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On equitable near-proper coloring of some derived graph
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An equitable near-proper coloring of a graph G is a defective coloring in which the number of

vertices in any two color classes differ by at most one and the bad edges obtained is minimized by

restricting the number of color classes that can have adjacency among their own elements. This

paper investigates the equitable near-proper coloring of some derived graph classes like Mycielski

graphs, splitting graphs and shadow graphs.

Key words and phrases: equitable near-proper coloring, Mycielski graph, splitting graph, shadow

graph.

Department of Mathematics, CHRIST (Deemed to be University), Bangalore, Karnataka, India

E-mail: sabitha.jose@res.christuniversity.in (Jose S.), sudev.nk@christuniversity.in (Naduvath S.)

Introduction

For general concepts and notations in graphs, we refer to [6, 18]. Unless stated otherwise,

we consider connected, simple, finite and undirected graphs in this paper.

The notion of equitable coloring of graphs was introduced in [10]. An equitable coloring of a

graph G is a proper vertex coloring in which the cardinalities of the color classes are either

equal or differ by 1. Equitable coloring of graphs has many applications real-life situations,

especially in scheduling and distribution problems. Allowing conflict to a certain level gives

rise to defective equitable coloring problems. An improper coloring or a defective coloring of a

graph G is a vertex coloring of it, with respect to which adjacent vertices can have the same

color if required and as a result of that, there may be some edges whose end vertices receive

the same color. These edges are called bad edges. A near-proper coloring of G is a defective

coloring in which the bad edges are minimised by implementing certain restrictions on the

number of color classes that can have adjacency among their own elements. The number of

bad edges resulting from a near-proper coloring of G is denoted by bk(G). Certain results on

this direction can be viewed in [1–4,9]. In light of these studies, the idea of equitable near-proper

coloring of graphs are introduced in [7] and as follows.

An equitable near-proper coloring (or ENP-coloring) of a graph G is a defective coloring in

which the vertex set can be partitioned into k color classes V1, V2, . . . , Vk with cardinalities

n1, n2, . . . , nk respectively, such that |ni − nj| ≤ 1 for any 1 ≤ i 6= j ≤ k, and the number of bad

edges is minimised by restricting the number of color classes that can have adjacency among

their own elements. The minimum number of bad edges resulting from an ENP-coloring of G

is defined as equitable defective number and is denoted by bk
χe
(G).
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Motivated by the studies mentioned above, in this paper, we discuss the ENP-coloring of

some derived graph classes. A derived graph is a construction of a graph from a given graph

under certain conditions. This paper discusses the ENP-coloring of Mycielski graphs, splitting

graphs and shadow graphs of certain graph classes. Throughout this paper, the set c1, c2, . . . , ck

represents the available k colors and V1, V2, . . . , Vk be the corresponding color classes. In an

ENP-coloring, we consider the cases from k = 2 to k = χe(G) − 1. In all diagrams in this

paper, the bad edges are represented by dotted lines.

1 ENP-Coloring of Mycielski graphs

The Mycielski graph or the Mycielskian of a graph is defined (see [11]) as follows. Let G be a

graph with vertex set V(G) = {v1, v2, . . . , vn}. The Mycielski graph of a graph G, denoted by

µ(G) is the graph with vertex set V(µ(G)) = {v1, v2, v3, . . . , vn, u1, u2, u3 . . . , un, w} such that

vivj ∈ E(µ(G)) ⇐⇒ vivj ∈ E(G)

viuj ∈ E(µ(G)) ⇐⇒ vivj ∈ E(G)

uiw ∈ E(µ(G))

for i = 1, 2, . . . , n.

The coloring of Mycielskian of some fundamental graph classes was discussed in [5,11,17].

The ENP-coloring of Mycielskian of some graph classes was discussed in [8]. The equitable

defective number of complete graphs was determined in [7], as follows.

Theorem 1 ([7]). For a complete graph Kn, the equitable defective number is given by

bk
χe
(Kn) =

r⌈n
k ⌉⌈

n
k − 1⌉

2
+

(k − r)⌊n
k ⌋⌊

n
k − 1⌋

2
,

where n ≡ r (mod k).

The following theorem discusses the ENP-coloring and the corresponding equitable defec-

tive number of Mycielski graph of complete graphs.

Theorem 2. The equitable defective number of Mycielski graph of complete graph µ(Kn) is

given by

(i) if k = 2, then bk
χe
(µ(Kn)) = bk

χe
(Kn) +

n(n−1)
2 ,

(ii) if k = 3, then bk
χe
(µ(Kn)) =















bk
χe
(Kn) +

n(n−2)
3 , if n ≡ 0 (mod 3),

bk
χe
(Kn) + ⌊n

3 ⌋
2, if n ≡ 1 (mod 3),

bk
χe
(Kn) + ⌊n

3 ⌋(3⌊
n
3 ⌋+ 2), if n ≡ 2 (mod 3),

(iii) if k ≥ 4, then bk
χe
(µ(Kn)) = bk

χe
(Kn) + 2(n − k) + ⌊n

k ⌋.

Proof. Let µ(Kn) be the Mycielskian of complete graphs with 2n + 1 vertices. Let {v1, · · · , vn}

be the set of vertices of the complete graph Kn and {u1, u2, · · · , un} be the set of vertices cor-

responding to the vi’s. According to the construction of Mycielski graph of complete graphs,

each vertex vi is adjacent to all uj, i 6= j, and the vertex w is adjacent to all ui’s where 1 ≤ i ≤ n.

We know that the equitable chromatic number of Mycielski graph of a complete graph is n+ 1.



On equitable near-proper coloring of some derived graph classes 531

We consider 2 ≤ k ≤ n for an ENP-coloring. The equitable defective number of complete

graphs have already been investigated in [7]. Thus, we need to further count only the bad

edges between vi’s and ui’s and between ui’s and w.

Case 1. When k = 2, we have to look in to the following subcases.

Subcase 1.1. Let n be even. Assign the two available colors c1 and c2 to the vi’s in a clockwise

manner and the corresponding ui’s can be assigned with the same colors as received by vi.

Here, each ui is adjacent to n
2 − 1 number of same colored vertices and since there are n number

of ui’s, the total number of bad edges obtained is n[n
2 − 1]. And assign the vertex w with either

c1 or c2, we obtain n
2 bad edges which are incident with w. Along with that we have the bad

edges resulting from the ENP-coloring of a complete graph Kn and thus the equitable defective

number is bk
χe
(Kn) +

n(n−1)
2 .

Subcase 1.2. When n is odd, repeat the coloring procedure as in Subcase 1.1 for all vi’s and

ui’s. It can be observed that there are ⌊n
2 ⌋ number of c1 colored ui’s and each of these vertices

is adjacent to ⌊n
2 ⌋ number of c1 colored vi’s. Also, among the ⌈n

2 ⌉ number of c2 colored ui’s,

⌊n
2 ⌋ number of ui’s are adjacent to ⌊n

2 ⌋ − 1 number of c2 colored vertices and one ui is adjacent

to ⌊n
2 ⌋ vertices. Assign the vertex w with color c2 to satisfy the equitability condition, we

obtain ⌊n
2 ⌋ bad edges which are incident with w. Along with the bad edges resulting from the

adjacency within vi’s, the equitable defective number is bk
χe
(Kn) +

n(n−1)
2 .

Case 2. Let k = 3. In this case, we have to consider the following subcases.

Subcase 2.1. When n ≡ 0 (mod 3), start assigning the vi’s with the three available colors c1, c2

and c3 in a cyclic order. Now, assign the corresponding ui’s with the same colors as assigned

to vi and vertex w can be assigned with any of the three colors. Here, it can be observed that

each ui is adjacent to n
3 − 1 number of same colored vi’s and since there are n

3 number of ui’s

we obtain n
3

[

n
3 − 1

]

bad edges between the vi’s and ui’s. Since the vertex w is adjacent to all

ui’s (1 ≤ i ≤ n) we obtain n
3 bad edges which are incident with w. Along with the bad edges

obtained from the complete graph, we get the equitable defective number as bk
χe
(Kn) +

n(n−2)
3 .

Subcase 2.2. When n ≡ 1 (mod 3), repeat the coloring pattern as in Subcase 2.1 for all vi’s

and ui’s (1 ≤ i ≤ n − 1) and the remaining vertices vn, un and w can be colored with c1, c2 and

c3 respectively to satisfy the equitability condition. Here, we observe that among the ui’s, color

c1 is repeated ⌊n
3 ⌋ times and each ui is adjacent to ⌊n

3 ⌋ number of c1 colored vi’s. Also, color

c2 is repeated ⌈n
3 ⌉ times and among those vertices, ⌊n

3 ⌋ number of c2 colored ui’s are adjacent

to ⌊n
3 ⌋ − 1 same colored vi’s and one c2 colored ui is adjacent to ⌊n

3 ⌋ vertices. Again, color

c3 is repeated ⌊n
3 ⌋ times and each c3 colored ui is adjacent to ⌊n

3 ⌋ − 1 number of c3 colored

vi’s. Further, we obtain ⌊n
3 ⌋ bad edges which are incident with w. Along with the bad edges

obtained from the complete graph, the equitable defective number is bk
χe
(Kn) + 3⌊n

3 ⌋
2.

Subcase 2.3. When n ≡ 2 (mod 3), assign the vi’s and ui’s as in Subcase 2.1 and assign the

vertex w with color c3 to satisfy the equitability condition. Now, it can be observed that among

the ui’s, the colors c1 and c2 are repeated ⌈n
3 ⌉ times and adjacent to ⌊n

3 ⌋ number of same colored

vi’s. Furthermore, color c3 is repeated ⌊n
3 ⌋ times and each c3 colored ui is adjacent to ⌊n

3 ⌋ − 1

number of c3 colored vi’s. Since, ⌊n
3 ⌋ number of ui’s receive color c3, we obtain ⌊n

3 ⌋ bad edges

incident with w. Therefore, the equitable defective number is bk
χe
(Kn) + ⌊n

3 ⌋(2⌈
n
3 ⌉+ ⌊n

3 ⌋).

Case 3. When k ≥ 4, assign the vertices as in the previous cases considering the equitability

condition we obtain the equitable defective number as bk
χe
(Kn) + 2(n − k) + ⌊n

k ⌋.

Figure 1 depicts a 3-ENP-coloring of Mycielskian of complete graphs.



532 Jose S., Naduvath S.

c1
c2

c3

c1

c3

c1 c2 c3
c1

c2

c2

Figure 1 Mycielskian of complete graphs with 3-ENP-coloring.

The following theorem discusses the ENP-coloring and the corresponding equitable defec-

tive number of Mycielski graph of star graphs.

Theorem 3. The equitable defective number of Mycielski graph of star graphs µ(K1,n) is

given by

bk
χe
(µ(K1,n)) =

{

n, if k = 2,

⌊n
3 ⌋ − 2, if k ≥ 3.

Proof. Let v0 be the central vertex of the star graph K1,n and {v1, v2, · · · , vn} be the set of ver-

tices which are adjacent to v0. Let {u0, u1, u2, · · · , un} be the set of vertices corresponding to

vi’s and w be the vertex which is adjacent to all ui’s, 0 ≤ i ≤ n. Thus, the Mycielski graph

of star graph consists of 2n + 3 vertices. Let {c1, c2, · · · , ck} be the set of available colors in an

ENP-coloring and let {V1, V2, · · · , Vn} be the collection of corresponding color classes. Here,

we consider the following cases.

Case 1. When k = 2, we have two available colors c1 and c2 and let us partition the vertex

set as follows: V1 = {v0, u0, u1, u2, · · · , un}, V2 = {v1, v2, · · · , vn, w}.

Assign the vertices in V1 with color c1 and the vertices in V2 with color c2. Since v0 is

adjacent to u1, u2, · · · , un, we obtain n bad edges which are incident with v0. All other vertices

are colored properly and ||V1| − |V2|| = 1. Hence, we conclude that the equitable defective

number is n.

Case 2. When k ≥ 3, let us partition the vertex set into k color classes and consider the vertex

set with minimum cardinality, ⌊2n+3
k ⌋ vertices. Let us restrict the bad edges into this particular

color class so as to minimise the number of bad edges. Place the vertex u0 in this color class and

the remaining vertices of this color class are considered to be v0, v1, v2, · · · , v⌊ 2n+3
k ⌋−2. All the

remaining vertices can be colored properly using the other two available colors (see Figure 2 for

illustration). Since u0 is adjacent to ⌊2n+3
k ⌋ − 2 number of same colored vertices, the equitable

defective number is ⌊2n+3
3 ⌋ − 2.

Figure 2 depicts a 3-ENP-coloring of Mycielskian of stars.
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c1 c1 c1 c2 c2 c2 c2 c2 c2 c2

c1 c1 c1 c1 c3 c3 c3 c3 c3 c3

c3

Figure 2 Mycielskian of star graphs with 3-ENP-coloring.

2 ENP-coloring of splitting graphs

A splitting graph denoted by S(G) has been introduced in [16]. For each vertex vi of a graph

G, take a new vertex ui and join ui to the neighbouring vertices of vi. The graph S(G) thus

obtained is called the splitting graph of G.

In the following theorem, we discuss the ENP-coloring and the corresponding equitable

defective number of splitting graph of paths.

Theorem 4. The equitable defective number of splitting graph of paths S(Pn) when n is odd

is 1.

Proof. Let {v1, v2, . . . , vn} be the set of vertices of the path Pn and let u1, u2, . . . , un be the ver-

tices corresponding to the vertices v1, v2, . . . , vn such that each vertex vi (where 2 ≤ i ≤ n − 1)

is adjacent to ui−1 and ui+1, v1 is adjacent to u2 and vn is adjacent to un−1. The equitable chro-

matic number of splitting graph of paths S(Pn) is 2 when n is even and 3 when n is odd. Thus,

in an ENP-coloring of splitting graph of paths, we consider only one case k = 2 when n is

odd. When k = 2, assign the path Pn with the available colors c1 and c2 and we can properly

color the path with these two colors. Now, assign the ui’s where 1 ≤ i ≤ n − 1 with c1 and c2

such that both vi and the corresponding vertex ui receive the same color. Also, assign un with

color c2 to satisfy the equitability condition, we obtain only one vn−1un bad edge and thus the

equitable defective number is 1.

Figure 3 depicts a 2-ENP-coloring of splitting graph of paths.

c1 c2 c1 c2 c1 c2 c2

c1 c2 c1 c2 c1 c2 c1

Figure 3 Splitting graph of paths with 2-ENP-coloring.
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The following result discusses the ENP-coloring and hence determine the corresponding

equitable defective number of splitting graph of cycles.

Theorem 5. For a cycle Cn, bk
χe
(S(Cn)) = 3.

Proof. Let v1, v2, . . . , vn be the vertices of the cycle Cn and let u1, u2, . . . , un be the set of cor-

responding vertices. Here, each vi (where 2 ≤ i ≤ n − 1) is adjacent to ui−1 and ui+1, v1 is

adjacent to u2 and un, vn is adjacent to u1 and un. The equitable chromatic number of splitting

graph of cycles S(Cn) is 2 when n is even and 3 when n is odd. Thus, in the ENP-coloring, we

consider only one case k = 2 for n is odd. When k = 2, assign the cycle Cn with the available

colors c1 and c2, we obtain one v1vn bad edge. Further, assign the ui’s as in Theorem 4, we

obtain two more bad edges u1vn and vn−1un. Hence, the equitable defective number is 3.

Figure 4 illustrates a 2-ENP-coloring of the splitting graph of a cycle.

c1

c2

c1c2

c1

c2

c1 c2

c2

c1

c2

c1
c2

c1

c2

c1
c2

c1

Figure 4 Splitting graph of cycles with 2-ENP-coloring.

The following theorem determines the equitable defective number of splitting graph of

complete graphs.

Theorem 6. The equitable defective number of splitting graph of complete graph S(Kn) is

given by

(i) if k = 2, then bk
χe
(S(Kn)) =

{

bk
χe
(Kn) +

n(n−2)
2 , if n is even,

bk
χe
(Kn) + 2⌊n

2 ⌋
2, if n is odd,

(ii) if k = 3, then bk
χe
(S(Kn)) =















bk
χe
(Kn) +

n(n−3)
3 , if n ≡ 0 (mod 3),

bk
χe
(Kn) + ⌊n

3 ⌋(3⌊
n
3 ⌋ − 1), if n ≡ 1 (mod 3),

bk
χe
(Kn) + ⌊n

3 ⌋(3⌊
n
3 ⌋+ 1), if n ≡ 2 (mod 3),

(iii) if k ≥ 4, then bk
χe
(S(Kn)) = bk

χe
(Kn) + 2(n − k).

Proof. Let v1, v2, . . . , vn be the vertices of the complete graph and u1, u2, . . . , un be the corre-

sponding vertices. The equitable chromatic number of splitting graph of complete graphs is n.

Hence, in an ENP-coloring, we need to consider all the cases from k = 2, 3, . . . , n − 1 as below.

The equitable defective number of complete graphs have been investigated in [7]. Thus, we

consider only the bad edges between vi’s and ui’s.
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Case 1. Let k = 2 and consider the following subcases.

Subcase 1.1. When k = 2 and n is even, assign the vi’s (where 1 ≤ i ≤ n) with the two

available colors c1 and c2 in a cyclic order and assign the corresponding ui’s with the same

colors such that both vi and ui receive the same color. Here, it can be observed that each ui

is adjacent to n
2 − 1 number of same colored vertices and since there are n number of ui’s, the

total number of bad edges obtained is n2

2 − n. Along with that, we have the bad edges resulting

from the ENP-coloring of a complete graph Kn and thus the equitable defective number is

bk
χe
(Kn) +

n(n−2)
2 .

Subcase 1.2. When k = 2 and n is odd, assign the vi’s (1 ≤ i ≤ n) and ui’s (1 ≤ i ≤ n − 1) as

in Subcase 1.1 and assign un with color c2 to satisfy the equitability condition. We observe that

there are ⌊n
2 ⌋ number of c1 colored ui’s and each of these vertices is adjacent to ⌊n

2 ⌋ number of

c1 colored vi’s. Also, among the ⌈n
2 ⌉ number of c2 colored ui’s, ⌊n

2 ⌋ number of ui’s are adjacent

to ⌊n
2 ⌋ − 1 number of c2 colored vertices and one ui is adjacent to ⌊n

2 ⌋ vertices. Hence, the

equitable defective number is 2⌊n
2 ⌋

2. Along with the bad edges resulting from the adjacency

within vi’s, the equitable defective number is bk
χe
(Kn) + 2⌊n

2 ⌋
2.

Case 2. Assume that k = 3. Here, we consider the following three subcases.

Subcase 2.1. When k = 3 and n ≡ 0 (mod 3), assign the vi’s with the three available colors

c1, c2 and c3 alternatively and assign the corresponding ui’s with the same colors assigned to

vi. Here, when we consider the ui’s, each ui repeats n
3 times and adjacent to n

3 − 1 number of

same colored vi’s. Along with the bad edges obtained from the complete graph, the equitable

defective number is bk
χe
(Kn) +

n(n−3)
3 .

Subcase 2.2. When k = 3 and n ≡ 1 (mod 3), assign the vi’s and ui’s where 1 ≤ i ≤ n − 1 as

in Subcase 2.1 and assign the vertices vn and un with c1 and c2 respectively. When we consider

the ui’s, it can be observed that, color c1 is repeated ⌊n
3 ⌋ times and each c1 colored ui is adjacent

to ⌊n
3 ⌋ number of c1 colored vi’s. On the other hand, color c2 is repeated ⌈n

3 ⌉ times and among

those vertices, ⌊n
3 ⌋ number of c2 colored ui’s are adjacent to ⌊n

3 ⌋ − 1 same colored vi’s and one

c2 colored ui is adjacent to ⌊n
3 ⌋ vertices. Moreover, color c3 is repeated ⌊n

3 ⌋ times and each c3

colored ui is adjacent to ⌊n
3 ⌋ − 1 number of c3 colored vi’s. Along with that we have the bad

edges resulting from the ENP-coloring of complete graphs and hence the equitable defective

number is bk
χe
(Kn) + ⌊n

3 ⌋(3⌊
n
3 ⌋ − 1).

Subcase 2.3. When k = 3 and n ≡ 2 (mod 3), assign the vi’s and ui’s where 1 ≤ i ≤ n − 2 as

in the previous subcases and assign vn−1 and un−1 with color c1. To maintain the equitability

condition, assign the vertex vn with color c2 and un with color c3. Here, we have the following

observations. Considering the colors assigned to ui’s, color c1 is repeated ⌈n
3 ⌉ times and each

c1 colored ui is adjacent to ⌊n
3 ⌋ number of c1 colored vi’s. And color c2 is repeated ⌊n

3 ⌋ times

and each c2 colored ui is adjacent to ⌊n
3 ⌋ number of c2 colored vi’s. Also color c3 is repeated ⌈n

3 ⌉

times and among those vertices, ⌊n
3 ⌋ number of c3 colored ui’s are adjacent to ⌊n

3 ⌋ − 1 number

of c3 colored vi’s and one c3 colored ui is adjacent to ⌊n
3 ⌋ number of same colored vertices.

Along with the bad edges resulting from the complete graph, the equitable defective number

is, bk
χe
(Kn) + ⌊n

3 ⌋(3⌊
n
3 ⌋+ 1).

Case 3. When k ≥ 4, assign the vertices v1, v2, . . . , vk⌊ n
k ⌋

with the available k colors in a cyclic

order and assign the corresponding ui’s with the same colors. Further, assign the remaining

vertices with the available colors in an equitable manner and along with the bad edges ob-

tained from the complete graph, the equitable defective number is bk
χe
(Kn) + 2(n − k). This
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completes the proof.

Figure 5 depicts a 5 equitable coloring and 3-ENP-coloring of splitting graph of complete

graphs.

c1v1

c2v2

c3

v3

c4 v4

c5 v5

c1

u1

c2

u2

c3

u3

c4

u4

c5

u5

(a) S(K5) with 5-equitable coloring

c1v1

c2v2

c3

v3

c1 v4

c2 v5

c1

u1

c2

u2

c3

u3

c1

u4

c3

u5

(b) 3-ENP-coloring of S(K5)

Figure 5 Splitting graph of complete graphs with 5 equitable coloring and 3 ENP-coloring.

Theorem 7. For a star graph K1,n, bk
χe
(S(K1,n)) =

{

n − 1, if k = 2,

⌊2n+2
k ⌋ − 2, if k ≥ 3.

Proof. Splitting graph of star graph consists of 2n + 2 vertices. Let v0 be the central vertex

of the star graph K1,n and v1, v2, · · · , vn be the set of vertices which are adjacent to v0 and

let u0, u1, u2, · · · , un be the vertices corresponding to these vertices. Let c1, c2, · · · , ck be the

available colors in an ENP-coloring and let V1, V2, · · · , Vn be the corresponding color classes.

Here, we consider the following cases.

Case 1. When k = 2, we have the two available colors c1 and c2 and both color classes

contain n + 1 vertices. Assign the vertices in such a way that both v0 and u0 receive the same

color and other vertices can be colored in an equitable manner. Here, the equitable defective

number is n − 1.

Case 2. When k ≥ 3, assign the available colors by considering the equitability condition

we obtain ⌊2n+2
k ⌋ − 2 bad edges.

The following result describes the ENP-coloring and the corresponding equitable defective

number of splitting graph of wheel graphs.

Theorem 8. The equitable defective number of splitting graph of wheels S(W1,n) is given by

bk
χe
(S(W1,n)) =















3n
2 , if k = 2, n is even,

3(n+1)
2 , if k = 2, n is odd,

⌊2n+2
k ⌋ − 2, if k ≥ 3.

Proof. Let v1, v2, . . . , vn be the vertices of the rim of the wheel graph and let v0 be the cen-

tral vertex. Let u0, u1, u2, . . . , un be the corresponding vertices of vi’s. In an ENP-coloring of

splitting graph of wheels, we consider the following cases.

Case 1. When k = 2 and n is even, assign the vertices of the rim of the wheel with the two

available colors c1 and c2. Assign the central vertex v0 with color c2 which results in n
2 bad

edges. Now, assign the vertices ui’s with the same colors which are assigned to vi’s, where
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1 ≤ i ≤ n. Further, assign u0 with color c1 to satisfy the equitability condition. We observe

that there are n
2 bad edges which are incident with u0 and n

2 bad edges which are incident with

v0. Hence, the equitable defective number is 3n
2 .

Case 2. When k = 2 and n is odd, assign the vertices v1, v2, . . . , vn as in Case 1 and assign

the central vertex v0 with color c2, we obtain ⌈n
2 ⌉ bad edges. Now, assign the ui’s with the same

colors which are assigned to vi’s where 0 ≤ i ≤ n. We observe that there are ⌊n
2 ⌋ bad edges

which are incident with v0 and ⌊n
2 ⌋ bad edges which are incident with u0. Also there are two

more bad edges that is v1un and u1vn. Hence, the equitable defective number in this case is
3(n+1)

2 .

Case 3. When k ≥ 3, assign v0 and u0 with color c1 and assign other vi’s with the remain-

ing available colors alternatively. In an ENP-coloring, each color class should contain either

⌈2n+2
k ⌉ vertices or ⌊2n+2

k ⌋ vertices. Assume that the central vertex v0 lies in the color class with

minimum cardinality ⌊2n+2
k ⌋ and since only one vi received color c1, ⌊2n+2

k ⌋ − 1 number of ui’s

should receive color c1. Since u0 is colored with color c1, ⌊2n+2
k ⌋ − 2 number of ui’s other than

u0 should receive color c1 and since v0 is adjacent to all ui’s except u0, we get ⌊2n+2
k ⌋ − 2 bad

edges. Thus, the equitable defective number is ⌊2n+2
k ⌋ − 2.

The following theorem discusses the ENP-coloring of splitting graph of helm graphs.

Theorem 9. The equitable defective number of splitting graph of helm S(H1,n) is given by

bk
χe
(S(H1,n)) =















3n
2 , if k = 2, n is even,

3n+5
2 , if k = 2, n is odd,

3, if k = 3, n is odd.

Proof. Let v1, v2, . . . , vn be the vertices of the rim of the wheel graph and let v0 be the central

vertex. Let v′1, v′2, . . . , v′n be the pendent vertices such that each vi is adjacent to v′i for i =

1, 2, . . . , n. Let u0, u1, u2, . . . , un, u′
1, u′

2, . . . , u′
n be the vertices corresponding to all vi’s. In an

ENP-coloring, we consider the following cases.

Case 1. When k = 2 and n is even, assign the rim vertices v1, v2, . . . , vn with colors c1 and

c2 alternatively. Now, assign the pendent vertices v′1, v′2, . . . , v′n such that if vi is assigned with

color c1 (or c2), then assign v′i with color c2 (or c1). Also, assign the central vertex v0 with color

c1, so that we obtain n
2 bad edges among the spokes. Further, for i = 1, 2, . . . , n, 1′, 2′, . . . , n′,

assigning the ui’s with the same colors assigned to vi’s and assign u0 with color c2 to satisfy

the equitability condition. Thus, we obtain n
2 bad edges which are incident with v0 and n

2 bad

edges which are incident with u0. Hence, in this case the equitable defective number is 3n
2 .

Case 2. When k = 2 and n is odd, assign the vi’s and ui’s with the available colors as in

Case 1 except for v0 and u0. Now, assign the central vertex v0 with color c2 we obtain ⌊n
2 ⌋

bad edges among the spokes and one bad edge on the rim. Further, assign u0 with color c1,

we obtain ⌊n
2 ⌋ bad edges which are incident with v0 and ⌈n

2 ⌉ bad edges which are incident

with u0. Along with those, we get two more bad edges which are u1vn and v1un. Hence, the

equitable defective number is 3n+5
2 .

Case 3. For even n, the equitable chromatic number of splitting graph of helm is 3. There-

fore, in an ENP-coloring, we consider only one case, k = 3 and n is odd. Assign the rim

vertices of the helm v1, v2, . . . , vn−1 with colors c1 and c2 alternatively and assign vn with color

c3. Now, assign the vertices v′1, v′2, . . . , v′n−1 such that if vi is assigned with color c1 or c2, then
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assign v′i with color c2 or c3 and assign v′n with color c1. Further, assign the central vertex

v0 with color c3 which results in only one bad edge among the spokes. Then, assign the ui’s

where i = 0, 1, 2, . . . , n with the same colors assigned to vi’s, where 0 ≤ i ≤ n. Also, assign

the remaining ui’s where i = 1′, 2′, . . . , n′ with the available three colors by satisfying the eq-

uitability condition, we obtain two bad edges (v0un and u0vn). Hence, the equitable defective

number in this case is 3.

3 ENP-Coloring of Shadow Graphs

The shadow graph of a graph G denoted by Sh(G), is the graph obtained by taking two copies

of G say G′ and G′′, and join each vertex v′ in G′ to the neighbours of the corresponding vertex

v′′ in G′′.

The next result discusses the ENP-coloring of shadow graph of paths. The shadow graph

of a path is obtained by taking two copies of paths and by joining each vertex of the first copy

of the path to the neighbours of the corresponding vertex of the second copy of the path.

Theorem 10. For a path Pn, bk
χe
(Sh(Pn)) = 2.

Proof. Let v1, v2, . . . , vn be the vertices of the first copy of the path P′
n and let u1, u2, . . . , un

be the vertices of the corresponding path P′′
n . According to the definition of shadow graph of

paths, the neighbours of vi should be adjacent to ui ∀i. We observe that the equitable chromatic

number of shadow graph of paths is 2 when n is even and 3 when n is odd. Thus, in an ENP-

coloring, we consider only one case as k = 2 and n is odd. Here, we assign the vertices vi’s

with the available colors c1 and c2 alternatively. Now, assign the corresponding ui’s where

1 ≤ i ≤ n − 1 with the same colors as assigned to vi’s. Further, assign un with color c2 to

satisfy the equitability condition, we obtain only two bad edges un−1un and vn−1un. Thus, the

equitable defective number is 2.

Figure 6 depicts a 2-ENP-coloring of shadow graph of paths.

c1 c2 c1 c2 c1 c2 c2

c1 c2 c1 c2 c1 c2 c1

Figure 6 Shadow graph of paths with 2-ENP-coloring.

The following theorem investigates the ENP-coloring of shadow graph of cycles.

Theorem 11. For a cycle Cn, bk
χe
(Sh(Cn)) = 4.

Proof. Let v1, v2, . . . , vn be the vertices of the first copy of the cycle C′
n and let u1, u2, . . . , un be

the vertices of the second copy of the cycle C′′
n . Here, each vi, 1 ≤ i ≤ vn−1, in C′

n is adjacent

to ui−1 and ui+1 in C′′
n , vn is adjacent to un−1 and u1, v1 is adjacent to un and u1. The equitable

chromatic number of shadow graph of cycles is 2 when n is even and 3 when n is odd. Thus,

in an ENP-coloring we consider only one case as k = 2 when n is odd. Now, assign the vertices

with the available colors as in Theorem 10 we obtain four bad edges such as v1vn, u1vn, un−1un

and vn−1un. Hence, the equitable defective number is 4.
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Figure 7 depicts a 2-ENP-coloring of shadow graph of a cycle.

c1

c2

c1c2

c1

c2

c1 c2

c2

c1

c2

c1
c2

c1

c2

c1
c2

c1

Figure 7 Shadow graph of cycles with 2-ENP-coloring.

The following theorem discusses the ENP-coloring of shadow graph of complete graphs.

A shadow graph of a complete graph is obtained by taking two copies of complete graphs and

by joining the vertices depending on the adjacency in the original graph. Thus, we see that the

following theorem is an immediate consequence of Theorem 2.

Theorem 12. The equitable defective number of shadow graph of complete graphs Sh(Kn) is

bk
χe
(Sh(Kn)) = bk

χe
(Kn) + bk

χe
(S(Kn)).

Proof. The proof follows from Theorem 2 and by the rule of shadow graph construction.

Theorem 13. For a star graph K1,n,

bk
χe
(Sh(K1,n)) =

{

2(n − 1), if k = 2,

2[⌊2n+2
k ⌋ − 2], if k ≥ 3.

Proof. Let v0, v1, v2, . . . , vn be the vertices of the first copy of the shadow graph of star graph

and u0, u1, u2, . . . , un be the vertices of the second copy. Here, we consider the following cases.

Case 1. When k = 2, among the two color classes, each color class contains n + 1 vertices.

Assign v0 and u0 with the same color and assign the remaining vertices in an equitable manner,

we obtain n − 1 bad edges among the vi’s and ui’s and n − 1 bad edges between the vi’s and

ui’s. Thus, the equitable defective number is 2(n − 1).

Case 2. When k ≥ 3, assign the available colors by considering the equitability condition,

we obtain ⌊2n+2
k ⌋ − 2 bad edges among the ui’s and vi’s and ⌊2n+2

k ⌋ − 2 bad edges between the

ui’s and vi’s. Thus, the equitable defective number is 2[⌊2n+2
k ⌋ − 2].

In view of Theorem 7, we can restate Theorem 13 as follows.

Theorem 14. For a star graph K1,n, bk
χe
(Sh(K1,n)) = 2bk

χe
(S(K1,n)).

Figure 8 depicts a 3-ENP-coloring of the shadow graphs of star graphs.
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c1 c1 c2 c2 c3 c3

c1 c1 c2 c2 c3 c3

Figure 8 Shadow graph of star graphs with 3-ENP-coloring.

In the next theorem, we examine the ENP-coloring of shadow graph of wheel graphs.

Theorem 15. The equitable defective number of shadow graph of wheels Sh(W1,n) is

bk
χe
(Sh(W1,n)) =















2n, if k = 2, n is even,

2(n + 1), if k = 2, n is odd,

2⌊2n+2
3 ⌋ − 4, if k ≥ 3.

Proof. Let v0, v1, v2, . . . , vn be the vertices of the first copy of the wheel graph and let

u0, u1, u2, . . . , un be the corresponding vertices in the second copy of wheel graph. In an

ENP-coloring, we consider the following cases.

Case 1. When k = 2 and n is even, assign the vi’s with the available colors c1 and c2 alterna-

tively and assign the central vertex v0 with color c2, we obtain n
2 bad edges among the spokes.

Now, assign the ui’s, 1 ≤ i ≤ n, with the same colors assigned to vi’s and assign u0 with color

c1 to satisfy the equitability condition. Here, we obtain n
2 bad edges which are incident with

v0 and n
2 bad edges which are incident with u0. Along with that we obtain n

2 bad edges among

the spokes of the second copy of the wheel. Hence, the equitable defective number is 2n.

Case 2. When k = 2 and n is odd, assign all the vi’s as in Case 1, we obtain ⌊n
2 ⌋ spokes bad

edges and one bad edge on the rim of the wheel. Now, assign the ui’s where 0 ≤ i ≤ n with the

same colors assigned to vi’s we obtain ⌊n
2 ⌋ bad edges which are incident with v0 and ⌊n

2 ⌋ bad

edges which are incident with u0. Also, there are two more bad edges v1un and u1vn. Now,

the second copy of the wheel also result in ⌈n
2 ⌉ bad edges and hence the equitable defective

number is 2(n + 1).

Case 3. When k ≥ 3, assign v0, u0, vn and un with color c1. Assign the remaining vi’s us-

ing all available colors except c1. Thus, we get a v0vn bad edge and u0vn bad edge. In an

ENP-coloring, each color class should contain either ⌈2n+2
k ⌉ vertices or ⌊2n+2

k ⌋ vertices. Con-

sidering the color class containing color c1 with minimum cardinality, c1 has to be repeated

⌊2n+2
k ⌋ times. Since two vi’s receive color c1, ⌊2n+2

k ⌋ − 2 number of ui’s should receive color c1.

Thus, assign the ui’s, 1 ≤ i ≤ n − 1, using the available colors and c1 alternatively considering

the equitability condition. Since v0 is adjacent to all ui’s where 1 ≤ i ≤ n, we obtain ⌊2n+2
k ⌋ − 3

bad edges which are incident with v0. Since u0 is the central vertex, ⌊2n+2
k ⌋ − 3 bad edges

are there among the spokes of the second copy of the wheel. Hence, the equitable defective

number is 2⌊2n+2
k ⌋ − 4.



On equitable near-proper coloring of some derived graph classes 541

In the following result, we discuss the ENP-coloring of shadow graph of helm graphs.

Theorem 16. The equitable defective number of shadow graph of helm Sh(H1,n) is given by

bk
χe
(Sh(H1,n)) =















2n, if k = 2, n is even,

2(n + 2), if k = 2, n is odd,

4, if k = 3, n is odd.

Proof. Let the labelling of vertices be given in Theorem 9 and consider the following cases.

Case 1. When k = 2 and n is even, assign the vertices v1, v2, . . . , vn with the available colors

c1 and c2 alternatively and assign v′1, v′2, . . . , v′n in such a way that if vi is assigned with color

c1 (or c2) assign the corresponding ui with color c2 (or c1). Now, assign v0 with color c1 and u0

with color c2 we observe that we obtain n
2 bad edges resulting from the first copy of the helm,

n
2 bad edges which are incident with v0, n

2 bad edges which are incident with u0 and n
2 bad

edges from the second copy of the helm. Hence, the equitable defective number is 2n.

Case 2. When k = 2 and n is odd, assign the vertices as in Case 1 we obtain ⌈n
2 ⌉ bad edges

resulting from the first copy of helm, ⌊n
2 ⌋ bad edges which are incident with v0 and ⌊n

2 ⌋ bad

edges which are incident with u0. Along with that we obtain two more bad edges v1un and

u1vn. Also, considering the ⌈n
2 ⌉+ 1 bad edges from the second copy of the helm the equitable

defective number is 2(n + 2).

Case 3. When k = 3 and n is odd, assign v1, v2, . . . , vn−1 with the colors c1 and c2 alterna-

tively and assign the corresponding ui’s with the same colors as assigned to vi’s. And assign

the vertices v0, vn, u0, un with color c3, we obtain one bad edge among the spokes of each copy

of helm. Now, all the remaining vertices can be assigned by the three available colors in an eq-

uitable manner we obtain two bad edges v0un and u0vn. Thus, the equitable defective number

is 4.

Conclusion

In this paper, we discussed the ENP-coloring of Mycielski graph of complete graphs and

star graphs, splitting graph and shadow graph of paths, cycles, complete graphs, star graphs,

wheel graphs and helm graphs. The equitable defective number of these graphs are also deter-

mined. This study can be extended to other derived graph classes, graph products and graph

powers. Further investigation is possible for graph operations such as union, intersection,

complement and join of fundamental graph classes.
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Хосе С., Надуват С. Про рiвномiрне майже правильне розфарбування деяких похiдних класiв графiв

// Карпатськi матем. публ. — 2022. — Т.14, №2. — C. 529–542.

Рiвномiрне майже правильне розфарбування графа G — це дефектне розфарбування, в

якому кiлькiсть вершин у будь-яких двох колiрних класах вiдрiзняється бiльш нiж на одини-

цю, а отриманi поганi ребра мiнiмiзуються шляхом обмеження кiлькостi класiв кольорiв, якi

можуть мати сумiжнiсть серед власних елементiв. У цiй статтi дослiджується рiвномiрне май-

же правильне розфарбування деяких похiдних класiв графiв, таких як графи Мичельського,

розщеплювальнi графи та тiньовi графи.

Ключовi слова i фрази: рiвномiрне майже правильне розфарбування, граф Мичельського,

розщеплюваний граф, тiньовий граф.


