
ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp

Carpathian Math. Publ. 2023, 15 (1), 236–245 Карпатськi матем. публ. 2023, Т.15, №1, С.236–245

doi:10.15330/cmp.15.1.236-245

Applications of uniform boundedness principle to matrix
transformations
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Using the uniform boundedness principle of Maddox, we characterize matrix transformations

from the space (ℓp)T to the spaces m(φ) and n(φ) for the case 1 ≤ p ≤ ∞, which correspond to

bounded linear operators. Here (ℓp)T is the domain of an arbitrary triangle matrix T in the space

ℓp, and the spaces m(φ) and n(φ) are introduced by W.L.C. Sargent. In special cases, we get some

well known results of W.L.C. Sargent, M. Stieglitz and H. Tietz, E. Malkowsky and E. Savaş. Also

we give other applications including some important new classes.
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Introduction

The set w of all real or complex valued sequences is a vector space under point-wise addi-

tion and scalar multiplication, and its any subspace is called as a sequence space. The sets ℓ∞, c

and ℓp, 1 ≤ p < ∞, of all bounded, convergent and absolutely p-summable sequences are

well-known sequence spaces, respectively. We write ℓ instead of ℓ1 for short.

For any x ∈ w, by xv, v ∈ N, we denote the coordinates of x, so x = (xv). The operator

∆x : w → w is defined by ∆x = (∆xv) = (xv − xv−1), v ≥ 1, where x ∈ w and x0 = 0. We

denote the set of all rearrangements of x by S(x) for any sequence x. Further, let

Φ =
{

φ ∈ ω : 0 < φv ≤ φv+1 ≤
v + 1

v
φv, v ∈ N

}
.

For each s ∈ N, let Hs be the class of all subsets of N which contain at most s elements.

Then, for each φ ∈ Φ, the sequence spaces m(φ) and n(φ) were introduced and studied by

W.L.C. Sargent [13] as

m(φ) =

{
x ∈ ω : sup

s∈N

sup
σ∈Hs

{
1

φs
∑
v∈σ

|xv|

}
< ∞

}

and

n(φ) =

{
x ∈ ω : sup

u∈S(x)

{ ∞

∑
v=1

∆φv|uv|

}
< ∞

}
,
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which are BK-spaces, i.e. a Banach sequence space with continuous coordinates, with respect

to their natural norms

‖x‖m(φ) = sup
s∈N

sup
σ∈Hs

1

φs
∑
v∈σ

|xv| and ‖x‖n(φ) = sup
u∈S(x)

∞

∑
v=1

∆φv|uv|.

Let X, Y be any two sequence spaces and A = (anv) be an infinite matrix of real or complex

numbers. Then we define A(x) = ((An(x)), the A -transform of x ∈ X, as

An(x) =
∞

∑
v=1

anvxv, n ∈ N,

if the series in the right hand side converges for each n ∈ N. If A(x) is well defined and

belongs to Y for every x ∈ X , then A defines a matrix transformation from X to Y, which is

denoted by the same letter A : X → Y. By (X, Y), we mean the class of all infinite matrices A

such that A : X → Y.

The domain XA of an infinite matrix A in a sequence space X is defined by

XA = {x ∈ w : A(x) ∈ X},

which is a sequence space. Although in the most cases the new sequence space XA generated by

a matrix A from a sequence space X is the expansion or the contraction of the original space

X, it may be observed in some cases that these spaces overlap. In fact, one can easily see that

the inclusion ℓp ⊂ (ℓp)A strictly holds for 1 ≤ p < ∞, if A is given by an,n = 1, an,n+1 = −1,

and zero otherwise. Also, the inclusion (ℓp)A ⊂ ℓp strictly holds if A is given by an,v = 1 for

1 ≤ v ≤ n, and zero otherwise.

For any sequence space X, the dual Xβ is defined by

Xβ =

{
a ∈ w :

∞

∑
v=1

avxv converges for all x ∈ X

}
.

A matrix T = (tnv) is called triangle if tnn 6= 0 and tnv = 0 for all k > n, n ∈ N.

Throughout the paper, T will denote a triangle matrix which has unique triangle inverse S

(see [14]), and also, for an infinite matrix A = (anv), we define the infinite matrices

Â = (ânv) = AS and A = (anv) = TA by

ânv =
∞

∑
r=v

anrsrv, n, v ∈ N,

and

anv =
n

∑
r=1

tnrarv, n, v ∈ N, (1)

where Â and A are the product of the matrices S = (srv) and T = (tnv) by the matrix A from

the left and right, respectively.

The sequence spaces play important roles in summability theory, a wide field of mathe-

matics, which has several applications in linear algebra, approximations theory, calculus, and

essentially in functional analysis. The classical theory deals with the generalization of the con-

cept of convergence for sequences and series. The aim is to assign a limit for diververgent



238 Sarıgöl M.A.

sequences and series by making use of an operator defined by an infinite matrix. The reason

why matrices are used for a general linear operator is that a linear operator from a sequence

space to another one can be given by an infinite matrix. In recent times, a large literature has

grown up, concerned with characterising completely all matrices which transform one given

sequence space into another, and also, many sequence spaces and related matrix transforma-

tions have been studied by several authors (see, e.g., [1–3, 10]).

In this paper, we characterize the matrix operators from the space (ℓp)T to the spaces m(φ)

and n(φ), for the case 1 ≤ p ≤ ∞, using the uniform boundedness principle of Maddox

(cf. [4, Theorem 25, p. 67]), and show that each matrix from these classes corresponds to a

bounded linear operator. In special cases, some known results of W.L.C. Sargent [13],

M. Stieglitz and H. Tietz [14], and E. Malkowsky and E. Savaş [5], and also other applications

including new classes are obtained.

We require the following lemmas for the proof of our theorem.

Lemma 1 ([14, pp. 3–4]). Let A = (anv) be an infinite matrix with complex numbers such that

limn anv exists for v ≥ 1. Then the following statements hold:

(i) for p = 1, A ∈ (ℓ, c) if and only if sup
n,v

|anv| < ∞;

(ii) for 1 < p < ∞, A ∈ (ℓp, c) if and only if sup
n

∞

∑
v=1

|anv|
p∗

< ∞, where p∗ is the conjugate of

p, i.e. 1/k + 1/p∗ = 1;

(iii) for p = ∞, A ∈ (ℓ∞, c) if and only if
∞

∑
v=1

|anv| converges uniformly in n.

Lemma 2 ([4, p. 67]). Let X be a second category p-normed space, where 0 < p ≤ 1. Suppose F

is a family of lower semicontinuous seminorms q such that q(x) ≤ M(x) < ∞ for all x ∈ X and

q ∈ F, where M(x) is a number depending on x. Then there exists a constant K, independent

of x and q such that

q(x) ≤ K‖x‖1/p
< ∞

for all x ∈ X and all q ∈ F.

Lemma 3 ([13, Lemma 14]). Let 1 ≤ p ≤ ∞. Then A ∈ (ℓp, m(φ)) if and only if At ∈ (n(φ), ℓp∗),

where At is the transpose of the matrix A.

Lemma 4 ( [8, Lemma 6.11]). Let X and Y be arbitrary subsets of w and T be a triangle matrix.

Then we have A ∈ (X, YT) if and only if A = TA ∈ (X, Y).

1 Main Results

The set of all bounded (continuous) linear operators from a normed space U to another

normed space V is denoted by B(U, V), and the norm of a bounded linear operator

L ∈ B(U, V) is defined by

‖L‖ = sup
{‖L(x)‖

‖x‖
: θ 6= x ∈ U

}
.

Also, U′ = B(U, C) is the set of all bounded linear functionals on U, where C is the set of all

complex numbers. Now, we begin with proving an auxiliary theorem which plays an impor-

tant role in basic results.
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Theorem 1. Let 1 ≤ p ≤ ∞, T be a triangle matrix and S be the inverse of T. If f ∈ (ℓk)
′
T is

defined by f (x) =
∞

∑
v=1

avxv, then we have

‖ f‖ =





‖b‖ℓp∗
, 1 < p < ∞,

‖b‖ℓ∞
, p = 1,

‖b‖ℓ, p = ∞,

where

bv =
∞

∑
r=v

arsrv, v ≥ 0.

Proof. For 1 ≤ p < ∞, it is well known that the space ℓp is the BK-space with respect to its

natural norm. We note that, since T is a triangle matrix, it is immediate by [15, Theorem 4.3.2]

that the space(ℓp)T is also a BK-space with respect to the norm

‖x‖(ℓp)T
=

( ∞

∑
n=1

|Tn(x)|p
)1/p

,

where

Tn(x) =
n

∑
v=1

tnvxv, n = 0, 1, . . . . (2)

Also, if we define T : (ℓp)T → ℓp by T(x) = (Tn(x)) for all x ∈ (ℓp)T, then it is easily seen that

it is an isometrical isomorphism and so (ℓp)T
∼= ℓp. Let S = T−1 and y = T(x). Now, it can be

written from the inversion of (2) that

m

∑
v=1

avxv =
m

∑
v=1

av

v

∑
r=1

svryr =
m

∑
r=1

( m

∑
v=r

avsvr

)
yr =

m

∑
r=1

bmryr,

where

bmr =

{
∑

m
v=r avsvr, 1 ≤ r ≤ m,

0, r > m.

This gives that the series ∑
∞
v=1 avxv converges for all x ∈ (ℓk)T if and only if B ∈ (ℓk, c). On the

other hand, for any matrix R = (rmn) ∈ (ℓk, c), the remaining term tends to zero in uniformly

in m, because ∣∣∣∣
∞

∑
v=N

rmvyv

∣∣∣∣ ≤ sup
m

( ∞

∑
v=1

|rmv|
p∗
)1/p∗( ∞

∑
v=N

|yv|
p

)1/p

→ 0

by Lemma 1. So ∑
∞
v=1 rmvyv converges uniformly in m, which gives

lim
m

∞

∑
v=1

rmvyv =
∞

∑
v=1

lim
m

rmvyv. (3)

By applying (3), we have

f (x) =
∞

∑
v=1

avxv =
∞

∑
v=1

bvyv

for all x ∈ (ℓp)T, or equivalently, for all y ∈ ℓp.
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Thus, by considering

ℓ
′
p
∼=





ℓp∗ , 1 < p < ∞,

ℓ∞, p = 1,

ℓ, p = ∞,

it follows that

‖ f‖ = sup
‖x‖=1

| f (x)| = sup
‖y‖=1

|
∞

∑
v=1

bvyv| = ‖b‖ℓp∗

and

‖ f‖ = ‖b‖ℓ∞
, and ‖ f‖ = ‖b‖ℓ,

respectively.

Now we are ready to give the basic theorems.

Theorem 2. Let φ ∈ Φ and T be a triangular matrix. Then the following statements hold:

(i) for 1 < p < ∞, each matrix A ∈ ((ℓp)T, m(φ)) defines LA ∈ B((ℓp)T , m(φ)) such that

LA(x) = A(x) for each x ∈ (ℓp)T and A ∈ ((ℓp)T, m(φ)) if and only if

µp(m(φ)) = sup
s

sup
σ∈Hs

∞

∑
v=1

∣∣∣∣ ∑
n∈σ

ânv

φs

∣∣∣∣
p∗

< ∞; (4)

(ii) for p = 1, each matrix A ∈ (ℓT , m(φ)) defines LA ∈ B(ℓT , m(φ)) such that LA(x) = A(x)

and A ∈ (ℓT, m(φ)) if and only if

µ1(m(φ)) = sup
s

sup
σ∈Hs

sup
v

∣∣∣∣ ∑
n∈σ

ânv

φs

∣∣∣∣ < ∞; (5)

(iii) for p = ∞, each matrix A ∈ ((ℓ∞)T, m(φ)) defines LA ∈ B((ℓ∞)T, m(φ)) such that

LA(x) = A(x) for each x ∈ (ℓ∞)T and A ∈ ((ℓ∞)T , m(φ)) if and only if

µ∞(m(φ)) = sup
s

sup
σ∈Hs

∞

∑
v=1

∣∣∣∣ ∑
n∈σ

ânv

φs

∣∣∣∣ < ∞. (6)

Proof. The linearity of LA is clear by the definition of a matrix operator. Further, since (ℓp)T and

m(φ) are BK spaces, it follows from [15, Theorem 4.2.8] that LA is a bounded linear operator.

For the proof of second part, assume A ∈ ((ℓp)T, m(φ)). Then, since An ∈ (ℓp)′T, for any

s ∈ N and σ ∈ Hs, we get

fs,σ =
1

φs
∑
n∈σ

An ∈ (ℓp)
′
T.

If F = { fs,σ : s ∈ N, σ ∈ Hs}, then we have

| fs,σ(x)| ≤
1

φs
∑
n∈σ

|An(x)| ≤ ‖A(x)‖m(φ) < ∞

for each s ∈ N, σ ∈ Hs and all x ∈ F. Since (ℓk)T is a complete metric space, it is of second

category, and so it follows from Lemma 2 that there exists a constant M such that

‖ fs,σ‖ ≤ M (7)
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for all s ∈ N and σ ∈ Hs. On the other hand, since

fs,σ(x) =
1

φs
∑
n∈σ

An(x) =
1

φs

∞

∑
v=1

(∑
n∈σ

anv)xv,

it follows from Theorem 1 that

‖ fs,σ‖ =
1

φs

{
∞

∑
v=1

∣∣∣∣ ∑
n∈σ

(
∞

∑
r=v

anrsrv

)∣∣∣∣
p∗}1/p∗

=
1

φs

{
∞

∑
v=1

∣∣∣∣ ∑
n∈σ

ânv

∣∣∣∣
p∗}1/p∗

, (8)

which implies (4) by (7).

Conversely, suppose that (4) holds. Given x ∈ (ℓk)T. We should show that A(x) =

(An(x)) ∈ m(φ). Now, if we take σ = {n}, then An(x) exists for all n ∈ N. Let s ∈ N

and σ ∈ Hs. By using the inequality of Peyerimhoff [9], we get, by (4) and (8),

1

φs
∑
n∈σ

|An(x)| ≤ 4 max
σ′⊂σ

(
1

φs

∣∣∣∣ ∑
n∈σ′

An(x)

∣∣∣∣
)
≤ 4 sup

s
sup
σ∈Hs

| fs,σ(x)| ≤ 4{µp(m(φ))}p∗‖x‖(ℓp)T
.

This shows that

‖A(x)‖m(φ) ≤ 4{µp(m(φ))}p∗‖x‖(ℓp)T

for all x ∈ (ℓp)T.

Since (ii) and (iii) are proved as in (i), so they are omitted.

Let A be an arbitrary infinite matrix. By S(A) and F(N), we denote the set of all matrices

B which consist of rearrangements of the rows of A and the set of all finite subsets of N,

respectively.

Theorem 3. Let φ ∈ Φ and T be a triangular matrix. The following statements hold:

(i) for 1 < p < ∞, each matrix A ∈ ((ℓp)T, n(φ)) defines LA ∈ B((ℓp)T, n(φ)) such that

LA(x) = A(x) for each x ∈ (ℓp)T and A ∈ ((ℓp)T, n(φ)) if and only if

µp(n(φ)) = sup
B∈S(A)

sup
σ∈F(N)

∞

∑
v=1

∣∣∣∣ ∑
n∈σ

b̂nv∆φn

∣∣∣∣
p∗

< ∞; (9)

(ii) for p = 1, each matrix A ∈ (ℓT , n(φ)) defines LA ∈ B(ℓT , n(φ)) such that LA(x) = A(x)

for each x ∈ ℓT and A ∈ (ℓT , n(φ)) if and only if

µ1(n(φ)) = sup
B∈S(A)

sup
σ∈F(N)

sup
v

∣∣∣∣ ∑
n∈σ

b̂nv∆φn

∣∣∣∣ < ∞; (10)

(iii) for p = ∞, each matrix A ∈ ((ℓ∞)T, n(φ)) defines LA ∈ B((ℓ∞)T , n(φ)) such that

LA(x) = A(x) for each x ∈ (ℓ∞)T and A ∈ ((ℓ∞)T , n(φ)) if and only if

µ∞(n(φ)) = sup
B∈S(A)

sup
σ∈F(N)

∞

∑
v=1

∣∣∣∣ ∑
n∈σ

b̂nv∆φn

∣∣∣∣ < ∞. (11)
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Proof. Since the proof of first part is similar to the proof of corresponding part of Theorem 2,

we omit it. Now let A ∈ ((ℓp)T , n(φ)), B ∈ S(A) and let σ ⊂ N be a finite set. As in the proof

of Theorem 2, we get

fB,σ = ∑
n∈σ

Bn∆φn ∈ (ℓk)
′
T .

Also, it follows by applying Theorem 1 that there exists a constant M such that

‖ fB,σ‖ ≤ M

for all B ∈ S(A) and finite σ ⊂ N. So, by considering

fB,σ(x) = ∑
n∈σ

Bn(x)∆φn =
∞

∑
v=1

(∑
n∈σ

bnv∆φn)xv,

we have

‖ fB,σ‖ =

{ ∞

∑
v=1

∣∣∣∣ ∑
n∈σ

( ∞

∑
r=v

bnrsrv∆φn

)∣∣∣∣
p∗}1/p∗

=

{ ∞

∑
v=1

∣∣∣∣ ∑
n∈σ

b̂nv∆φn

∣∣∣∣
p∗}1/p∗

, (12)

which implies µp(n(φ)) < ∞.

Conversely, if µp(n(φ)) < ∞, as in the proof of Theorem 2, it is easily seen that An(x) exists

for all n ∈ N and all x ∈ (ℓp)T . Now, let x ∈ (ℓp)T, B ∈ S(A), and n0 ∈ N be given. Then, by

Peyerimhoff’s inequality, Theorem 1, and (12), we obtain

n0

∑
n=1

|Bn(x)|∆φn ≤ 4 max
σ⊂{1,2,...,n0}

∣∣∣∣ ∑
n∈σ

Bn(x)∆φn

∣∣∣∣

≤ 4 sup
B∈S(A)

sup
σ∈F(N)

‖ fB,σ‖‖x‖(ℓk)T
= 4{µp(n(φ))}

p∗‖x‖(ℓp)T
,

which gives

‖A(x)‖n(φ) ≤ 4{µp(n(φ))}
p∗‖x‖(ℓp)T

.

The proofs of (ii) and (iii) are as in the above lines.

2 Applications

Theorem 2 and Theorem 3 include the characterizations of some well known matrix classes

and also other new classes. In this section, we give some of them. In fact, if we take T = I,

identity matrix, then, since (ℓp)T = ℓk and Â = A = A, we immediately obtain the following

results.

Corollary 1. Let 1 < p < ∞ and φ ∈ Φ. Then, the following statements hold:

(i) A ∈ (ℓp, m(φ)) if and only if (4) holds with anv instead of ânv;

(ii) A ∈ (ℓp, n(φ)) if and only if (9) holds with bnv instead of b̂nv;

(iii) A ∈ (ℓ, m(φ)) if and only if (5) holds with anv instead of ânv;

(iv) A ∈ (ℓ, n(φ)) if and only if (10) holds with bnv instead of b̂nv;
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(v) A ∈ (ℓ∞, m(φ)) if and only if (6) holds with anv instead of ânv;

(vi) A ∈ (ℓ∞, n(φ)) if and only if (11) holds with bnv instead of b̂nv.

Note that the parts (i), (iii) and (v) of this result are given by W.L.C. Sargent [13], which

also includes the results of M. Stieglitz and H. Tietz [14] for m(φ) = ℓ and m(φ) = ℓ∞ , where

φn = 1, φn = n, n ≥ 1. Further, since each of the spaces m(φ) and n(φ) is the dual of the other

(see [13]), it follows from Lemma 3 and Lemma 4 that A ∈ (n(φ), (ℓp)T) ⇔ A ∈ (n(φ), ℓp) ⇔

A
t
∈ (ℓp∗ , m(φ)), 1 ≤ p ≤ ∞, where the matrix A = (anv) is given by (1). So, by Theorem 2

and Corollary 1, we can state the following result giving characterizations of the converse of

the matrix class in Theorem 3.

Corollary 2. Let 1 ≤ p < ∞ and φ ∈ Φ. Further, let T be a triangular matrix and the infinite

matrix A = (anv) be given by (1). Then, the following statements hold:

(i) A ∈ (n(φ), (ℓp)T) if and only if

sup
s

sup
σ∈Hs

∞

∑
n=1

∣∣∣ ∑
v∈σ

anv

φs

∣∣∣
p
< ∞;

(ii) A ∈ (n(φ), (ℓ∞)T) if and only if

sup
s

sup
σ∈Hs

sup
n

∣∣∣ ∑
v∈σ

anv

φs

∣∣∣ < ∞.

Applying Theorem 3 to the other known spaces we characterize some new classes as fol-

lows. Choose the matrix T as tnv = sn−vtv/rn for 0 ≤ v ≤ n, and tnv = 0 for v > n, which

is a general matrix and includes numerious matrices, then we have (ℓp)T = ℓp, 1 ≤ p < ∞,

studied by M. Mursaleen and A.K. Noman [7]. Also the inverse S of the matrix T is given by

snv = (−1)n−vD
(s)
n−vrv/tn for 0 ≤ v ≤ n, and snv = 0 for v > n, where

D
(s)
nv =

1

sn+1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cs1 s0 0 0 . . . 0

s2 s1 s0 0 . . . 0

s3 s2 s1 s0 . . . 0
...

...
... . . .

...
...

sn−1 sn−2 sn−3 sn−4 . . . s0

sn sn−1 sn−2 sn−3 . . . s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

This gives

ânv =
∞

∑
i=v

(−1)i−v
rvaniD

(s)
i−v

i
, n, v ∈ N. (13)

So, we get characterizations of the general classes (ℓp, m(φ)) and (ℓp, n(φ)) for k ≥ 1.

Corollary 3. Let 1 < p < ∞ and φ ∈ Φ. Then the following statements hold:

(i) A ∈ (ℓp, m(φ)) if and only if (4) holds with (13);

(ii) A ∈ (ℓ, m(φ)) if and only if (5) holds with (13);
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(iii) A ∈ (ℓp, n(φ)) if and only if (9) holds with (13);

(iv) A ∈ (ℓ, n(φ)) if and only if (10) holds with (13).

Also, for 1 ≤ p < ∞, if we choose the matrix T as tnv = γ
1/p∗

n rnRv−1/RnRn−1 for 1 ≤ v ≤ n,

and tnv = 0 for v > n, then (ℓp)T = |N
γ
r |k, investigated by R.N. Mohapatra and M.A Sarıgöl [6]

and M.A Sarıgöl [11, 12], where (rn) and (γn) are sequences of positive numbers such that

P−1 = 0 and Rn = r0 + r1 + · · ·+ rn → ∞ as n → ∞. Further, it is easily seen that the inverse S

of this matrix is stated by snn = Rn/(γ1/k∗
n rn), sn,n−1 = Rn−2/(γ1/k∗

n−1 rn−1), and zero otherwise,

which implies

ânv =
∞

∑
r=v

anrsrv =
anvRv − an,v+1Rv−1

γ1/k∗
v rv

. (14)

Therefore, Theorem 3 are reduced to the following result.

Corollary 4. Let 1 < p < ∞ and φ ∈ Φ. Then the following statements hold:

(i) A ∈ (|N
γ
r |p, m(φ)) if and only if (4) holds with (14);

(ii) A ∈ (|N
γ
r |p, n(φ)) if and only if (9) holds with (14);

(iii) A ∈ (|Nr|, m(φ)) if and only if (5) holds with (14);

(iv) A ∈ (|Nr|, n(φ)) if and only if (10) holds with (14).

Finally, we conclude this section with the result due to E. Malkowsky and E. Savaş [5] as

follows. Choose T as the matrix of generalized weighted means, i.e. tnr = unvr for 0 ≤ r ≤ n,

and zero otherwise, where (un) and (vn) are sequences of nonzero numbers. Then (ℓp)T =

Z(u, v, ℓp), 1 ≤ p < ∞, and, for φs = 1, φs = s (s ≥ 1), m(φ) = ℓ and m(φ) = ℓ∞, respectively.

Further, it follows that srr = (urvr)−1, sr,r−1 = (ur−1vr)−1, and zero otherwise, which gives

ânr =
1

ur

( anr

vr
−

an,r+1

vr+1

)
for all r, n ∈ N. (15)

Thus, by Theorem 2, we have the following result.

Corollary 5. Let 1 < p < ∞ and the matrix Â be defined by (15). Then we have

(i) A ∈ (Z(u, v, ℓp), ℓ) if and only if

sup
N

∞

∑
r=1

∣∣∣∣ ∑
n∈N

ânr

∣∣∣∣
p∗

< ∞,

where the supremum is taken through all finite subsets N of N;

(ii) A ∈ (Z(u, v, ℓp), ℓ∞) if and only if

sup
n

∞

∑
r=1

|ânr |
p∗

< ∞.
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Сарiгол М.А. Застосування принципу рiвномiрної обмеженостi до матричних перетворень // Кар-

патськi матем. публ. — 2023. — Т.15, №1. — C. 236–245.

Iз використанням принципу рiвномiрної обмеженостi Меддокса охарактеризовано матри-

чнi перетворення з простору (ℓp)T у простори m(φ) та n(φ) у випадку 1 ≤ p ≤ ∞, якi вiдповi-

дають обмеженим лiнiйним операторам. Тут (ℓp)T — це область визначення довiльної трику-

тної матрицi T у просторi ℓp, a простори m(φ) та n(φ) введенi В.Л.К. Сарджент. У спецiальних

випадках отримано деякi добре вiдомi результати В.Л.К. Сарджент, М. Штiглiца i Х. Тiтца,

Е. Малковського i Е. Саваша. Також нами подано iншi застосування, включаючи деякi важли-

вi новi класи.

Ключовi слова i фрази: принцип рiвномiрної обмеженостi, матрична область, простiр послi-

довностей, подвiйний простiр, матричне вiдображення, лiнiйний оператор.


