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On fixed points of some multivalued mappings
under certain function classes

Karakaya V.!, Sekman D.2

It is well known that the Banach contraction principle implies the existence of fixed points of
single-valued mappings. On the other hand, S.B. Nadler has solved the problem that guarantees
the existence of fixed point for multivalued mapping. However, we have to emphasize that simi-
lar methods are not applied for nonexpansive multivalued mappings. The aim of this study is to
investigate the existence of a fixed point on nonexpansive multivalued mappings with the help of
function sequences and functions having shifting distance property. In addition, some hypothesis
of this work were explained with an interesting example.

Key words and phrases: fixed point, multivalued mapping, shifting distance function, function
sequence.
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Introduction

It is a fact that multivalued mappings are more suitable for applying to real-life problems
than single-valued mappings. It was first noticed and studied by S.B. Nadler [20] because of
the suitability of multivalued mappings to real-life models. Nadler’s approach was to apply
the Banach contraction principle [4], which is valid for single-valued mappings, to multivalued
mappings with the help of Hausdorff metric. Hence, he showed the existence of fixed points of
multivalued mappings. Later, many authors examined some generalizations of the mappings
and developed these results (see [1-3, 8, 10,12, 15, 16,23, 24]).

Another important concept that we use in this study is functions and function sequences.
In fixed point theory, the existence of fixed point is studied by using some special function
classes. In this sense, M. Berzig [5] defined a contraction using shifting distance functions. In
addition, A. Samadi and M.B. Ghaemi [22] generalized the Darbo fixed point theorem [9] by
changing distance functions. Subsequently, they defined a new contraction using the defini-
tion given in [5]. Naturally, in the generalization of the above studies, some similar functions
were also used in different works. Consequently, using this new approach for multivalued
mappings, many researchers have made different generalizations of multivalued mappings
using function classes. We refer the reader to [6,7,19,21].

The main purpose of the present paper is to obtain fixed point of nonexpansive multival-
ued mappings with relations between function classes and function sequences under certain
conditions. In the literature, W.A. Kirk [17], W.A. Kirk, H.K. Xu [18] and S.B. Nadler [11] used
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function sequences to determine fixed points of nonexpansive multivalued mappings. Quite
recently, V. Karakaya et al. [13,14] studied on the function sequences, both to obtain new con-
traction and to show the existence of fixed points of mappings by using the uniform conver-
gence property of function sequences. In multivalued mappings, the Nadler’s sense constric-
tion mapping ensures the existence of the fixed point of multivalued mapping. However, when
the multivalued mapping type is a nonexpansive mapping, it is not possible to guarantee the
existence of the fixed point of the mapping. Our aim is to obtain fixed point in nonexpansive
multivalued mappings using both function classes and function sequences satisfying the con-
ditions such as uniform convergence of function sequences and shifting distance properties of
functions.

1 Preliminaries

LetIN, R denote natural and real numbers, respectively. Let (X, d) be a metric space. We de-
note by P(X) the family of all nonempty subsets of X and by CB(X) the family of all nonempty
closed bounded subsets of X. We define the Hausdorff metric H on CB(X) by

H(A, B) := max {supD(a,B), supD(b,A)},
acA beB

for all A,B € CB(X), where forx € X and C C X, D(x,C) := inf{d(x,y) : y € C} is the
distance from the point x to the subset C.

Definition 1 ([20]). A multivalued mapping T : X — CB(X) is said to be a contraction if there
exists a constant A € [0,1) such that

H(Tx,Ty) < Ad(x,y) forall x,y € X.
A multivalued mapping T : X — CB(X) is said to be a nonexpansive if
H(Tx,Ty) <d(x,y) forall x,ye€ X.

Definition 2 ([20]). A point xo € X is called a fixed point of a multivalued mapping

T : X — CB(X) if xo € Txo.

Theorem 1 ([20]). Let (X, d) be a complete metric space and let T : X — CB(X) satisfies
H(Tx,Ty) < Ad(x,y) forall x,y € X, where 0<A<1.

Then T has a fixed point.

Lemma 1 ([20]). Let (X, d) be a metric space and A, B C CB(X).Then for eacha € A ande > 0
there exists b € B such that
d(a,b) < H(A,B)+e.

Definition 3 ([5]). Let ¢, ¢ : [0,00) — R be two functions. The pair (i, ¢) is said to be a pair of
shifting distance functions, if the following conditions hold:

(i) foru,v € [0,00) if p(u) < ¢p(v) thenu < v,

(ii) for {uy}, {vx} C [0,00) with kh_{?ouk = I{li_{r;ovk = w, if p(uy) < ¢(vy) for allk € N
thenw = 0.
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Definition 4 ([13]). Let ¢, ¢y, : [0,00) — R be two function sequences. The pair (P, ¢n) is said
to be a pair of function sequences with shifting distance properties which satisty the following
conditions:

(i) for u,v € [0,00) if P,(u) — (u) and ¢p,(v) — ¢(v) uniformly in n and also
Yn(u) < ¢n(v), thenu <o,

(ii) for {ux},{vx} C [0, 0) with klim Up = klimvk = w, if P (1) — P(ug), Pu(vr) — $(vy)
— 00 — 00
uniformly inn and ¥y, (uy) < ¢u(vy) for allk € N, thenw = 0.

Definition 5 ([13]). The pair (i, ¢n) is said to be having shifting distance property if
(Yn, ¢n) — (¥, ¢) uniformly in n and the pair (y, ¢) is shifting distance functions.

Lemma 2 ([(13]). Let ¢, ¢n : [0, 00) — R be two function sequences. Assume that the following
conditions hold:

(i) if (¢n) upper semi-continuous function sequences and , < P,41, then ¢, — VP is
uniform convergence according ton,

(ii) if (¢n) lower semi-continuous function sequences and ¢, > ¢, 1, then ¢, — ¢ is
uniform convergence according to n.
Then the pair ({,, ¢») is function sequences having shifting distance property.

2 Main Results

In this section, we discuss some properties of the multivalued mappings defined by both
functions and function sequences.

Theorem 2. Let (X,d) be a complete metric space and let T : X — CB(X) be a multivalued
mapping. Suppose that there exists a pair of shifting distance functions ({, ¢) such that

Y(H(Tx,Ty)) < ¢(d(x,y)) forall x,yeX. (1)
Then T has a fixed point in X.

Proof. Leta < 1and let xg € X. Let us take x; € Txp. Under the condition of Lemma 1, we can
consider the iteration process as follows:

dxp € Txy  d(x1,x2) < H(Txp, Tx1) +a,
dx3 € Txy  d(xp,x3) < H(Txy, Txo) +a?,
dx4 € Txz  d(x3,x4) < H(Txp, Tx3) + a3,

.El.;fkvtl € Txx ;1.(.3% Xip1) < H (Txg_q, Tag) + o
for all k > 1. Firstly, if we choose x = xy and vy = xj1 in inequality (1), we get
W (H(Txy, Tagr1)) < ¢(d(xh, xk11))
for all k > 1. From the condition (i) of Definition 3, we can write

Pur) < ¢p(vx) = up <y, (2)
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where uy = H(Txy, Txg 1) and v = d(x, xk41). If Lemma 1 and the inequality (2) are com-
bined, we have

d(x, X 1) < H(Tag 1, Tag) +af < d(x_q, x5) + o,
d(xg, xpe1) < d(xp_q, xx) + k.

3)

Considering the inequalities (3), let us do the following calculations

d(xy, xpp1) < d(xp_1, ) + &k,
d(xx—1, %) < d(Xp—2, X—1) + a1,

d(xk_2, Xk_1) < d(xk_3, Xk_p) +a* 2,

d(x1,x2) <d(xg,x1) +

Hence, we have for all k € IN

1— k
d(xk, Xk41) Sd(x0/x1)+lx+lxz—|—-..+[xkSd(xolxl)_i_“(1_0;>.

Since 1 — ak < 1 for all k € N, we can write

o

d(xg, xk+1) < d(xo,x1) + 1—a

Therefore, we infer that {v;} is a bounded sequence. According to the Bolzano-Weierstrass
Theorem, {v,} has at least a convergent subsequence {vy, } such that limv,, = ¢. That is,
r—ro0

rlg& d(xy,, Xx,,,) = £. According to (3), it is easy to see that rlgglo H(Txy,, Txy,,,) = L. So, by

condition (i) of Definition 3, we have

hmd(xk ,Xk ) =0. (4)

r—0o0

Let us prove that {x;, } is a Cauchy sequence. Assume that {xy, } is not a Cauchy sequence.
Then there exists ¢ > 0 and subsequences {x;  } and {xi, } of {xi } withk,(,) > ku(p) > p
such that forall p € N

d (xkr(p),ka(p)) >¢e¢ and d <xkr(p>71'ka(p)) < e

Under the condition above, we get

e < d (X, Xk, ) < () X ) A (g ¥,,) S e+ d (T ) ()

for all p € IN. If we apply limit to both sides for p — oo, we get

Jion d (e, X)) = - )
Then, we have
}d<xkr(p)’ka(p)) - d( p)’ knz (p)— 1)} S ( m(p)’ km( )— 1)

| /\

}d(ka’ka(mfl) _d(x (n)-17 ()1 )l <p>71)'
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Considering together with (4) and (5), we have

lim d (x,

povaot () - 1 X)) = E (7)

From Lemma 1, there exists pg € IN such that

X )+oc

€ k
s < r(p) <
0 <35 <d(Xk, ) < H(Txk ) 0 Txe,, ) a0 ® <d (e, %,

2

for all p > py. Letting p — oo in the above inequality, we get

lim H (Txk

p—ro0 (p)-17 Txk

wi1) = € 8)

where lim a*() = 0 fora < 1. By taking x = xj

Jim, . andy = Xy (py_1 1N the inequality (1), we

obtain

¥ (8k) < ¢ (hy,), ©)

where gy = H (Txkr Txy ) and hy, = d(xkr(p)— 17 Xk 1). Therefore, if considering (9)

(p)-17 m(p)-1
together with (7) and (8), the condition (ii) of Definition 3, we get ¢ = 0. Hence, this is a

contradiction. It follows that {x; } is a Cauchy sequence in X.
Since (X, d) is a complete metric space, then {x; } converges to a point x* € X, that is,

hﬁmd (xx,, x*) = 0. Taking x = x;, and y = x* in inequality (1), we have
r—00

p(H(Txi,, Tx")) < ¢(d(xg,, x7)).
By using the condition (i) of Definition 3, we have
H(Txy,, Tx*) <d(xg,, x").
Since xi,,, € Txg,, we can write that

D(xx,.,, Tx*™) < d(xg, x*).

r+17

Passing to limit as ¥ — oo, we obtain
D(x*, Tx*) < d(x*,x").
We conclude that D(x*, Tx*) = 0, hence x* € Tx*. Therefore, x* is a fixed point of T. O

Theorem 3. Let (X,d) be a complete metric space and let T : X — CB(X) be a multivalued
mapping. Suppose that there exists a pair ({,, ¢,) of function sequences having shifting dis-
tance property such that

¥n(H(Tx, Ty)) < $u(d(x,y)) (10)

forall x,y € X and for alln € N, where i, ¢, : [0,00) — R are two function sequences. Then
T has a fixed point in X.
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Proof. We suppose that {x;} is a sequence such that xg € X and x;,.1 € Txy for k > 1. Let
(Yn, pn) be a pair of function sequences with shifting distance property satisfied conditions
of Lemma 2. Let (¢,,) be increasing function sequence bounded by ¢ and (¢, ) be decreasing
function sequence bounded by ¢ for all # € IN. By using (1), we can write

$1(H(Txg, Txgy1)) < o (H(Txg, Txggn)) < -
< u (H(Txx, Txgi1)) < ¢ (H(Txy, Txgi1))
< ¢(d(ox, X41)) < P (Ao, xX41)) <+
< o (d(xg, xp41)) < P (d(xg, Xp41))

for all k,n € IN. It follows that
P (H(Txg, Txp1)) < dn(d(xXk, Xit1)) (11)

for all k, n € IN. From the condition (7) of Definition 4, we can write

Pu(ug) < Pn(vx) = up <o,

where Ujp = H(Txk, Tka) and O = d(xk, xk+1).
From Lemma 2, we know that ¢, — ¢ and ¢, — ¢ uniformly according to n. Hence, taking
limit on both sides of (11) as n — oo, we get

W (H(Txy, Txgy1)) < ¢(d(xp, xp41)) (12)

for k > 1. Since the inequality (12) proved in Theorem 2, we have to show that the mapping T
has a fixed point.
In (10), taking x = x;, and y = x*, we get

Pu(H(Txy,, Tx)) < (@5, x7)).

Letting n — oo in the above inequality and by Lemma 2, we have
¥ (H(Txy, Tx*)) < ¢(d(xx,, x7)).
By using condition (i) of Definition 3 and taken limit as r — oo, it follows that
D(x*, Tx*) = 0.
Therefore, we obtain x* € Tx*, so we achieves the desired result. O

Remark 1. While we examine the contraction of multivalued mappings according to Nadler’s
definition, we have to show that there exists A € [0,1) to ensure the inequality

H(Tx,Ty) < Ad(x,y).

However, if A = 1, the mapping that provides this inequality is called the nonexpansive map-
ping. All the same, it is known that nonexpansive mappings do not have to have a fixed point.
In this paper, the inequality u < v obtained due to both (1) and (10) has a form of nonexpansive
mapping in the Nadler’s sense [20]. Therefore, the fixed point of mapping T has been obtained
with the help of function sequences and functions having shifting distance property.
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Example 1. Let T : X — CB(X). Also, let us give two function sequences according to the
conditions of Definition 4

2n(1+u)+3Q2u+1) ~ n*(140)+n?+1

P (u) = n13 , Pn(v) = )

Itis clear that i, (1) < ¢, (v) foralln € N and u,v € [0, ). Besides, the pair (P, ¢n) — (¥, P)
are shifting distance functions. After that, it can be seen that

2n(1 2u+1 2(2 1
lim n(1+u) +3(2u + ):2+2u§2+v:1imw.
n—sco n+3 n—sco n2

Therefore, the pair ({, ¢) is shifting distance functions.
Now, we suppose that u = H(Tx, Ty) and v = d(x,y). Since

2n(1+ H(Tx, Ty)) +3(2H(Tx, Ty) +1) _ n*(2+d(x,y)) +1
n+3 o n2

4

we have
3n®+n+3

2H(Tx, Ty) —d(x,y) < 2t 3)

(13)
If limit goes to infinity in (13), we obtain
2H(Tx,Ty) —d(x,y) < 2H(Tx, Ty) <d(x,y)H(Tx, Ty) < %d(x,y).

As a result, according to condition of Nadler’s fixed point theorem [20], T has a tixed point
under continuous function sequences.

Let (I,) be a unit function sequence. In Theorem 3, if we take (¢,) = (I,) such that
1i_r>n I, = I uniformly, we obtain the following result.
n—oo

Corollary 1. Let (X,d) be a complete metric space. Suppose that T : X — CB(X) is a multi-
valued mapping such that

Li(H(Tx, Ty)) < ¢n(d(x,y)),
forallx,y € X and n € N, where ¢, : [0,c0) — R is a function sequence such that
(a) foru,v € [0,00) if I, (u) < ¢(v), thenu < v,
(b) for {uy},{vx} C [0,00) with I}Lrgouk = ]}Lrgovk = w if Iy (ug) < ¢n(vy) foralln,k € N,
thenw = 0.
Then T has a fixed point in X.

Theorem 4. Let (X,d) be a complete metric space. Suppose that T : X — CB(X) is a conti-
nuous mapping such that

Yu(H(Tx, Ty)) < ¢nu(d(x,y)) — ¢u(d(x,y)) (14)

for all x,y € X and n € N, where ¢, ¢, : [0,00) — R™ is a pair having shifting distance
property. Also, let i, ¢ be two nondecreasing and continuous functions satisfying {(t) =
¢(t) = 0ifand only if t = 0. Then T has a fixed point in X.
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Proof. Suppose that (14) holds. In this inequality, if we take x = x; and y = x;11, we get

Py (H(Txk, Tka)) < Py (d(xk, Xk+1)) — ¢n (d(xk, xk+1)) forall k,n € IN.

By Lemma 2, taking limit as n — oo, we have

W (H(Txx, Txgy1)) < (d(xx, Xk01)) — ¢ (d (xh, xp41)) - (15)

Besides, by using hypothesis in statement of Theorem 4, we assume that

¥ (d(oxk, xis1)) = (d(xk, Xpq1))-

If the above equation is substituted in inequality (15), it is clear that lIJ(H (Txy, Txk+1)) =0,
hence
H(Tx, Txjq1) = 0.

Since xj1 € Txg, we conclude that D (xk+1, Txk+1) = 0. Thus, xx11 € Txgy1.
Conversely, let d(xy, xx11) = 0. If we evaluate together with the inequality (15), then we get
H(Txy, Txgr1) = 0and xg 1 € Txgy 1. As a result, we have found that T has a fixed point. O

In Theorem 3, if we take (¢,) = (I,) and (¢,) = A (I,) for A € [0,1), such that I, — I
uniformly according to 1, we obtain the following corollary, known as Nadler’s fixed point
theorem [20].

Corollary 2 ([20]). Let (X,d) be a complete metric space and let T : X — CB(X) satisfies
H(Tx,Ty) < Ad(x,y) forall x,y € X,

where0 < A < 1.
Then T has a fixed point.
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Aobpe BiaoMO, 1m0 3 Teopemn baHaxa IIpo HEPYXOMY TOUKY BMIIAMBA€E iCHYBaHHS HEPYXOMMX
TOYOK OAHO3HAYHMX Biao6paxeHs. 3 iHmoro 6oky, C.b. Haanep A0BiB TeopeMy, IO rapaHTye icHY-
BaHHS HEPYXOMOI TOUKM AAST baraTosHauHOro Biao6paxenHs. OAHaK CAiA BiA3HAUMTH, IO TOAIOHI
METOAM He 3aCTOCOBHI AASI HEpO3IIMPIOIOUMX baraTo3HauHMX Biao6paxkeHb. MeToro miei cTaTTi €
AOCAIAKEHHSI iCHyBaHHSI HEpPyXOMOi TOUKM HePO3IIMPIOI0UWMX 6araTo3HauHMX BiAOOpakeHb 3a AO-
TIOMOTOX0 (PYHKIIIOHAABHMX TIOCAIAOBHOCTEN Ta (PYHKIIiM, IIT0 MaFOTh BAACTUBICTD 3CYyBHOI BiACTaHi.
AoaraTKoBO AesiKi TimoTesn 11iel poboTu 6yAn po3’sicHeHi Ha IiKaBOMY IIPMKAAAI.

Kntouosi croea i ppasu: Hepyxoma ToUKa, baraTo3HaUHe BiAOOpakeHHs, PYHKIIisI 3CyBHOI BiacTa-
Hi, PyHKIIOHAABHA IIOCAIAOBHICTb.



