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Approximation properties of multivariate exponential
sampling series

Kursun S.!, Turgay M., Alagoz 0.2, Acar T.">

In this paper, we generalize the family of exponential sampling series for functions of n vari-
ables and study their pointwise and uniform convergence as well as the rate of convergence for
the functions belonging to space of log-uniformly continuous functions. Furthermore, we state and
prove the generalized Mellin-Taylor’s expansion of multivariate functions. Using this expansion we
establish pointwise asymptotic behaviour of the series by means of Voronovskaja type theorem.
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ate Mellin-Taylor formula, Voronovskaja type theorem.
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Introduction

The sampling series and their applications are the most challenging theory in approxima-
tion theory and especially in signal and image processing. The classical sampling theorem had
been intensively studied by P.L. Butzer and his research group though generally attributed to
E.T. Whittaker, V.A. Kotel'nikov and C.E. Shannon. The most common method was given by
P.L. Butzer (see [18]) named generalized sampling series as

(SLE)(t) := Z f<k>)((wt —k), teR, w>0,
kez W
where the function x is called kernel function and satisfies some assumptions of approximate
identities. The generalized sampling series became most prominent working area in a very
short time thanks to its wide applications. We refer the readers to [7, 15, 19, 20] and references
therein for some applications and forms of generalized sampling series.

In order to expand applications areas, P.L. Butzer et al. introduced generalized sampling
series for multivariate signals in [15]. The multivariate generalized sampling series are defined
by

1

(Sw)(t) == (\/Z_T)nkgzlnf<%)q)(wt —k), teR", weRR%,

such that ¢ : R” — C is a continuous and bounded kernel function and f is a continuous func-
tion. For some distinct treatment of multivariate generalized sampling series to applications,
the readers can see also [13, 16, 24].
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The pioneer studies of exponential sampling theorem in the theory of Mellin transform
were given in [23] and further considerations were deeply given in [17]. To overcome Mellin
band-limited restrictiveness of f (see [3, 4]), C. Bardaro et al. [8] established a new generaliza-
tion of exponential sampling theorem by replacing lin, with an arbitrary function ¢ satisfying
suitable assumptions. In [14, 21], a series representations of Mellin band-limited functions were
established via their exponentially spaced samples, which was considered as Mellin version of
the Shannon sampling theorem. Among the others, we can refer the readers to [5, 6, 8, 12].

Furthermore, C. Bardaro et al. [2] introduced generalized exponential sampling series for
bivariate functions and obtained some convergence results. They also proved Mellin-Taylor
formula for bivariate functions and applied it to the pointwise asymptotic behaviour of the
series. As an application, the magnitude of an earthquake through the behaviour of the seismic
waves was established by bivariate generalized exponential sampling series.

The treatment of the theory in multivariate setting is important also from the point of view
of the applications; indeed in signal theory, in order to deal with image processing, one has
to work with multivariate signals. In this paper, firstly we introduce multidimensional expo-
nential sampling series and study their pointwise, uniform convergence and the rate of con-
vergence by expanded logarithmic modulus of continuity of target function. Secondly, since
exponential sampling theorem for Mellin band-limited functions represents a Mellin version of
the classical Shannon sampling theorem of Fourier analysis [25, 22], we present multidimen-
sional Mellin-Taylor formula with its proof and obtain Voronovskaja type theorem for new
operators by using the formula.

1 Construction of operators

Let us denote by N, INjj and Z" the sets of vectors k = (kq, ka, ..., k) withk;,i = 1,2,...,n,
positive integers, nonnegative integers and integers, respectively and we set |k| := Y} ; k;.
Moreover, by R” we will denote the n dimensional Euclidean space consisting of all vectors
(x1,%2,...,xp) withx; € Rfori =1,2,...,n.

Let x = (x1,%2,...,%1), Y = (Y1,Y2,--.,yn) € R", then we say that x > y if and only if
x; > yjfori =1,2,...,nand we will denote by 1 := (1,1,...,1), 0 := (0,0,...,0) and by R".
the space of all vectors x > 0. Given x,y € R" and « € R the usual operations are given by

Xx+y:=@+yLX2+Y2..., Xn+Yn), ax:= (axy,axy, ..., ax,).

Further, the product and division of two vectors of R" defined as

X X1 Xo Xn

Xy = (x1y1, X2Y2, ..., X , — = =, — ), #0 forall i=1,2,...,n.
y == (x1y1, X2y nYn) y <y1 ” yn) yi #

Let a* := (a1, a™2,..., &%) witha > 0, x¥ := (x%l,...,x%") and

log(x) := (log(x1),log(x2),...,log(x,)) with x> 0.

The norm of a vector x € R" is given by ||x|| := \/ x2 4+ x4 ...+ x2, and the Euclidean dis-
tance is defined by d(x,y) := |[x —y||. For w = (wy,wy,...,w,) € R, by the notion of
W — +o00, we mean that @ := min{wy, w», ..., w,} — +o0.

Let I be an interval of R" (bounded or not), we denote by C(I) the space of all continuous
and bounded functions on I. Moreover, for m € IN we denote C(")(I) as the subspace of C(I)
which consists of all functions f with the continuous derivatives up to the order m.
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A function f : I — C is called log-uniformly continuous function on I, if for every
e > 0 there exists d(¢) > 0 such that |f(x) — f(y)| < &€ whenever ||log(x) —log(y)| < é(e),
x,y € R. By C(I), we denote the space of all log-uniformly continuous and bounded func-
tions on I. It is obvious that the notion of log-uniform continuity is equivalent to the classical
uniform continuity on compact intervals I C R’} (see [23, 11]).

Let ¢ : R", — IR be a continuous function satisfying the following assumptions:

(9-1)
) p(e kx) = ) ple My, e xy, e hix,) =1
kezn (kl,kz,...,kn)EZ"

for every x = (x1,x,...,x,) € R%;

(¢.2) there holds

Mo() = sup Y [p(e %) < +oo;
xeRY kez"

(9.3) y .
lim lp(e *x)| =0
T k- log(x) [ >

uniformly with respect to x.

Let @ denotes the class of all kernel functions ¢ satisfying the assumptions (¢.1)—(¢.3).
Then, multidimensional exponential sampling series can be defined for ¢ € ® by

ERH() = Y Flew)ple™xv) (1)
kezr
for any x = (x1,x,...,%,) € R, w = (wy,wy, ..., w,) € R and f : R, — C, which can be
equivalently stated as

ki Ky k
(BWf)(x) := ) f<e“’1 ez, ,eﬁ)q)( TR ekl L e Ry,
(k1,k2,... kn)€Z

Remark 1. If f is bounded, that is |f(x)| < N for every x € R, then the operator (1) is
well-defined.

It is easily proved by the hypothesis and the assumption of (¢.2). Indeed,

ki Kk
W oo —k1 W1 ,—ky W2 —kp W
f<6‘“1,ew2 ew)‘]gp Iyt e 2y, e )|

(ERHI< )

(kl,kz,...,kn)EZ”

<N Z \(p(e’klxiu1 ’kzxguz,...,e’k”xﬁ")\ < o0,
(k1 Koy rkin) €27

Remark 2. Considering the definition of the operators (1), we immediately have that
(ERT)(x) =1,
where 1(x) := 1 for every x € R'..

Here, we note that a Kantorovich form of the operators (1) has been recently introduced
and studied in [1].
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2 Pointwise and uniform convergence of (EY)

In this section, we present two main theorems about pointwise and uniform convergence
for the family of multivariate exponential sampling operators (E& ), w > 0.

Theorem 1. Let f be a bounded function. Then

lim (E&f)(x) = f(x)

W—r+00

holds at each continuity pointx € R’} of f.

Proof. Let ¢ > 0 be fixed. Since f € C(R".), by the continuity of f at x there exists 6 = J(¢)
such that }f(e%) — f(x)| < & whenever || log (e%) —log(x)|| = H% —log(x)H < 6. By (9.1),
we can write

(BL)00 = f0Il < X1 [f(ew) = FO0lple™x™)]

kezn
:{ Z + Z }}f(e%)—f(x)ﬂq)(ekxw)\ =0+ I
|£ —log(x)[|<6 || £—log(x)[|>d

By using the assumption of (¢.2), we have I; < My(¢)e. Now let us estimate I,. By taking into
account that

[k — wlog(x)]|

e st < =3

and the assumption (¢.3), for sufficiently large @ > 0 we have

L<2lfle Y lole™x™)| <2|fllo B [@(e™x™)| < 2]|fl|oce
| X —log(x)||>6 [[k—wlog(x)||>wd

and this completes the proof. O

Now, we give a uniform convergence result by the following theorem in case of f belongs
to log-uniformly continuous and bounded functions space.

Theorem 2. Let f € C(R".) and ¢ € P, then

lim [|(Ef) = flleo = 0.

W— 400

Proof. We omit the proof details because it is similar to the proof of Theorem 1. O

3 Rate of convergence of (E%)

This section is devoted to determine a rate of convergence of the family (E& ). Firstly, we
recall and define required tools. The logarithmic modulus of continuity of f € C(Ry) is
defined in [10]. Here, we generalize the definition of logarithmic modulus of continuity for the
functions f € C(R".). For 6 > 0 we define

w(f,0) :=sup{|f(x) = f(y)| : x y € RL, |[log(x) —log(y)| < é}.

We give some properties of logarithmic modulus of the continuity for multivariate func-
tions by the following lemma. The proof of the lemma can be easily obtained by using the
similar concept for single valued functions (see [8]).
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Lemma 1. For a function f € C(R.), logarithmic modulus of continuity has the following
properties:

(i) for each ¢ > 0, w(f,?) is finite;

(i) if61 < &y, then w(f,61) < w(f,d);

(iii) for oy > 0and dp > 0, w(f, 01 + 62) < w(f, 1) + w(f,d2) holds;

(iv) forevery m € N, w(f, md) < mw(f,d) holds;

(v) forevery A > 0, w(f,Ad) < (14 A)w(f,9);

(vi) foranyt,x € R, [£(t) — F(x)] < w(f, ||10g(t) — log(x)||);
(vii) forany x,y € R, |f(x) — f(y)| < (1+ |[log(x) — log(y)ll /8w (f, &),
(viii) limw(f,0) = 0.
Theorem 3. If ¢ is a kernel function satisfying

Mi(g) = sup Y [p(e x|k —log(x)|| < +oo 2

x€R" kezn

and if f € C(R"), then
(ELA) () — £00] < w(f, =) (Molp) + M)

holds for every w > 0.

Proof. By the definition of the family of operators (1), the factw < ||w|| and hypothesis (2), we
have that

(BLAG) —f0I < F f(ev) = £ lge™x)] SkXZlan, X 1og(x)] ) Ip(e x|
<w(f, %) kezzn (1+ k= VV\lr(ﬁg(X)” Jlple™ x|

O

4 Multidimensional Mellin-Taylor formula and Voronovskaja type theo-
rem

In this section, we will use the following notations.

For a given x € R and h = (hy,...,h;) € IN} we denote (x) := []_;x; and
h! = hy!. . hyl.

Let f : R? — C. The first order of Mellin derivative of f with respect to the variable

x;,i=1,...,natthe point x = (x1,...,x,) is given by

O f(x) = L)

i
axi
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(see [2]). For a given k = (ky,...,k,) € INjj, we define the partial Mellin derivatives of order
r =ki + ...+ ky at the point x as

k k
®;11<1mx£nf(x> = ®xi (®x§ e (®§Zf))(x>
and we will put @ f(x) := O, f(x), @%f(x) = f(x).
In order to construct multidimensional Mellin-Taylor formula, which introduced in [9] for

an one-dimensional space, we give the following notation. For a given x = (x1,...,x,) and
t=(t1,...,t,) we set

(O, log(t1) + ... + Oy, log(ty))" f(x)
m! 3
= ¥ mel(.. (@) logh (). Jogh(t) P
|lh]j=m =
with m € N and f € C")(R") locally at x = (x1,..., Xn).

Proposition 1. Let m € N and f : R?. — C be a function in C'")(IR"). Then for
x=(x1,...,x;) € R’ and t = (tl, .., tn) € R, we have

f(tx) )+ Z (O log(t1) + ... + Ox, log(tn)) f(x) + Ru(t)
with Lagrange remainder

Ru(t) = (O, log(t) + ..+ Ox, log(ta))" f (1., )
where (&1,...,Cy) Is a suitable point in the segment Ly, ;, with the endpoints (x1,...,X,),
(t1x1, -+, tuXn).
Proof. Without loss of generality we prove the proposition for m = 2. Let us consider the
function F(z) = f (t110g( 2) thg( Do, t}fg(z)xn) with z € [1,e]. By applying one dimensional
Mellin-Taylor formula w1th Lagrange remainder, we get

2 ~
F(z) = F(1) + ©F(1) log(z) + ®%(Z) log?(z)
with Z € (1, ¢e). By using Mellin derivative, we obtain
or) = 2 L (o8 y L 08E) x )y 1983 1og (1)

8x1
af ( 10%

. X1,..., tInOg(Z)xn)xntInOg(z) log(t,).

Forz =1, we get
OF(1) = Oy, f(x)log(t1) + ... 4+ Ox, f(x) log(ts),

OF(z) = Zaf (68 xy, L, 008, ) 2262108 1) 1062 (1))

ox 2 (g1
i=1
S Pf josa) log(2) log(z)
—+ t PR n)Xixi(tit 82 ] 1 ,
z‘jzlliaéj aXiaxj(l & xn) xix; (£it}) og(t;) log(t)
2T (5 aZ 9
° §(Z> - Z(a jzc(élfézl' . lgﬂ)ézz + 8_3{(51152/- . -/én)éi) logz(ti)
1 1 1
n 82
+%”Z# ax({ (61,2, .., En)EiGj log(t:) log(t;)
]
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with (61162/- . gn) = ( 1og( )xl,... thg( )xn) € Lt1 e
Now, by using the defmition of the partial Mellin derivative, we have

82
f(glr 52/ e rgn)glz = [®326,f(€1r €2r sy C?I) - ®Xif(€1/ G’Zr ceey Cﬂ)]
Hence, we obtain
O%F(z
5(2) = %(@xl log(tl) + ...+ ®xn 10g(tn))2f(§1/ G’Zr ceey gﬂ)
which completes the proof. O

By Proposition 1, we can derive the Mellin-Taylor formula with the Peano remainder as
follows.

Proposition 2. Let the assumptions of Proposition 1 are satisfied. Then,

lig (@ 108(t1) + . + Oy, log(tn))"f(§) — (O log(t) + ... + Ox, log(tn))™ f(x)
t=1 (log?(t1) + ... + log?(ty)) /2

where & = (&1, ...,&n).

Proof. We prove for m = 2, with a similar method in the previous proof (it can be applied for

=0,

general case). Let

I:=|(Ox, log(t1) + ... + Ox, log(ta))*f(Z) — (O log(t1) + ... + Oy, log(ta))*f(x)],

then we have

I n n—1
<Y |@if @2 f(x)| + Oy, (O — O (O f)(x)].
o) 7. T logk(e) = OO - O W+ T 104(05/)(8) ~ 0 (O ) )
Considering ¢ € Ly, 4,,...t, the assertion follows from the assumption f € c® (1R’jr) 0

Now by Proposition 2, it is obvious to write the local form of the Mellin-Taylor formula as

—_

f(tx i o (O, log(t1) + ... 4+ Oy, log(ty))" f(x) + R (t)

with the Peano remainder

2 2 m/2
Ry (8) = Ry (t1, ... tn) = H (t1,- .., tn) <log (1) +...+log (tn)) ,
where H(t4,...,t,) is a bounded function such that

lim H(ty,...,ty) = 0.
(1oertn) = (1,1) (h ")

Remark 3. Note that setting t = (t1,...,t,), X = (X1,...,X,), it is easy to see that

Ry (t) = H(t)[|log(tx) —log(x)[|".
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Leth = (hy,...,h;) € Njandv = |h| =y + ...+ h,. Forx € R’}, we define the moments
of order h of ¢ € ® as
mi(9,x) 1= Y e *x)log"(ex") =} g(e”*x){(k ~log(x))")

kez" kezn"

= ) ple ™ xy, ... e x,) (ky —log(x1))™ ... (ky —log(x,))".
(ki ka,.rkn)EZN

The absolute moments of order « > 0 of ¢ € P is defined as

= L lole )|l —log(x)||*.

kez"

Finally, we set My (¢) := SUPyc R My (¢, x).

Now, we obtain estimations of the order of approximation under some local regularity
assumptions on the function f. In order to do that, we need the following assumptions on the
kernel function, i.e. there exists | € IN such thath € INjj, |h] <

(p.4) m][L1 J(q), )= m][L‘hJ (@) is independent of x;

(¢.5) M;j(¢) < +o0 and

im ) e[|k —log(x)||' =0

r—4o0
k—log(x)[| >

uniformly with respect to x.
We denote by @, the set of functions ¢ satisfying assumptions (¢.1), (¢.4), (¢.5).
Then for I = m, we have the following Voronovskaja type result.

Theorem 4. Let f : R”. — R be a function such that f € C(")(R") locally at the point x =
(x1,...,x1) € R and ¢ € ®y,. Then

(ELNX ~ 0 = 3 T e T ao) +o( =)

asw — +oo.

Proof. Since f € CU™)(R™), by using Mellin-Taylor formula, we can write

m kl/wl kn/wn r
ELAM = T o) (700 + L [0 10g (o) +. 0y Tog (S )] )
kez" n
kq/wy kn/wn
+H(* e ) og(e /™) — 1og(x)|" ).
Now, by assumption (¢.1) and using (3) we have

21
EBRA)—f) =) 5 1 ﬁ@hw (O )(x)

r=1"" |h|=

kl I kn i -k, w
X k;Z:n <w_1 — log(xl)) (w—n — log(xn)) e x™)
ekl/wl kn/wn

+ (o )H——log( )| bt ) = n+ b
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Hence, I; can be written in the form

W3 T el @[ [Tur"]mite)

r=1|h|=r

Now, let us estimate I,. For a given € > 0, there exists § > 0 such that

ki/w kn/w
el 1 e'n n
(L) <,

X1 xn
whenever || log(e*/") — log(x)|| = H% — log(x)H < 4. Taking into account that
|[k—log(x™)]|

4

[ ~ost < B8

we obtain

|| < {|k Y, o+ ) }q)(ekxw)‘HCz Lo

=M

e g
"oy, w

—log(x)||<d [k—log(x™)||>wd

= 12,1 + Ip5.

By using the definition of M;,(¢), we easily conclude that @"I; < eM;,(¢). Finally, by

(¢.5) and by the boundedness of H, we get w"I» < ||H||¢ and this completes the proof as
well. O
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V it poboTi y3araAbHEHO CiM'I0 €KCIIOHEHIIIaABHMX BUOIPKOBIUX PSIAIB AAST (PYHKIIIN 11 3MiHHIIX
Ta AOCAIAXKEHO iX TOUKOBY i piBHOMIpHY 361KHICTb, a TaKOX IIBMAKICTD 361KHOCTI AAST PYHKIITI,
III0 HaAeXXaTh A0 ITpocTopy log-piBHOMipHO HenepepBHuX pyHKHil. Kpim Toro, cpopmyanrosaro Ta
AOBEeAEHO y3araabHeHe po3BuHeHHST MeaaiHa-Tetiaopa 6araTosyMipHMX pyHKIIiMN i 32 AOTIOMOTOIO
TeopemMu TUITy BOpOHOBChKOI BCTAHOBAEHO TOUKOBY aCMMITOTHMYHY IIOBEAIHKY PSIAY.

Kontouosi cnosa i ppasu: 6araTOBMMIpHIMIT eKCTIOHEHIIaAbHVIT BUOIPKOBIIT PsIA, IIBMAKICTD 36i-
XHOCTi, 6ararosumipHa dpopmyara Meanina-Teltropa, Teopema Tty BopoHOBCBHKOI.



