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Applications of uniform boundedness principle to matrix
transformations

Sarigol MLA.

Using the uniform boundedness principle of Maddox, we characterize matrix transformations
from the space (¢p)r to the spaces m(¢) and n(¢) for the case 1 < p < oo, which correspond to
bounded linear operators. Here (¢,)t is the domain of an arbitrary triangle matrix T in the space
?p, and the spaces m(¢) and n(¢) are introduced by W.L.C. Sargent. In special cases, we get some
well known results of W.L.C. Sargent, M. Stieglitz and H. Tietz, E. Malkowsky and E. Savas. Also
we give other applications including some important new classes.
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Introduction

The set w of all real or complex valued sequences is a vector space under point-wise addi-
tion and scalar multiplication, and its any subspace is called as a sequence space. The sets ¢, c
and /,, 1 < p < oo, of all bounded, convergent and absolutely p-summable sequences are
well-known sequence spaces, respectively. We write ¢ instead of ¢; for short.

For any x € w, by x,, v € IN, we denote the coordinates of x, so x = (x,). The operator
Ax : w — wis defined by Ax = (Axy) = (xp — xp—1), v > 1, where x € w and xo = 0. We
denote the set of all rearrangements of x by S(x) for any sequence x. Further, let

v+1

For each s € IN, let Hy be the class of all subsets of IN which contain at most s elements.
Then, for each ¢ € @, the sequence spaces m(¢) and n(¢) were introduced and studied by
W.L.C. Sargent [13] as

nig) = {xcws supsup { - Tl } <o)

s€IN ceHs veoT
and
n(¢) = {x Ew: sup { iA¢U|uv|} < oo},
ueS(x) Lo=1
YAK 517.982.276
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which are BK-spaces, i.e. a Banach sequence space with continuous coordinates, with respect
to their natural norms

1 o0
Ixllmgy =supsup — 3 |xo|  and  |lxlluig) = sup Y Adoluol.
seIN oceH;s ¥s veo uesS(x) v=1
Let X, Y be any two sequence spaces and A = (a,,) be an infinite matrix of real or complex
numbers. Then we define A(x) = ((A,(x)), the A -transform of x € X, as

An(x) — Z AnovXo, ne N,
v=1

if the series in the right hand side converges for each n € IN. If A(x) is well defined and
belongs to Y for every x € X , then A defines a matrix transformation from X to Y, which is
denoted by the same letter A : X — Y. By (X, Y), we mean the class of all infinite matrices A
suchthat A: X — Y.

The domain X 4 of an infinite matrix A in a sequence space X is defined by

Xa={xecw: A(x) € X},

which is a sequence space. Although in the most cases the new sequence space X 4 generated by
a matrix A from a sequence space X is the expansion or the contraction of the original space
X, it may be observed in some cases that these spaces overlap. In fact, one can easily see that
the inclusion £, C (¢p) strictly holds for 1 < p < oo, if Ais givenby a,, = 1,4, 41 = —1,
and zero otherwise. Also, the inclusion (£,)4 C /,, strictly holds if A is given by a,,, = 1 for
1 < v < n, and zero otherwise.

For any sequence space X, the dual X is defined by

XP = {a EwW: Z Ay Xy converges for all x € X}

v=1

A matrix T = (t,) is called triangle if t,,, # 0 and t,, = 0 forall k > n,n € IN.
Throughout the paper, T will denote a triangle matrix which has unique triangle inverse S

(see [14]), and also, for an infinite matrix A = (a,,), we define the infinite matrices

o0
Apy = Z AurSro, 1,0 € N,

r=ov
and

n
Ao = Z twrrs, 1,0 €N, (1)
r=1
where A and A are the product of the matrices S = (s,,) and T = (f,,,) by the matrix A from
the left and right, respectively.

The sequence spaces play important roles in summability theory, a wide field of mathe-
matics, which has several applications in linear algebra, approximations theory, calculus, and
essentially in functional analysis. The classical theory deals with the generalization of the con-
cept of convergence for sequences and series. The aim is to assign a limit for diververgent
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sequences and series by making use of an operator defined by an infinite matrix. The reason
why matrices are used for a general linear operator is that a linear operator from a sequence
space to another one can be given by an infinite matrix. In recent times, a large literature has
grown up, concerned with characterising completely all matrices which transform one given
sequence space into another, and also, many sequence spaces and related matrix transforma-
tions have been studied by several authors (see, e.g., [1-3,10]).

In this paper, we characterize the matrix operators from the space (£,)r to the spaces m(¢)
and n(¢), for the case 1 < p < oo, using the uniform boundedness principle of Maddox
(cf. [4, Theorem 25, p. 67]), and show that each matrix from these classes corresponds to a
bounded linear operator. In special cases, some known results of W.L.C. Sargent [13],
M. Stieglitz and H. Tietz [14], and E. Malkowsky and E. Savas [5], and also other applications
including new classes are obtained.

We require the following lemmas for the proof of our theorem.

Lemma 1 ([14, pp. 3-4]). Let A = (axv) be an infinite matrix with complex numbers such that
lim;, a,, exists forv > 1. Then the following statements hold:

(i) forp =1, A € (¢,c) if and only if sup |an,| < oo;
n,o

(i) for1 < p < oo, A € ({p,c) ifand only if sup ) | |anu|P” < oo, where p* is the conjugate of
nop=1

p,iel/k+1/p*=1;

(iii) for p = 0o, A € ({eo,¢) if and only if Y _ |an,| converges uniformly inn.
v=1
Lemma 2 ([4, p. 67]). Let X be a second category p-normed space, where 0 < p < 1. Suppose F
is a family of lower semicontinuous seminorms q such thatg(x) < M(x) < oo forallx € X and
q € F, where M(x) is a number depending on x. Then there exists a constant K, independent
of x and g such that
9(x) < K|lx]|V? < oo

forallx € X and allq € F.

Lemma 3 ([13, Lemma 14]). Let1 < p < 0. Then A € (¢, m(¢p)) ifand only if A* € (n(¢), p+),
where A' is the transpose of the matrix A.

Lemma 4 ( [8, Lemma 6.11]). Let X and Y be arbitrary subsets of w and T be a triangle matrix.
Then we have A € (X,Yr) ifand only if A = TA € (X,Y).

1 Main Results

The set of all bounded (continuous) linear operators from a normed space U to another
normed space V is denoted by B(U,V), and the norm of a bounded linear operator
L € B(U, V) is defined by

IL]| = sup { ”L”(XXH)” o#xcu)

Also, U" = B(U, C) is the set of all bounded linear functionals on U, where C is the set of all
complex numbers. Now, we begin with proving an auxiliary theorem which plays an impor-
tant role in basic results.
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Theorem 1. Let1 < p < oo, T be a triangle matrix and S be the inverse of T. If f € ({x)} is
defined by f(x) = Y. a,x,, then we have

=

1bll¢,., 1<p <oo,
IAl=<1blle, P=1,
[blle, P =09,

where

[ee]
by, = Z ArSyy,
r=v

Proof. For 1 < p < oo, it is well known that the space ¢, is the BK-space with respect to its
natural norm. We note that, since T is a triangle matrix, it is immediate by [15, Theorem 4.3.2]
that the space(/;)r is also a BK-space with respect to the norm

o] 1/P
1%,y = ( Y \Tn(x)]p> ,

n=1
where
n
Z tnvxvr 7 1/ e (2)
Also, if we define T : ({,)7 — £, by T(x) = (Tu(x)) forall x € (EP)T, then it is easily seen that
it is an isometrical isomorphism and so (¢,)r = ¢,. Let S = T~! and y = T(x). Now, it can be

written from the inversion of (2) that

m m v m m m
Z AyXy = Z ay Z SorYr = Z ( Z avsvr> Yr = Z bmryrr
v=1 v=1 r=1 v=r r=1

r=1

where

YO apser, 1<r<m,
bmr -
0, r > m.

This gives that the series ) . | a4,x, converges for all x € (¢;)r if and only if B € (¢, c). On the
other hand, for any matrix R = (ryu,) € (¢, c), the remaining term tends to zero in uniformly
in m, because

Z YmolYov

v=N

o0 ; 1/P* 0 1/P
< sup ( S [ruol? ) ( 5 |yv|P) 50
m v=1 v=N

by Lemma 1. So ) > | "molo converges uniformly in m, which gives

11]}’11’1 Z rmvyy - Z ].].J/ln va]/v. (3)
v=1 v=1

By applying (3), we have
= Z AyXy = Z bvyv
v=1 v=1

for all x € (¢)r, or equivalently, forall y € /.



240 Sarigol MLA.

Thus, by considering
by, 1<p<oo
f; = dle, p=1,
t, p=moo,
it follows that
Ifll = sup |f(x)| = sup | vayvl = [[blle,.
[lxl=1 Ilyll=1 v=1
and
£ = 1blle, and £l = |[blle,
respectively. O

Now we are ready to give the basic theorems.
Theorem 2. Let ¢ € ® and T be a triangular matrix. Then the following statements hold:

(i) for1 < p < oo, each matrix A € (({,)r,m(¢)) defines Ly € B((£,)r, m(¢)) such that
La(x) = A(x) foreach x € ({y)r and A € (({;)1, m(¢)) if and only if

~ P
Any
Ly

neo

*

Hp(m(¢)) = sup sup ) < 0o 4)

s 0E€EH;p=1

(ii) for p =1, each matrix A € ({1, m(¢)) defines Ly € B({1,m(¢)) such that L4(x) = A(x)
and A € ({7, m(¢)) if and only if

~

Any
L

neg 1S

< o0; )

p1(m(¢)) = sup sup sup

s o€EH; ©

(iii) for p = oo, each matrix A € (({wo)7,m(¢$p)) defines Ly € B(({e)T,m(¢)) such that
Ls(x) = A(x) foreach x € ()1 and A € (({eo) T, m(¢)) if and only if

Any
Ly

neo

Hoo(m(¢)) = sup sup Z < 0. (6)

s o0€Hsv=1

Proof. The linearity of L 4 is clear by the definition of a matrix operator. Further, since (¢,)7 and
m(¢) are BK spaces, it follows from [15, Theorem 4.2.8] that L 4 is a bounded linear operator.

For the proof of second part, assume A € ((£,)7,m(¢)). Then, since A, € ({,)7, for any
s € N and ¢ € H;, we get

fs,o = Z Ap €

5 neoc

IfF={fss: s €N, o€ H}, then we have
[fso ()| < — Z [An(x)] < A [jng) < o0
S neo

foreachs € N, 0 € H; and all x € F. Since (¢;)T is a complete metric space, it is of second
category, and so it follows from Lemma 2 that there exists a constant M such that

| fsoll <M (7)
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forall s € IN and ¢ € H,. On the other hand, since

fsa ZAn

S neoc 4)5 v=1 neoc

R p
which implies (4) by (7).

Conversely, suppose that (4) holds. Given x € ({x)r. We should show that A(x) =
(An(x)) € m(¢). Now, if we take ¢ = {n}, then A,(x) exists for all n € IN. Lets € IN
and ¢ € H;. By using the inequality of Peyerimhoff [9], we get, by (4) and (8),

Z|A |<4max< Y Au(x

!
S neoc o'Co neo’

it follows from Theorem 1 that

Ifecll =54 & T ( z)

v=1

1/p*
} , ®)

) < dsup sup |fso(x)] < H{pp(m(@)} |20,y

S o€H;

This shows that
A gy < 4{pp(m(@))IF llxllr,),
forall x € (£p)r.

Since (ii) and (iii) are proved as in (i), so they are omitted. O

Let A be an arbitrary infinite matrix. By S(A) and F(IN), we denote the set of all matrices
B which consist of rearrangements of the rows of A and the set of all finite subsets of IN,
respectively.

Theorem 3. Let ¢ € ® and T be a triangular matrix. The following statements hold:
(i) for1 < p < oo, each matrix A € (({y)1,n(¢)) defines Ly € B((¢p)r,n(¢)) such that
La(x) = A(x) foreach x € ({y)r and A € (({,)1,n(¢)) if and only if

< oo; )

Z bnvAQDn

neo

pp(n(¢)) = sup  sup Z

BeS(A)oeF(N

(ii) for p =1, each matrix A € ({1,n(¢)) defines Ly € B(¢t,n(¢$)) such that Lo(x) = A(x)
foreach x € T and A € ({1,n(¢)) if and only if

Z /b\nqubn < o0; (10)

neo

pi(n(¢)) = sup sup sup
BeS(A) ceF(N) ©

(iii) for p = oo, each matrix A € (({)T,n(¢)) defines Ly € B((lss)T,n($)) such that
La(x) = A(x) foreach x € ({o)7 and A € (({s)T,n(¢p)) if and only if

) Doy | < (11)

neo

poo(n(¢)) = sup sup Z

BeS(A) ceF(N
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Proof. Since the proof of first part is similar to the proof of corresponding part of Theorem 2,
we omit it. Now let A € ((¢p)7,1(¢)), B € S(A) and let ¢ C IN be a finite set. As in the proof
of Theorem 2, we get

fBo = Z B¢y € ()T

neor

Also, it follows by applying Theorem 1 that there exists a constant M such that

Ifpoll <M

for all B € S(A) and finite ¢ C IN. So, by considering
fBO’ Z B A¢n = Z(Z bnvA¢n)xv/
neo v=1 neo

we have

o Pyt ) N PPy 1/p
”fB,UH = { Z } = { Z Z buoAdu } ’ (12)

v=1

< Z bnrsrvA(Pn>

neo

which implies y,(1n(¢)) < oco.

Conversely, if y,(1(¢)) < o0, as in the proof of Theorem 2, it is easily seen that A, (x) exists
foralln € N and all x € (£,)7. Now, let x € ({,)1, B € S(A), and ng € IN be given. Then, by
Peyerimhoff’s inequality, Theorem 1, and (12), we obtain

Z |Bn(x)|A¢py <4  max
C{l,z,...,no}

Y Bu(x)Apy

neo

<4 sup sup ||fpollllxll e, = 4ppr( @)} Ixl0,),
BeS(A) ceF(N)

which gives
1A gy < Hpp(n(@))F" 1%l 0,

The proofs of (ii) and (iii) are as in the above lines. O

2 Applications

Theorem 2 and Theorem 3 include the characterizations of some well known matrix classes
and also other new classes. In this section, we give some of them. In fact, if we take T = I,
identity matrix, then, since (¢,)r = {y and A = A = A, we immediately obtain the following
results.

Corollary 1. Let1 < p < co and ¢ € D. Then, the following statements hold:
(i) A€ (Lp,m(¢)) if and only if (4) holds with a,, instead of @y,
(ii) A € (£p,n(¢)) if and only if (9) holds with by, instead of by,
(iii) A € (¢, m(¢)) if and only if (5) holds with a,, instead of @y,
(iv) A € (¢,n(¢)) if and only if (10) holds with by, instead of Doros
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(v) A € (beo, m(¢p)) if and only if (6) holds with a,, instead of Gy,
(vi) A € (b, n(¢p)) if and only if (11) holds with b, instead of Do

Note that the parts (i), (iii) and (v) of this result are given by W.L.C. Sargent [13], which
also includes the results of M. Stieglitz and H. Tietz [14] for m(¢) = ¢ and m(¢) = l« , where
¢n =1, p» = n, n > 1. Further, since each of the spaces m(¢) and n(¢) is the dual of the other
(see [13]), it follows from Lemma 3 and Lemma 4 that A € (n(¢), ({,)7) < A € (n(¢), £,) <
Al € (Ep*,m(gb)), 1 < p < oo, where the matrix A = (ayy) is given by (1). So, by Theorem 2
and Corollary 1, we can state the following result giving characterizations of the converse of
the matrix class in Theorem 3.

Corollary 2. Let1 < p < 0 and ¢ € . Further, let T be a triangular matrix and the infinite
matrix A = (ay) be given by (1). Then, the following statements hold:

(i) A€ (n(¢), (€y)r) if and only if

sup sup Z Z fino |P 00;
s o€Hgp=1'veEor (:DS
(ii) A € (n(¢), (!s)7) if and only if
sup sup sup Z ibﬂ < 0.

s 0€EH; n veET TS

Applying Theorem 3 to the other known spaces we characterize some new classes as fol-
lows. Choose the matrix T as t,; = Sy_oto/rn for 0 < v < n, and t,;, = 0 for v > n, which
is a general matrix and includes numerious matrices, then we have (Zp)T = Zp, 1<p<oo,
studied by M. Mursaleen and A.K. Noman [7]. Also the inverse S of the matrix T is given by

Sno = (—1)”’”D£,S,)Urv/tn for0 < v <mn,and s,, = 0 for v > n, where

€S, S0 0 o ... 0
Sp S1 S0 o ... 0
D(S) 1 S3 Sp S1 s9 ... O
ho Sn+1
0
Sn—1 Sn—2 Sn-3 Sp—4 --- S0
Sn Sp-1 Sp-2 Sn-3 ... S1

This gives

(s)
TolniD:
%, n,v € N. (13)

Zl\nz; — Z(_l)i—v
i=0v
So, we get characterizations of the general classes (¢, m(¢)) and (£, n(¢)) fork > 1.
Corollary 3. Let 1 < p < co0 and ¢ € . Then the following statements hold:
(i) A € (Zp,m(([))) if and only if (4) holds with (13);

(i) A € (¢,m(¢)) if and only if (5) holds with (13);



244 Sarigol MLA.

(iii) A € (£,,n(¢)) if and only if (9) holds with (13);
(iv) A € (¢,n(¢)) if and only if (10) holds with (13).

Also, for 1 < p < oo, if we choose the matrix T as t,, = 'y,lq/p*rnRv_l/Ran_l forl <ov<mn,
and t,, = 0 forv > n, then (¢{,)r = N7 |y, investigated by R.N. Mohapatra and M.A Sarigél [6]
and M.A Sarigol [11,12], where (r,) and () are sequences of positive numbers such that
P1=0and R, =79+ 711+ - +ry, — o0 asn — oo. Further, it is easily seen that the inverse S
of this matrix is stated by s,, = R,/ (’y}/ ke "), Spn—1 = Ru—2/ W;L kl* rn—1), and zero otherwise,

which implies

[e ]
—~ AnyRy — an,v+1Rv—1
Any = Z AnrSro = 17k . (14)
r=v Yo v

Therefore, Theorem 3 are reduced to the following result.
Corollary 4. Let 1 < p < co and ¢ € . Then the following statements hold:
(i) Ae (\NZ]p,m(gb)) if and only if (4) holds with (14);
(ii) A € (IN]|p, n($)) if and only if (9) holds with (14);
(iii) A € (|N,|,m(¢)) if and only if (5) holds with (14);
(iv) A € (|N,|,n(¢)) if and only if (10) holds with (14).

Finally, we conclude this section with the result due to E. Malkowsky and E. Savas [5] as
follows. Choose T as the matrix of generalized weighted means, i.e. t,, = u,v, for 0 <r <mn,
and zero otherwise, where (1) and (v;) are sequences of nonzero numbers. Then ({,)r =
Z(u,v,0y),1 < p<oo,and, forps =1, ¢s =s (s > 1), m(¢) = £ and m(¢) = L, respectively.
Further, it follows that s,» = (u,0,)"}, s, ,_1 = (u,_19,) "}, and zero otherwise, which gives

~ 1 <% . Apr+1
Uy

- ) forall 7,ncN. (15)
Oy Or+1

Thus, by Theorem 2, we have the following result.
Corollary 5. Let 1 < p < co and the matrix A be defined by (15). Then we have
(i) A€ (Z(u,v,4y),¢) if and only if

*
(0.9)

sup )

N =1

p
< 0,

Z Ay

neN

where the supremum is taken through all tinite subsets N of IN;

(i) A € (Z(u,v,0p), ) if and only if

[ee)
sup ) [@ur|?" < oo.

noy=1
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I3 BUKOpMCTaHHSM IPVHOMITY piBHOMipHOI 06MeXeHoCTi MeaaOKca oxapakTepu30BaHO MaTpH-
YHi epeTBOPeHHsI 3 TpocTopy (£,)7 y mpocTopu ni(¢p) Ta n(¢p) y sumaaky 1 < p < oo, siKi Biamosi-
AQOTh O6MeXeHMM AiHiltHuM omepatopam. TyT (£,)T — Iie 06AACTh BU3HAUEHHST AOBIABHOI TPUKY-
THOI MaTpumi Ty mpocTopi £p, a mpoctopu m(¢) Ta n(¢) sBeaeni B.AK. Capaxenr. Y cremiarbHMX
BUITAAKAX OTPMMAHO Aesiki A06pe Biaomi pesyabratnt B.A.K. Capaxent, M. Hlriraina i X. TiTia,
E. Manaxoscpkoro i E. CaBama. Takox HaMM IIOAQHO iHIII 3aCTOCYBaHHS, BKAIOUAIOUM AeSIKi BaXKAU-
Bi HOBi KAaCHL.

Kntouosi cnosa i hpasu: TpMHIMII piBHOMIpHOI 06MeXeHOCTi, MaTpIdHa 06AACTh, IIPOCTip MOCAi-
AOBHOCTeI1, TIOABIVHIIL IIPOCTip, MaTpUUHe BiAOOpakeHHsI, AHIVHWIT OrlepaTop.



