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The crossing numbers of join products of eight graphs of order
six with paths and cycles
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The crossing number cr(G) of a graph G is the minimum number of edge crossings over all

drawings of G in the plane. The main aim of this paper is to give the crossing numbers of the join

products of eight graphs on six vertices with paths and cycles on n vertices. The proofs are done

with the help of several well-known auxiliary statements, the idea of which is extended by a suitable

classification of subgraphs that do not cross the edges of the examined graphs.
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1 Introduction

The problem of reducing the number of crossings on edges of graphs is interesting in many

areas. One of the most popular areas is the implementation of the VLSI layout, which has

revolutionized circuit design and had a strong impact on parallel computing. Crossing num-

bers were also studied to improve the readability of hierarchical structures and automated

graphs. The visualized graph should be easy to read and understand. For the sake of clarity of

the graphical drawings, the reduction of crossings is likely the most important. Therefore, the

investigation on the crossing number of simple graphs is a classical, but very difficult problem.

M.R. Garey and D.S. Johnson [7] proved that crossing number determining is an NP-complete

problem. Nevertheless, many researchers are trying to solve this problem. Note that the exact

values of the crossing numbers are known for some families of graphs, see K. Clancy et al. [4].

The crossing number cr(G) of a simple graph G with the vertex set V(G) and the edge set

E(G) is the minimum possible number of edge crossings over all drawings of G in the plane

(for the definition of a drawing see M. Klešč [9]). A drawing with a minimum number of

crossings (an optimal drawing) is always a good drawing, meaning that no edge crosses itself,

no two edges cross more than once, and no two edges incident with the same vertex cross.

Let D = D(G) be a good drawing of the graph G. We denote the number of crossings in D

by crD(G). Let Gi and Gj be edge-disjoint subgraphs of G. We denote the number of crossings

between edges of Gi and edges of Gj by crD(Gi, Gj), and the number of crossings among edges

of Gi in D by crD(Gi). For any three mutually edge-disjoint subgraphs Gi, Gj and Gk of G the

following equations hold (see [9]):

crD(Gi ∪ Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj),

crD(Gi ∪ Gj, Gk) = crD(Gi, Gk) + crD(Gj, Gk).
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Some parts of proofs will be based on D.J. Kleitman’s result [8] on the crossing numbers for

some complete bipartite graphs Km,n. He showed that

cr(Km,n) =
⌊m

2

⌋⌊m − 1

2

⌋⌊n

2

⌋⌊n − 1

2

⌋

, if m ≤ 6.

The join product of two graphs Gi and Gj, denoted Gi + Gj, is obtained from vertex-disjoint

copies of Gi and Gj by adding all edges between V(Gi) and V(Gj). For |V(Gi)| = m and

|V(Gj)| = n, the edge set of Gi + Gj is the union of the disjoint edge sets of the graphs Gi, Gj

and the complete bipartite graph Km,n. Let Pn and Cn be the path and the cycle on n vertices,

respectively, and let Dn denote the discrete graph (sometimes called empty graph) on n vertices.

The crossing numbers of the join products of the paths and the cycles with all graphs of order

at most four have been well-known for a long time by M. Klešč [10, 11], and M. Klešč and

Š. Schrötter [14], and therefore it is understandable that our immediate goal is to establish the

exact values for the crossing numbers of G + Pn and G + Cn also for all graphs G of order five

and six. Of course, the crossing numbers of G + Pn and G + Cn are already known for a lot of

graphs G of order five and six (see [3, 5, 6, 9, 12, 15, 17–20, 24]). In all these cases, the graph G is

connected and contains usually at least one cycle. Note that the crossing numbers of the join

products G + Pn and G + Cn are known only for some disconnected graphs G on five or six

vertices [2, 16, 22, 23].

In this paper, we will use definitions and notation of the crossing numbers of graphs pre-

sented by M. Klešč [10]. Let G∗ be the disconnected graph of order six consisting of one 5-cycle

and one isolated vertex. The crossing numbers of G∗ + Dn and G∗ + Pn were determined by

Š. Berežný and M. Staš [2] using the properties of cyclic permutations. The required result

of Theorem 3 for G∗ + Cn is established mainly using the mentioned results. By adding new

edges to the graph G∗, the crossing numbers of Gi + Cn for two other graphs Gi of order six

are given in Corollary 2. The third section is devoted to the connected graph H∗ of order six

consisting of one 4-cycle and two leaves adjacent with two opposite vertices of the 4-cycle, and

also to four different graphs Hi containing H∗ as a subgraph. The crossing number of H∗+ Dn

was also determined by Š. Berežný and M. Staš [1] using the properties of cyclic permutations.

Due to the special drawings of H∗ + Pn in Figures 3 and 4 for n even and odd, respectively,

cr(H∗ + Dn) = cr(H∗ + Pn) can be presented as the result of Theorem 5 and the crossing num-

ber of H∗ + Cn with two additional crossings in Theorem 12. The paper concludes by giving

the crossing numbers of Hi + Cn in Theorems 13, 14 and Corollary 3. Also in this paper, some

proofs are done with the help of several well-known auxiliary statements as Lemmas 1, 2 and

Corollary 1.

The result in Theorem 3 has already been claimed by Z. Zhou et al. [25]. Since that paper

does not appear to be available in English, we were unable to verify that proof. K. Clancy

et al. [4] also placed an asterisk on a number of the results in their survey to essentially indicate

that the mentioned results appeared in journals do not have a sufficiently rigorous peer-review

process. The results in Theorems 11 and 13 have also been claimed by Z. Zhou and L. Li [26],

but again not in English.

Let us suppose a graph G with V(G) = {v1, v2, . . . , v6} and the cycle Cn with the vertices

c1, c2, . . . , cn. The join product G + Cn consists of one copy of the graph G, one copy of the cycle

Cn, and the edges joining each vertex of G with each vertex of Cn. Let C∗
n denote the subgraph

of G + Cn induced on the vertices c1, c2, . . . , cn. For the vertices v1, v2, . . . , v6 of the graph G, let
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Tvi denote the subgraph induced by n edges joining the vertex vi with the vertices c1, c2, . . . , cn

of C∗
n. The edges joining the vertices of G with the vertices of C∗

n form the complete bipartite

graph K6,n, and so

G + Cn = G ∪ K6,n ∪ C∗
n = G ∪

( 6
⋃

i=1

Tvi

)

∪ C∗
n.

Similarly, let Ti, 1 ≤ i ≤ n, denote the subgraph induced by the six edges incident with

the vertex ci. This means that the graph T1 ∪ · · · ∪ Tn is isomorphic to the complete bipartite

graph K6,n and therefore, we can write

G + Cn = G ∪ K6,n ∪ C∗
n = G ∪

( n
⋃

i=1

Ti

)

∪ C∗
n.

In the proofs of theorems, the following three statements related to some restricted sub-

drawings of the graphs G + Cn will be helpful.

Lemma 1 ([10, Lemma 2.2]). Let D be a good drawing of Dm + Cn, m ≥ 2, n ≥ 3, in which no

edge of C∗
n is crossed, and C∗

n does not separate the other vertices of the graph. Then, for all

i, j ∈ {1, 2, . . . , m}, two different subgraphs Tvi and Tvj cross each other in D at least
⌊

n
2

⌋⌊

n−1
2

⌋

times.

Corollary 1 ([13, Lemma 2.2]). Let D be a good drawing of the join product Dm + Cn, m ≥ 2,

n ≥ 3, in which the edges of C∗
n do not cross each other and C∗

n does not separate r vertices

v1, v2, . . . , vr, 2 ≤ r ≤ m. Let Tv1 , Tv2 , . . . , Tvs , s < r, be the subgraphs induced on the edges

incident with the vertices v1, v2, . . . , vs that do not cross C∗
n. If k edges of some subgraph Tvj

induced on the edges incident with the vertex vj, j ∈ {s + 1, s + 2, . . . , r}, cross the cycle C∗
n,

then the subgraph Tvj crosses each of the subgraphs Tv1 , Tv2 , . . . , Tvs at least
⌊

n−k
2

⌋⌊ (n−k)−1
2

⌋

times in D.

Lemma 2 ([13, Lemma 2.2]). Let G be a graph of order m, m ≥ 1. In an optimal drawing of the

join product G + Cn, n ≥ 3, the edges of C∗
n do not cross each other.

2 The Crossing Number of G
∗ + Cn

Let G∗ be the disconnected graph of order six consisting of one 5-cycle and one isolated

vertex. In the rest of the paper, let v1v2v3v4v5v1 and v6 be the vertex notation of the 5-cycle and

the isolated vertex of G∗, respectively. The crossing numbers of G∗ + Dn and G∗ + Pn are given

by Š. Berežný and M. Staš [2].

Theorem 1 ([2, Theorem 3.1]). cr(G∗ + Dn) = 6
⌊

n
2

⌋⌊

n−1
2

⌋

+
⌊

n
2

⌋

for n ≥ 1.

Theorem 2 ([2, Theorem 5.2]). cr(G∗ + Pn) = 6
⌊

n
2

⌋⌊

n−1
2

⌋

+
⌊

n
2

⌋

+ 1 for n ≥ 2.

Theorem 3. cr(G∗ + Cn) = 6
⌊

n
2

⌋⌊

n−1
2

⌋

+
⌊

n
2

⌋

+ 2 for n ≥ 3.

Proof. In Figure 1, the edges of K6,n cross each other

6

(

⌈n
2 ⌉

2

)

+ 6

(

⌊n
2 ⌋

2

)

= 6
⌊n

2

⌋⌊n − 1

2

⌋
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Figure 1. The good drawing of G∗ + Cn with 6
⌊

n
2

⌋⌊

n−1
2

⌋

+
⌊

n
2

⌋

+ 2 crossings

times, each subgraph Ti, i ∈ {1, . . . ,
⌈

n
2

⌉

} on the left side does not cross the edges of G∗ and

each subgraph Ti, i ∈ {
⌈

n
2

⌉

+ 1, . . . , n} on the right side crosses the edges of G∗ exactly once.

The cycle C∗
n crosses G∗ twice, and so 6

⌊

n
2

⌋⌊

n−1
2

⌋

+
⌊

n
2

⌋

+ 2 crossings appear among the edges

of the graph G∗ + Cn in this drawing. Thus, cr(G∗ + Cn) ≤ 6
⌊

n
2

⌋⌊

n−1
2

⌋

+
⌊

n
2

⌋

+ 2.

To prove the reverse inequality assume that there is a drawing of the graph G∗ + Cn with at

most 6
⌊

n
2

⌋⌊

n−1
2

⌋

+
⌊

n
2

⌋

+ 1 crossings and let D be such a good drawing. By Theorem 2, none of

the edges of C∗
n is crossed in D, because otherwise removing the crossed edge from C∗

n results

in a good drawing of the graph G∗ + Pn with less than 6
⌊

n
2

⌋⌊

n−1
2

⌋

+
⌊

n
2

⌋

+ 1 crossings. Since

there is no crossing on the edges of C∗
n, the edges of C∗

n do not cross each other. The subdrawing

of C∗
n induced by D divides the plane into two regions and at least five vertices v1, v2, v3, v4

and v5 of G∗ must be placed in one of them. For all i, j ∈ {1, . . . , 5} by Lemma 1, any two

different subgraphs Tvi and Tvj cross each other at least
⌊

n
2

⌋⌊

n−1
2

⌋

times, and therefore, there

are at least (5
2)
⌊

n
2

⌋⌊

n−1
2

⌋

≥ 6
⌊

n
2

⌋⌊

n−1
2

⌋

+
⌊

n
2

⌋

+ 2 crossings in D(Tv1 ∪ Tv2 ∪ Tv3 ∪ Tv4 ∪ Tv5).

This contradiction completes the proof.
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Figure 2. Two graphs G1 and G2 by adding new edges to the graph G∗

In Figure 2, let G1 be the graph obtained from G∗ by adding the edge v1v6 and G2 be the

graph obtained from G∗ by adding the edges v1v6 and v2v6. Since we can add both edges v1v6

and v2v6 to the graph G∗ without additional crossings in Figure 1, the drawings of the graphs

G1 + Cn and G2 + Cn with exactly 6
⌊

n
2

⌋⌊

n−1
2

⌋

+
⌊

n
2

⌋

+ 2 crossings are obtained. On the other

hand, G∗ + Cn is a subgraph of each Gi + Cn, and therefore, cr(Gi + Cn) ≥ cr(G∗ + Cn) for

each i = 1, 2. Thus, the following result is obvious.

Corollary 2. cr(Gi + Cn) = 6
⌊

n
2

⌋⌊

n−1
2

⌋

+
⌊

n
2

⌋

+ 2 for n ≥ 3, where i = 1, 2.

Note that the crossing number of the graph G2 + Cn was obtained by M. Klešč et al. [12].
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3 The Crossing Number of H
∗ + Cn

Let H∗ be the connected graph consisting of one 4-cycle and two leaves adjacent with two

opposite vertices of the 4-cycle. In the rest of the paper, let v1v2v3v4v1 and v5, v6 be the vertex

notation of the 4-cycle and two leaves of H∗, respectively. The crossing number of H∗ + Dn

was established by Š. Berežný and M. Staš [1].

Theorem 4 ([1, Theorem 3.1]). cr(H∗ + Dn) = 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

for n ≥ 1.
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Figure 3. The good drawing of H∗ + Pn with 6
⌊
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⌋

+ 2
⌊

n
2

⌋
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Figure 4. The good drawing of H∗ + Pn with 6
⌊

n
2
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⌋

+ 2
⌊

n
2

⌋

crossings for n odd

For n even, Figure 3 offers the drawing of H∗ + Pn with 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

crossings pro-

vided by the edges of K6,n cross each other 6
⌊

n
2

⌋⌊

n−1
2

⌋

times and each subgraph Ti crosses

the edges of H∗ exactly once. For n odd at least 3, Figure 4 shows the drawing also with
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6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

crossings by adding one subgraph T
n+1

2 by which the edges of each of the

n − 1 graphs Ti, i 6= n+1
2 , are crossed exactly three times, that is,

6
n − 1

2

n − 3

2
+ 2

n − 1

2
+ 3(n − 1) = 6

n − 1

2

n − 1

2
+ 2

n − 1

2
.

As H∗ + Dn is a subgraph of H∗ + Pn, the lower bound is the same based on Theorem 4 and

so, the next result is obvious.

Theorem 5. cr(H∗ + Pn) = 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

for n ≥ 2.
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Figure 5. Four graphs H1, H2, H3 and H4 by adding new edges to the graph H∗

In Figure 5, let H1 be the graph obtained from H∗ by adding the edge v2v4, i.e. H1 = H∗ ∪

{v2v4}. Similarly, let H2 = H∗ ∪ {v2v5}, H3 = H∗ ∪ {v2v5, v4v6} and H4 = H∗ ∪ {v2v5, v2v6}.

Since we can add the edge v2v4 to the graph H∗ without additional crossings in Figures 3 and 4,

the drawings of the graph H1 + Pn with exactly 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

crossings are obtained for

all n at least two.

Theorem 6. cr(H1 + Dn) = 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

for n ≥ 1.

Theorem 7. cr(H1 + Pn) = 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

for n ≥ 2.

The crossing numbers of the join products of the graphs H2 and H3 with the paths Pn have

already been investigated by E. Draženská [6] and M. Klešč [9], respectively.

Theorem 8 ([6, Theorem 1]). cr(H2 + Pn) = 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 1 for n ≥ 2.

Theorem 9 ([9, Theorem 3.1]). cr(H3 + Pn) = 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 1 for n ≥ 2.

Theorem 10 ([21, Corollary 4.1]). cr(H4 + Dn) = 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

for n ≥ 1.

In Figure 6, there is the good drawing of H4 + Pn with 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 1 crossings.

Clearly, H2 is a subgraph of H4, and therefore, cr(H4 + Pn) ≥ cr(H2 + Pn).

Theorem 11. cr(H4 + Pn) = 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 1 for n ≥ 2.
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Figure 6. The good drawing of H4 + Pn with 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 1 crossings

Theorem 12. cr(H∗ + Cn) = 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 2 for n ≥ 3.

Proof. The proof proceeds in a similar way as for the graph G∗ + Cn in Theorem 3. Into both

drawings in Figures 3 and 4, it is possible to add the edge c1cn which forms the cycle C∗
n on

the vertices of the path P∗
n with exactly two another crossings. Thus, the crossing number of

the graph H∗ + Cn is at most 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 2. To prove the reverse inequality assume

that there is a drawing of H∗ + Cn with at most 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 1 crossings and let D be

such a good drawing. By Theorems 4 and 5, at most one edge of the cycle C∗
n can be crossed

in D, which yields that the edges of C∗
n do not cross each other. Again, the subdrawing of

C∗
n induced by D divides the plane into two regions and the four vertices v1, v2, v3, v4 with

at least one vertex v5 or v6 must be placed in one of them. By Lemma 1, there are at least

(5
2)
⌊

n
2

⌋⌊

n−1
2

⌋

+ 1 ≥ 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 2 crossings in D, because the graph H∗ is connected.

This completes the proof.
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Figure 7. The good drawing of H∗ + Cn with 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 2 crossings

Due to Theorem 12, the good drawing of H∗ + Cn in Figure 7 is optimal. Clearly, we can

add both edges v2v5 and v4v6 to the graph H∗ without additional crossings, and therefore, the

crossing numbers of the join products H2 + Cn and H3 + Cn are at most 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 2.
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As H∗ is a subgraph of the graph H2, which is also a subgraph of H3, we have

cr(H3 + Cn) ≥ cr(H2 + Cn) ≥ cr(H∗ + Cn) = 6
⌊n

2

⌋⌊n − 1

2

⌋

+ 2
⌊n

2

⌋

+ 2.

Corollary 3. cr(Hi + Cn) = 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 2 for n ≥ 3, where i = 2, 3.

We also remark that the crossing number of the graph H3 + Cn was already obtained by

M. Klešč [9].

Theorem 13. cr(H4 + Cn) = 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 3 for n ≥ 3.

Proof. Into the drawing in Figure 6, it is possible to add the edge c1cn which forms the cycle

C∗
n on the vertices of the path P∗

n with just two another crossings, and so the crossing number

of the graph H4 + Cn is at most 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 3. Let D be a good drawing of H4 + Cn

with at most 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 2 crossings. By Theorem 10, at most two edges of the cycle

C∗
n can be crossed in D, but we can suppose that the edges of C∗

n do not cross each other using

Lemma 2. The subdrawing of C∗
n induced by D divides the plane into two regions with at

least five vertices of H4 in one of them, because all three vertices of degree 2 are adjacent only

with the vertices of degree at least 3. The case crD(H4, C∗
n) = 2 using Lemma 1 implies at least

(5
2)
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2 crossings in D. Now, let us assume that crD(H4, C∗
n) = 0 in the following three

possible subcases. If there is no subgraph Tvi by which is crossed any edge of C∗
n, then there

are at least (6
2)
⌊

n
2

⌋⌊

n−1
2

⌋

crossings in D. Similarly, if there is only one Tvi by which is crossed

some edge of C∗
n, then we obtain at least (5

2)
⌊

n
2

⌋⌊

n−1
2

⌋

+ 1 crossings in D. Now, let us turn to

the possibility of an existence of two different subgraphs Tvi and Tvj with crD(T
vi , C∗

n) = 1 and

crD(T
vj , C∗

n) = 1. This, by Corollary 1 for r = 6, s = 4 and k = 1, enforces at least

(

4

2

)

⌊n

2

⌋⌊n − 1

2

⌋

+ 4
⌊n − 1

2

⌋⌊n − 2

2

⌋

+ 4
⌊n − 1

2

⌋⌊n − 2

2

⌋

+ 2 (1)

crossings in D. The last number of crossings thus determined confirms a contradiction with

the assumption in D for all n at least 4. For n = 3, if all three subgraphs Ti cross the edges of

H4 at least once, then we can add three additional crossings on edges of H4 in (1). Finally, for

n = 3, if at least one of T1, T2 and T3, say T1, does not cross H4, it is not difficult to verify that

crD(H4 ∪ T1, T2) ≥ 6 and crD(H4 ∪ T1, T3) ≥ 6 hold for all possible placements of two vertices

c2 and c3 of C∗
3 in the subdrawing D(H4 ∪ T1), which yields at least 12 crossings in D. This

also contradicts the assumption of D, and the proof of Theorem 13 is done.

In a good drawing D of the graph H1 + Cn, we separate the subgraphs Ti, i ∈ {1, 2, . . . , n},

of H1 + Cn into two subsets. Let us denote by R0 the set of subgraphs Ti for which

crD(H1, Ti) = 0. Every other subgraph Ti crosses H1 at least once in D.

Lemma 3. Let D be a good drawing of H1 + Cn, n ≥ 3, with crD(H1, C∗
n) = 2. Let Ti ∈ R0 be

any subgraph of H1 + Cn and let |R0| ≥
⌈

n+1−(−1)n+crD(H1)
2

⌉

. If both conditions

crD(H1 ∪ Ti, T j) ≥ 5 for any T j ∈ R0, j 6= i, (2)

and

crD(H1 ∪ Ti, Tk) ≥ 3 for any Tk /∈ R0 (3)
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hold, or crD(H1) ≥ 1 and both conditions

crD(H1 ∪ Ti, T j) ≥ 6 for any T j ∈ R0, j 6= i, (4)

and

crD(H1 ∪ Ti, Tk) ≥ 2 for any Tk /∈ R0 (5)

hold, then there are at least 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 3 crossings in D.

Proof. For easier reading, let r = |R0|. By the assumption, r ≥
⌈n+1−(−1)n+crD(H1)

2

⌉

. The

number of Tk that cross the graph H1 at least once is equal to n − r. By fixing of the graph

H1 ∪ Ti with the assumptions of the conditions (2) and (3), we have

crD(H1 + Cn) ≥ 6
⌊n − 1

2

⌋⌊n − 2

2

⌋

+ 5(r − 1) + 3(n − r) + 2 = 6
⌊n − 1

2

⌋⌊n − 2

2

⌋

+ 3n + 2r− 3

≥ 6
⌊n − 1

2

⌋⌊n − 2

2

⌋

+ 3n+ 2

⌈

n+1−(−1)n+ 0

2

⌉

−3 ≥ 6
⌊n

2

⌋⌊n−1

2

⌋

+ 2
⌊n

2

⌋

+ 3.

Similarly, if the conditions (4) and (5) are fulfilled, then

crD(H1 + Cn) ≥ 6
⌊n − 1

2

⌋⌊n − 2

2

⌋

+ 6(r − 1) + 2(n − r) + 2 = 6
⌊n − 1

2

⌋⌊n − 2

2

⌋

+ 2n + 4r− 4

≥ 6
⌊n − 1

2

⌋⌊n − 2

2

⌋

+ 2n+ 4

⌈

n+1−(−1)n+1

2

⌉

− 4 ≥ 6
⌊n

2

⌋⌊n−1

2

⌋

+ 2
⌊n

2

⌋

+ 3.

This completes the proof.

Theorem 14. cr(H1 + Cn) = 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 3 for n ≥ 3.

Proof. The proof proceeds in a similar way as for the graph H4 + Cn in Theorem 13, but many

more cases will need to be discussed. Into both drawings in Figures 3 and 4 by adding the edge

v2v4, it is possible to add the edge c1cn which forms the cycle C∗
n on the vertices of the path P∗

n

with just three another crossings, i.e. C∗
n is crossed by three edges v1v4, v2v3 and v2v4 of the

graph H1. Thus, cr(H1 + Cn) ≤ 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 3. Let D be a good drawing of H1 + Cn

with at most 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 2 crossings. By Theorem 6, at most two edges of the cycle

C∗
n can be crossed in D, and we can also suppose that the edges of C∗

n do not cross each other

using Lemma 2. The subdrawing of C∗
n induced by D divides the plane into two regions with

at least four vertices of H1 in one of them, and so the following three possible cases may occur.

Case 1: crD(H1, C∗
n) = 0. In this case, we can follow the same discussion as in the proof

of Theorem 13 for all n at least 4. For n = 3, crD(H1, T1 ∪ T2 ∪ T3) ≥ 2 enforces at least two

additional crossings on edges of H1 in (1), which yields a contradiction with the assumption in

D. Therefore, let at least two of T1, T2 and T3, say T1 and T2, do not cross the edges of H1, and

let T3 cross the edges of H1 at most once. For a Ti ∈ R0, we have four ways of obtaining the

subdrawing of H1 ∪ Ti depending on which region of D(H1 ∪ Ti \ {v1, v3}) the edges civ1 and

civ3 are placed in. Using cyclic permutations, it is not difficult to verify that crD(T
i, T j) ≥ 4

holds for any two different Ti, T j ∈ R0. Now, let the subgraph T3 cross the edges of H1 just

once, otherwise, we obtain at least 12 crossings in D(T1 ∪ T2 ∪ T3). In possible regions of

D(H1 ∪ Ti), one can easily determine that crD(T
i, T3) ≥ 2 is fulfilling for any i = 1, 2. All

subcases confirm a contradiction with the assumption in D.
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Case 2: crD(H1, C∗
n) = 1. In the rest of the proof, based on the symmetry of the graph H1,

let the edge v3v6 cross some edge of the cycle C∗
n. If there is no subgraph Tvi , i ∈ {1, . . . , 5}, by

which is crossed any edge of C∗
n, then there are at least (5

2)
⌊

n
2

⌋⌊

n−1
2

⌋

+ 1 crossings in D using

Lemma 1. Obviously, the case crD(T
v6 , C∗

n) = 1 also contradicts the assumption of D, because

all edges of five subgraphs Tvi , i ∈ {1, . . . , 5}, must be placed in one region of C∗
n. Now, assume

crD(T
vi , C∗

n) = 1 for only one i ∈ {1, . . . , 5}. Since some edges of Tvi and Tv6 are crossed in the

second region of C∗
n and there are two crossings on the edges of C∗

n, we obtain at least

(

4

2

)

⌊n

2

⌋⌊n − 1

2

⌋

+ 4
⌊n − 1

2

⌋⌊n − 2

2

⌋

+ 3 (6)

crossings in D by Corollary 1 for r = 5, s = 4, and k = 1. The last number of crossings thus

determined confirms a contradiction with the assumption in D for all n at least 4. For n = 3,

crD(H1, T1 ∪ T2 ∪ T3) ≥ 2 enforces at least two additional crossings on edges of H1 in (6), and

therefore, we can apply the same discussion for the subgraphs T1, T2 and T3 as in the previous

Case 1.

Case 3: crD(H1, C∗
n) = 2. If one of the seven edges of the graph H1 crosses the edges of

the cycle C∗
n up to twice, then there are at least (6

2)
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2 crossings in D. Now, suppose

that the edges of C∗
n are crossed by two different edges of H1, that is, either by both bridges

v1v5, v3v6 or two edges vjv2, vjv4 for only one j ∈ {1, 3}. In all mentioned subcases, we obtain

at least
(

4

2

)

⌊n

2

⌋⌊n − 1

2

⌋

+
⌊n

2

⌋⌊n − 1

2

⌋

+ 2 + n − |R0|+ crD(H1) (7)

crossings in D. Clearly, |R0| = 0 contradicts the assumption of D for all n at least 3. For

|R0| ≥ 1, let us suppose drawings of H1 only with the possibility of obtaining a drawing of

H1 ∪ Ti for a subgraph Ti ∈ R0 (not necessarily planar drawings of H1) with respect to the

restriction that the edges of all subgraphs Tk cannot cross the edges of C∗
n. For this purpose,

we will further deal with only two possible cases of drawings of the graph H1 with respect to

the cycle C∗
n presented in Figure 8.

v
1

v
2

v
3

v
4

v
5

v
6

v
1

v
2

v
3

v
4

v
5

v
6

(�� (��

Figure 8. Two possible drawings of the graph H1 with respect to the cycle C∗
n with the pos-

sibility to obtain a subgraph Ti ∈ R0 such that crD(T
i, C∗

n) = 0. (a) the planar drawing of

H1 with crD(vjv2 ∪ vjv4, C∗
n) = 2 for j = 1; (b) the nonplanar drawing of H1 for which both

bridges of H1 are crossed by C∗
n
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If |R0| ≥
⌈ n+1−(−1)n+crD(H1)

2

⌉

, it is not difficult to verify that the conditions (2), (3) and

(4), (5) are fulfilled for the drawing of H1 in Figure 8 (a) and (b), respectively. Consequently,

Lemma 3 forces at least 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 3 crossings in D. Finally, if

1 ≤ |R0| <
⌈n + 1 − (−1)n + crD(H1)

2

⌉

,

the number of crossings in (7) confirms a contradiction with the assumption in D for all n at

least 4. For n = 3, we obtain also the contradiction with the number of crossings in D except

for the case of the drawing of H1 in Figure 8 (a) with T1, T2 ∈ R0 and T3 by which the edges of

H1 are crossed exactly once, but the same discussion as in Case 1 forces at least 11 crossings in

D again.

Thus, it was shown in all mentioned cases that there is no good drawing D of the graph

H1 + Cn with fewer than 6
⌊

n
2

⌋⌊

n−1
2

⌋

+ 2
⌊

n
2

⌋

+ 3 crossings. This completes the proof.

Conclusions

We suppose that similar forms of discussions can be used to estimate the unknown values

of the crossing numbers of the remaining graphs on six vertices with a much larger number

of edges in the join products with the paths, and also with the cycles. We expect the same for

other symmetric graphs of order five.
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[5] Draženská E. On the crossing number of join of graph of order six with path. Proc. CJS 2019: 22th Czech-Japan

Seminar on Data Analysis and Decision Making 2019, 41–48.
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Сташ М. Число схрещень об’єднаних добуткiв восьми графiв шостого порядку зi шляхами та цикла-

ми // Карпатськi матем. публ. — 2023. — Т.15, №1. — C. 66–77.

Число схрещень cr(G) графа G — це найменше число перетинiв ребер плоского зображен-

ня графа G. Головним завданням цiєї статтi є знайти число схрещень об’єднаних добуткiв во-

сьми графiв на шести вершинах з шляхами i циклами на n вершинах. Доведення ґрунтуються

на кiлькох вiдомих допомiжних твердженнях, iдея яких поглиблена вiдповiдною класифiкацi-

єю пiдграфiв, що не перетинають ребра дослiджуваних графiв.

Ключовi слова i фрази: граф, об’єднаний добуток, число схрещень, шлях, цикл.


