, we obtain the following new result for solving SVIP and HFPP.

Theorem 2. Let Assumption 1 holds with E = N¢c, G = Ng and (), # &. Then, the sequence
generated by Algorithm 2 converges strongly to an element of I := ® N (), N F(W).

Proof. Setting U = Pc(I — pf) and V = Po(I — pug) in Theorem 1, we obtain the desired result
from Theorem 1. O
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3.2 Split convex minimization problem

Let g : HH — Rand g : H» — R be two convex and differentiable functions with
L1, Ly-Lipschitz continuous gradients say Vg; and Vg, respectively. Let iy : H; — R and
hy : Hy — IR be two convex and lower semi-continuous function. Then for any bounded linear
operator A : Hy — Hj we define the split convex minimization problem (SCMP for short) as
follows:

find x* € Hy thatsolves g1(x*)+hy(x*) = mgl[gl(x) + hq(x)] (72)
xery
such that
y" = Ax" € Hy solves g>(y") + ho(y") = min[ga(y) + ha(y)]- (73)
Thus by Fermat’s rule, the SCMP (72)—(73) is equivalent to the problem:
find x* € Hy thatsolves 0 € [Vgy(x*) + ohy (x*)] (74)
such that
y* = Ax* € Hy solves 0 € [V (y*) + dha(y*)], (75)

where Vg1 and Vg, are gradients of g1 and g, respectively; oh; and dh; are subdifferential of
hy and hjy, respectively. Let the solution set of SCMP (74)—(75) be denoted by

Q3 :={x" € Hy: x* € SOl(SCMP (74)) and y* = Ax* € Sol(SCMP (75))}.

It is known [24] that the subdifferentials dh; of hy and 9dhy of hy are maximal monotone, and
since g1 and g are convex and differentiable functions with L;, Lp-Lipschits continuous gra-
dients Vg1, Vgy, then Vg1 and Vg, are (1/L1), (1/L;)-inverse strongly monotone (see [6]).
Hence, letting E = 0hy,G = dhy, f = Vg and ¢ = Vg1 in Assumption 1, from Algorithm 1
we obtain the following new algorithm.

Algorithm 3.
Initialization. Choose x(, x; € H; to be arbitrary.

Iterative Steps. Calculate x,, 1 as follows. )
Step 1. Given the iterates x,_1 and x, for eachn > 1, choose 6,, such that0 < 6, < 0,,

where

g, — min{el Pln/”xn - xn—l”}z if Xy # Xp—1,
" 0, otherwise.

Step 2. Compute

Wy = Xy + Qn(xn - xnfl)r
vp = (1 — ay)wy + ay(0,Swy, + (1 — 0y) Twy,),
tn = J)" (1 — pVg1) (v — AnA (I = ]2 (1 — 4V g2)) Avy),

where ]2’11 := (I + uohy) 71, ]zhz := (I +udhy) ™Y, {an} and {0, } are real sequences in

(0,1) and for any fixed value € > 0, the step size A, is chosen as follows

|(I = (1 = pVg2)) Avy |

D<e<A;, < = —
[A*(I = J 2 (1 = pVg2)) Avy |2

if Av, # jghz(l — uVgy)Avy,; otherwise A, = A, A > 0.
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Step 3. Compute

Zpy = (1 - gn)Kun + gnun/
Xn1 = BuXn + (1 — Bu)zn — yupF(zn), n € N.

Setn := n + 1 and return to Step 1.
Using Algorithm 2, we obtain the following new result for solving SCMP and HFPP.

Theorem 3. Let Assumption 1 holds with E = 0hy,G = ohy,f = Vg, ¢ = Vg and
Q)3 # . Then the sequence generated by Algorithm 3 converges strongly to an element of
I:=0NQ3NFW).
Proof. Setting U = ]2’11(1 —uVg)and V = jghz(l — uVgy) in Theorem 1 for all p € (0,L),
where L := min{2min{(1/Ly), (1/L;)}, }, we obtain the desired result from Theorem 1.  [J

4 Numerical illustration

Next, we give numerical experiment to substantiate the efficiency of our Algorithm 1 in
comparison with algorithm of K.R. Kazmi et al. [18] (see (7)) and algorithm of D.-J. Wen [31]
(see (9)) in a infinite dimensional Hilbert space.

Example 1. Let Hy = Hp = L,([0,1]) with norm

Ix]| = (/Ol\x(t)]zdt)l/z forall x € Ly([0,1])

and inner product

1
(x,y) ::/O x(t)y(t)dt forall x,y € Ly([0,1]).

Let A,E,G : Lp([0,1]) — L»([0,1]) be operators defined as follows:
1
Ax(t) = / x(t)dt, Ex(t) =5x(t), and Gx(t) = 4x(t)
0

for all x € Lp([0,1]) and t € [0,1]. Then A is bounded and linear, E and G are maximal
monotone operators with resolvents ]5x(t) = x(t)/(1+5u) and Tycx(t) = x(t)/(1+4p),
i > 0, respectively. Also, let maps f,g : L»([0,1]) — La([0,1]) be defined by f(x(t)) = 2x(t)
and g(x(t)) = 3x(t), then f and g are 1/2,1/3 inverse strongly monotone with order 2 and 3,
respectively. Thus, fora = min{1/2,2/3} and u € (0,a), we get

U(x(£)) == Jy (I — pg)x(t) = (1= 3u) /(1 +5p)x(t)

and

V(x(1) i= T (I = pf)x(t) = (1—2p)/ (1 + 4p)x(t).
Furthermore, we define the mappings F,S,T,W : L,(]0,1]) — L([0,1]) by F(x(t)) = 2x(t),
S(x(t)) = 01 @dt, T(x(t)) = x(t) and W(x(t)) = —4x(t). Then S is strongly monotone
and Lipschitz continuous, S and T are nonexpansive and W is 9-demimetric. Thus, we can
choose k = 1/3, so that K(x(t)) = —2/3x(t). We assume also that a, = (n+5)/(100n),
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Figure 1. The error plotting of comparison of Algorithm 1,
algorithm of K.R. Kazmi and algorithm of D.-J. Wen

On = 24n/(25n+1), v, = 1/(n+1)03, B, = 0.8 — v, {u = 1/3 — 1/4n, ¢ = v, /n09),
6 =1/(2n+1), e = 0.01, # = 0.65 and in addition for K.R. Kazmi [18] (algorithm (7)) and
D.-]J. Wen [31] (algorithm (9)), we take A = 0.1, u, = 1/(5n) and D(x(t)) = 3x(t). Then, we
let the iteration terminate if ||x, .1 — x,|| < €, where ¢ = 1078. The numerical experiments
are listed on Table 1. Also, we illustrate the efficiency of strong convergence of the proposed
Algorithm 1 in comparison with convergence of algorithms (7) and (9) in Figure 1.

Algorithm 1  Algorithm (7) Algorithm (9)

xo=1>—3 no.ofiter. 5 25 24

x1 =t cpu (time) 4.1740 5.6569 5.3922
Xo=1t no. of iter. 5 23 22

x; =t —3 cpu(time) 4.6335 6.2346 6.32286
xg = et no. of iter. 5 25 24

x1 =212 cpu (time) 4.1514 11.8047 11.3466
xg = e no. of iter. 5 25 25
xp=13+1 cpu (time) 7.3563 12.5365 12.5672

Table 1. Comparison of Algorithm 1, algorithm (7) and algorithm (9)

Conclusion

A new accelerated Krasnoselki-Mann type algorithm for solving hierarchical fixed point
and split monotone variational inclusion problems is introduced in the setting of a real Hilbert
space. It is then proved that the algorithm approximates to a common solution of the said
problems which is also solution to some fixed point problem of demimetric mapping in the
space. A numerical example is given to ascertain the implementation of the proposed algo-
rithm.
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Y Wit cTaTTi OpeACTaBA€HO HOBUIA IPUCKOPEHMIA aATOPUTM eKcTpamnoasiiil Tuny Kpacroceas-
CbKOro-MaHHa AASI 3HaXOAXEHHsI CIIIABHOTO eAeMeHTa B MHOXMHI pO3B’sI3KiB iepapXiuHoi 3aaadi
PO HEPYXOMY TOUKY Ta PO3LIEIIAEHOI IIPOObAEMI MOHOTOHHOTO BapialliifHOTO BKAIOUEHHS y Aiif-
CHOMY TiAB6EpPTOBOMY IPOCTOPi. AOBeAEHO, IO TOCAIAOBHICTD, 3TeHepOBaHa aATOPUTMOM, CUABHO
36iraeTbcs AO TAKOTO CIIABHOTO eAeMeHTa, KM TaKoX HabAmXae po3B’s30K AesIKOI 3apadi mpo
HEPYyXOMY TOUKY AeMiMeTpMJHOTro BiaobpaxkeHHs B mpocTopi. Hampukinili HaBeaeHO Aesiki 3acTo-
CyBaHHS Ta UMCEAbHi eKCIIepMMEHTH, 1106 I0Ka3aTy e(peKTUBHICTD 3allpOIIOHOBAHOTO aATOPUTMY
TIOPiBHSIHO 3 HEIlIOAABHO BiAOMMMM BiAIIOBIAHMMM pe3yAbTaTaMM Yy AiTepaTypi. Bcranosaermit pe-
3yABTaT IOIIMPIOE Ta y3araAbHIOE HaraTo OCTaHHIX, OIMCAHMX B AiTepaTypi.

Koouosi ciosa i ¢ppasu: iepapxidsa 3apada IIpo HEPYXOMY TOUKY, pO3IIeNAeHa Ipo6aeMa MOHO-
TOHHOTO BKAIOUEHHsI, TpobAeMa BapialliliHol HepiBHOCTI, AeMiMeTpuuHe Bia0b6pakeHHsI, 0bepHeHNI
CUABHO MOHOTOHHMI OTIepaTop.



