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On the derivations of cyclic Leibniz algebras

Semko M.M., Skaskiv L.V., Yarovaya O.A.

Let L be an algebra over a field F. Then L is called a left Leibniz algebra, if its multiplication op-
eration [—, —] additionally satisfies the so-called left Leibniz identity: [[a, b],c] = [a, [b,c]] — [V, [a, c]]
for all elements a,b,c € L. A linear transformation f of a Leibniz algebra L is called a derivation of
an algebra L, if f([a,b]) = [f(a),b] + [a, f (b)] for all elements a,b € L. It is well known that the set of
all derivations Der(L) of a Leibniz algebra L is a subalgebra of the Lie algebra Endr(L) of all linear
transformations of an algebra L. The algebras of derivations of Leibniz algebras play an important
role in the study of structure of Leibniz algebras. Their role is similar to that played by groups of
automorphisms in the study of group structure.

In this paper, a complete description of the algebra of derivations of nilpotent cyclic Leibniz
algebra is obtained. In particular, it was proved that this algebra is metabelian and supersoluble Lie
algebra, and its dimension is equal to the dimension of an algebra L.
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Introduction

Let L be an algebra over a field F with the binary operations + and [—, —]. Then L is called
a left Leibniz algebra, if it satisfies the left Leibniz identity [[a, ], c] = [a, [b,c]] — [b, [a, c]] for all
a,b,ce L.

Leibniz algebras appeared first in the paper by A. Blokh [2], but the term “Leibniz algebra”
was proposed in book [9] and article [10] by J.-L. Loday. In [11], ].-L. Loday and T. Pirashvili
began the real study of the properties of Leibniz algebras. The theory of Leibniz algebras was
developed very intensively in many different directions. Some of the results of this theory
were presented in book [1] and in surveys [4,5,7]. Note that the Leibniz algebra is a natu-
ral generalization of a Lie algebra, namely a Leibniz algebra L, in which [4,4] = 0 for every
element a € L, is a Lie algebra.

As for Lie algebras, the derivations are significant linear transformations essentially defin-
ing the structure of Leibniz algebras. Their role is of importance in studies of the structure of
specific types of Leibniz algebras. Recall that a linear transformation f of a Leibniz algebra L
is called a derivation, if f([a,b]) = [f(a),b] + [a, f(b)] foralla,b € L.

Denote by Endp(L) the set of all linear transformations of L. Then Endp(L) is an associative
algebra by the operations + and o. As usual, Endr(L) is a Lie algebra by the operations + and

[—,—], where [f,g] = fog—go fforall f,¢ € Endg(L).
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Let Der(L) be the subset of all derivations of L. It is possible to prove that Der(L) is a
subalgebra of the Lie algebra Endp(L). Der(L) is called the algebra of derivations of L.

The derivations of Leibniz algebras were studied rather slightly. But their influence on the
structure of Leibniz algebras is quite significant, which is indicated by the following result:
if A is an ideal of a Leibniz algebra, then the factor-algebra of L by the annihilator of A is
isomorphic to some subalgebra of Der(A) [6, Proposition 3.2].

It is clear that the study of algebras Der(L) should be started from cyclic Leibniz algebras.
We note that the structure of cyclic Leibniz algebras was described in [3]. The derivations of
free cyclic Leibniz algebra were analyzed in [8]. The rest types of cyclic Leibniz algebras are
finite-dimensional. In this paper, we will describe the structure of the algebra of derivations of
the nilpotent cyclic Leibniz algebra.

We now present the necessary information about the structure of the cyclic Leibniz algebra.
Let L be a cyclic Leibniz algebra, L = (a), and let L be finite-dimensional over a field F. Then
there exists a positive integer n such that L hasabasis a4, ..., a,, wherea; = a,a, = [a1,4a4], ...,
an = [a1,a,-1], [a1,an] = apar + ...+ aya,. Moreover, [L,L] = Leib(L) = Fap + ...+ Fa,
(see [3]). We fix these designations. The first natural type of cyclic Leibniz algebras is as
follows. It is a case, when [a1, a,] = 0. Then L is nilpotent.

The main result of this paper consists in the full description of an algebra of derivations of
cyclic nilpotent Leibniz algebras.

Theorem. Let L be a cyclic nilpotent Leibniz algebra. Then the following assertions hold.
(i) The algebra of derivations of L is a semidirect sum of an ideal N(Der(L)), consisting of
the derivations f such that f(x) € [L,L] for each element x € L, and a cyclic subalgebra

Fdy, where a derivation dy is defined by

do(ar) = ay,do(az) = 2ay,...,do(an—1) = (n — 1)a,—1,do(a) = nay.

(ii) The ideal N(Der(L)) is abelian and has a basis {d>,ds, ...,d,}, where

dy(ay) = ap,dy(ap) = as, ..., dy(ay—1) = ay,dy(a,) =0,
ds(ay) = a3, ds(ap) = au, ..., ds(an_2) = ay,ds(a,_1) = ds(a,) =0,

dnfl(al) = an—-1, dnfl(QZ) = an, dnfl(a3) = .= dnfl(anfl) = dnfl(an) =0,
dy(a1) = ay, dy(ap) = dn(az) = ... =dn(ay_1) = dn(an) = 0.

(iii) The ideal N(Der(L)) is a direct sum of the ideals Fd,, Fd3, . .., Fd,, moreover

[do, da] = da, [do, d3] = 2d3, [do,ds] = 3dy, ..., [do,dn] = (n — 1)dy.

In particular, Der(L) is a metabelian supersoluble Lie algebra, and

dimp(Der(L)) = dimp(L).
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1 Derivations of a cyclic Leibniz algebra

We recall some definitions.
Let L be a Leibniz algebra. Define the lower central series of L

L=91(L) Z7(L) > ... 2 9a(L) = vas1(L) > ... = s(L)

by the following rule: (L) = L, 72(L) = [L, L], and, recursively, y,+1(L) = [L,v«(L)] for
all ordinals « and v, (L) = (N 7u(L) for the limit ordinals A. The last term (L) = (L) is

u<A
called the lower hypocenter of L. We have 7y5(L) = [L, vs(L)].
If &« = k is a positive integer, then (L) = [L,[L, [L, . ..] ...]] is the left normed commutator of

k copies of L.

As usual, we say that a Leibniz algebra L is called nilpotent, if there exists a positive in-
teger k such that (L) = (0). More precisely, L is said to be nilpotent of nilpotency class c, if
Ye+1(L) = (0), but 7c(L) # (0).

The left (respectively, right) center {1*%(L) (respectively, "8 (L)) of a Leibniz algebra L is
defined by

J*f(L) = {x € L: [x,y] = 0 for each element y € L}

(respectively,
gright(L) ={x € L:[y x] =0foreachelementy € L}).

It is not hard to prove that the left center of L is an ideal, but it is not true for the right center.
Moreover, Leib(L) < '*f(L), so that L/'*(L) is a Lie algebra. The right center is an subalge-
bra of L, and in general, the left and right centers are different. They even may have different
dimensions (see [6]).

The center {(L) of L is defined by

(L) ={x € L:[x,y] =0=[y,x] for each element y € L}.

The center is an ideal of L.
Define the upper central series

(0) = Zo(L) < C1(L) < Qo(L) < ... < Ga(L) < Guga(L) < ... S Gy(L) = Zoo(L)

of a Leibniz algebra L by the following rule: {1(L) = {(L) is the center of L, and, recur-
sively, {ot1(L)/Ca(L) = C(L/Za(L)) for all ordinals «, and {5 (L) = U {u(L) for the limit
U<A

ordinals A. By definition, each term of this series is an ideal of L. The last term (o (L) of this
series is called the upper hypercenter of L. If L = {«(L), then L is called a hypercentral Leibniz
algebra.

We show here some basic elementary properties of derivations, which were proved in [8].

Lemma 1. Let L be a Leibniz algebra over a field F and let f be a derivation of L. Then

f(Cleft(L)) < Cleft(L), f(gright(L)) < Cright(L) and f(g(L)) < g(L)
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Corollary 1. Let L be a Leibniz algebra over a field F and let f be a derivation of L. Then
f(Ca(L)) < Ca(L) for every ordinal «.

Lemma 2. Let L be a Leibniz algebra over a field F and let f be a derivation of L. Then
f(74(L)) < 7«(L) for all ordinals a, in particular, f(7Ye(L)) < Yeo(L).

Let L be a finite-dimensional cyclic Leibniz algebra of type (I): L = Fa; © Fap @© ... ® Fay,
[al,a]-] = aj41 whenever 1 <j<n—1, [a1,a,] =0, [a]-, ag) = 0forallj > 2,1 <k < n. This
algebra is nilpotent. Put Ly = L, Ly = Fap ®...® Fay, ..., L,_1 = Fa,_1 ® Fa,, L, = Fa,. We
have

71(L) = Ly, C1(L) = Ly,

72(L) = Lo, C2(L) = Ly—1,
')/n—l(L) =Ly—1, gn—l(L) = Ly,

’Yﬂ(L) =Ly, Cn(L) = L.

Lemma 3. Let L be a cyclic Leibniz algebra of type (I). Denote by N(Der(L)) the subset of
Der(L) consisting of the derivations f such that f(x) € [L, L] for each element x € L. Then
N(Der(L)) is an ideal of a Lie algebra Der(L).

Proof. Let f, h be the arbitrary derivations from a subset N(Der(L)), A € F. We have

(f =h)(x) = f(x) —h(x) € [L, L],
(Af)(x) = Af(x) € [L, L].
Let again f € N(Der(L)), and let & be an arbitrary derivation of L. Then

[/ h](x) = (f ol = ho f)(x) = f(h(x)) = h(f(x)).

By the definition of f, we obtain that f(h(x)) € [L,L]. Since f(x) € [L,L], Lemma 2 shows
that h(f(x)) € [L,L], so that [f,h] € N(Der(L)). It follows that N(Der(L)) is an ideal of
Der(L). O

Lemma 4. Let L be a cyclic Leibniz algebra of type (I). Denote by dy the linear transformation
of L such that

do(ay) = ay,do(ay) =2ay,...,do(an—1) = (n — Da,_1,do(ay) = nay.
Then d, is a derivation of L.

Proof. Let x = Aqay + Agap + ...+ Ayay, and y = pyay + ppap + ... + pua, be an arbitrary
elements of L. Then

do(x) = do(A1a1 + Apag + ... + Ayay)
= Mdo(a1) + Aado(a2) + ... + Ando(an)
= AMay +2Aa + ...+ nAyay,

do(y) = do(p1a1 + p2az + ... + pnn)
= pdo(a1) + pado(a2) + - .. + pndo(an)
= 101 +2upaz + ... + nppay.



On the derivations of cyclic Leibniz algebras 349

Suppose that a linear mapping f satisfies the above conditions. We have

[x,y] = [Mar + Apax + ...+ Ay, pra1 + podo + ... + pnan|

= [May, prag + paaz + ...+ Hnay]
= Mp1az + Mp2az + ...+ A pip—1an;

do([x,y]) = do(Mpras + Mpnaz + ...+ Apy_1ay,)
= Mprdo(a) + AMpoado(as) + ... + Apy—1do(an)
= 2Mpaz + 3A a3 + ...+ nA Uy _1ay;

[do(x),y] = [AMay 4+ 2A0a0 + ...+ nAyay, pray + pzar + . .. + Unpdy]
= [May, pray + uxaz + ...+ upay]
= Mp1az + Mp2az + ...+ A plp—1an;

[x,do(y)] = [Mar + Aaaa + ...+ Anan, pray + 24282 + ... + Npinan]
= [May, pray + 2uzap + ...+ npyay|
= Mp1ap + 2\ ppaz + ...+ (n — D) A py_1a,;

[do(x), y] + [x,do(y)] = Mpraz + Mpaas + ... + Mpn—1an
+ Mprag +2Mppaz + ...+ (n — DAy, _1an

= 2Mpuay + 3\ ppaz + ...+ nAypu,_qay.

Thus, [do(x),y] + [x,do(y)] = do([x, y]), which shows that d) is a derivation of L. O
Corollary 2. Let L be a cyclic Leibniz algebra of type (I). Then
Der(L) = N(Der(L)) & Fd.

Proof. Let f be an arbitrary derivation of L. We have f(a;) = ya; + u for some scalar y € F
and some element u € [L,L]. Put g = f — vdy. Then

g(ar) = (f —vdo)(a1) = f(a1) — ydo(a1) = yay +u —yay = u € [L, L].

By Lemma 2, ¢(a;) € [L, L] for all j > 1. It follows that g(x) € [L, L] for each element x € L.
Thus, ¢ € N(Der(L)). It follows that f € N(Der(L)) + Fdp. It is not hard to show that
N(Der(L)) N Fdy = (0) O

Lemma 5. Let L be a cyclic Leibniz algebra of type (I). Then a linear mapping f belongs to

N(Der(L)) iff

flar) = yoa2 + y303 + Yaas + ... + Yn—10p—1 + Ynln,
f(az) = y2a3 + y3a4 + ... + Yn—20n—1+ Yu—1an,
f(a3) = Yoas4+ ...+ Yn—3an-1+ Yn—20n,

f(an—1) = 72an,
f(an) =0.
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Proof. Lemma 2 shows that f(L;) < L;forall j, 1 <j < n. We have

f(a1) = y2a2 + 1383 + - . + Yu18n-1 + Ynln;
flaz) = f([ar, m1]) = [f(a1), ;1] + [a1, f(a1)]
= [1282 + 7343 + ... + Y1401 + Ynln, a1]
+ [a1, 7200 + 7383 + . ..+ V1851 + Ynln]
= Yolar, az] + y3[ar, az] + ... + yu_1[a1, an—1] + yular, an
= 7203 + Y304 + ...+ Yn—20p—1 Tt Yn—1n;
flas) = f([a1,a2]) = [f(a1), a2] + [a1, f(a2)]
= [y2a2 + 7343 + - .. + Y1401 + Tnln, 32
+ [a1, 7283 + Y304 + - .+ Yn28n-1 + VYn—1an]
= 7Ya2lay, a3] +yalar, as] + ...+ ynoalay, an2] + yno2la1, an 1] + vu-1a1, an)
= Y204 + Y345 + ... + Yn-30p—1 T Yn—20n;

f(ﬂnfl) = Y2an;,
f(an) =0.

Conversely, let x = Aja; + Apax + ...+ Ayay, y = piay + poaz + ... + upa, be an arbitrary
elements of L. Suppose that a linear mapping f satisfies the above conditions. Then

[x,y] = [Mar + Apax + ...+ Ay, 101 + poap + ... + YPndn)
= [May, pra + poax + ...+ pnay]
= Mmax + AMppaz + ...+ Aqpy_1ay;
f([x,y]) = f(AMpas + Apoas + ...+ A py—1an)
= Mpaf(az) + Mpaf(as) + ...+ Apg—1f(an);
f(x) = f(Mar + Aqaz + ...+ Apay)
= Mf(a1)+Aaf(az) + ...+ Auf(an);
fly) = f(pia1 + paaz + ... + Ayan)
= p1f(ar) +paf(a2) + ...+ paf(an);
[f(x),y] = [Mf(ar) +Aaf(a2) 4+ ...+ Auf(an), pra1 + poas + . .. + pnay)
= [AMf(ar), prar + poaz + ... + pnan|
= Mplf(ar), m] + Mpaf(a1),a2] + ... + Mpn[f(a1), an];
[x, f(y)] = [Mar 4+ Agag + ...+ Apay, prf(a1) + paf (a2) + ...+ pnf(an)]
= [May, paf(ar) + paf(a2) + ...+ pnf(an)]
= Mpalay, f(ar)] + Mpalar, f(a2)] + ... + Mpalar, f(an)];
(), y] + [x, f(v)] = Mpalf(a1), a] + Mpa[f(a1), a2] + ... 4+ Mpn[f(a1), an]
+ Apafar, f(a1)] + Mpzlan, f(a2)] + ...+ Apnlar, f(an)]
= Mpa([f(a1), m1] + [a1, f(a1)]) + Mpa([f(a1), a2] + [a1, f(a2)]) + - ..
+ Apn([f(a1), an] + [a1, f(an)]).
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The above-presented equalities indicate that

[f(a1),a1] + [a1, f(a1)] = f([a1, a1]) = f(a2),
[f(a1),a2] + [a1, f(a2)] = f([a1,42]) = f(a3),

[f(a1),an—1] + [a1, f(an—1)] = f(la1,an-1]) = f(an),
[f(a1), an] + [a1, f(an)] = f([a1,an]) = 0.

Thus, a linear transformation of L, satisfying the above equalities, is a derivation of L. O

Corollary 3. Let L be a cyclic Leibniz algebra of type (I). Then N(Der(L)) is isomorphic to
a Lie subalgebra of the matrix algebra M,,(F) consisting of the matrices having the form

0 0 0 0 0O 0 O
Y2 0 0 0 0O 0 O
Y3 Y2 0 0 0 0 0
Y& Y3 M2 0 0 0 0
Yn-2 Yn-3 Yn-4 Yns5 ... 0 0 0
Yn-1 Yn-2 Yn-3 Yn-4 --- Y2 0 0
Yo Yn-1 Yn-2 Yn-3 --- Y3 Y2 O

Lemma 6. Let L be a cyclic Leibniz algebra of type (I). Then the ideal N(Der(L)) is abelian
and has a dimensionn — 1.

Proof. We now use the isomorphism from Corollary 3. Let X = ||0j [, Y = [ Tj |l € My (F) be
two matrices such that j ,, = 7, = 0 whenever j < m and

021 =032 = ... =0pp-1 =02, D1 =12 = ...=Tyn-1= T2,

031 =042 = ... = Opp—2 = 03, B1 = T2 = ... = Tyn-2 = T3,
On—11 = 0n2 = On—1, Th—11 = T2 = Th—1,

On1 = On, Tl = Tn.

Let Z = XY = ||&; |- Clearly, ;,, = 0 whenever j < m. We have

G1j=0 forallj,1<j<n ;=0 forallj1<j<n,
€31 = 0321 = 02T, 53,]' =0 forallj,2<j<n,
Ca1 = 042Tp1 + 043731 = 03Tr + 0273,

G420 = 04332 = 02Ty, Ggj =0 forallj,3 <j<n,

Cnl = OnpT1 +0n3T31+ oo+ Op—1Tn—1,1 = Oy—1T2 + 023+ ... + 02Ty—1,
Cno = 0n3T32 + 0paTa2 + ..+ Oppn_1Tn—12 = Oy—2T + 0,33+ ... + 2 Ty—2,

Cnn—2 = Onn-1Tn—1,1—2 = 0272, Cnu—1 = 0,Cnn = 0.
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These equalities show that XY = YX. It follows that the ideal N(Der(L)) is abelian as a Lie
subalgebra. Furthermore, we have

0 0 0 0 0 0 O
Y2 0 0 0 0 0 O
T2 0 0 0 0 0
Ya Y3 M2 0 0 0 0
Yn-2 Yn-3 Yn—-4 Yn-5 -.- 0 0 0
Yn-1 Yn-2 Yn-3 Yn-4a --- Y2 0 0
T  Yn-1 Yn-—2 Yn-3 --- 73 72 0
O 0 0 O ... 0 0 O 0 0 0 O 0 0 0
7 0 0 0 0 0 0 0 0 0 O 0 0 O
0 7 0 0 0 0 0 3 0 0 O 0 0 O
0o 0 7 o0 0 0 0 N 0 73 0 0 0 0 O
0 0 0 O 0 0 0 0 0 0 O 0 0 O
0 0 0 O 1 0 0 0 0 0 O 0 0 O
0 0 0 O 0 7 0 0 0 0 O v3 0 0
+ .
0 0 0 0 0 0 0 0 0 0 O 0 0 O
0 0 0 0 0 0 0 0 0 0 O 0 0 O
+ 0 0 0O 0 ... 0 0 O + O 0 0 O ... 0 0 O
Yuo1 O 0O 0 ... 0 0 O O 0 0 O ... 0 0 O
0 9.1 0 0 ... 0 0 O Y» 0 0 0 ... 0 0 O

Denote, by d i, the linear transformation of L such that

dy(ay) = ap,dy(ap) =as, ..., dy(ay_1) = ay,dy(a,) =0,
dz(a1) = a3, d3(a2) = ay, ..., d3(ap—2) = an,d3(a,—1) = ds(a,) =0,

dp-1(a1) = ap_1,dp_1(a2) = an,dy_1(a3) = ... = dp_1(ay_1) = dp_1(an) =0,
dn(al) - an,dn(az) - dn(a3) — ... = dn(anfl) - dn(an) - 0.
Lemma 5 shows that d; is a derivation of L such that d; € N(Der(L)). The above equalities

show that these mappings generate N (Der(L)).
Let Ay, A3, ..., A, be the elements of F such that Ardy + Azds + ...+ Ayd, = 0. We have

0= (Azdz +Azds +...+ )\ndn)(al) = Apap + Aszaz + ...+ A,_qa,-1 + Anay.

Since a subset {ay, a3, ...,a,_1,a,} isabasisof [L,L], \; = A3 = ... = A, = 0. This means that
the derivations dy, d3, . . ., d, are linearly independent. O

2 Proof of the main theorem

Assertion (i) follows from Corollary 2. Assertion (ii) follows from Lemma 6. Furthermore,
(do @) dz)(lll) = d()(dz(ﬂll)) = do(ﬂlz) = 2612, (dz @) do)(&ll) = dz(d()(al)) = dz(&ll) = as and
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[do, da](a1) = (dpodyp)(a1) — (dp odp)(a1) = a1. With regard for Lemma 5, we obtain
[do, d2)(a2) = as, ..., [do, d2)(ay—1) = an, [do, d2](an) = 0.
These equalities prove that [dy, d3] = dp. Using the similar arguments, we obtain that
[do, d3] = 2d3, [do, da) = 3dy, ..., [do,du] = (n —1)d,.

In particular, it follows that every subspace Fd; is an ideal of Der(L). O
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Hexait L — arrebpa Haa moaeM F. Toai L HasuBaTMeMO AiBOIO aareb6poro AelibHilla, sIKIIO 11 ome-
patlist MHOXXeHHS [—, —] AOAATKOBO 3aAOBOABHSIE TaK 3BaHil AiBilt TOTOXHOCTI AeitbHina: [[a,b], c] =
[a,[b,c]] — [b, [a,c]] AAst Bcix eaeMeHTIB 4,b,¢ € L. AiniiHe neperBopeHHst f arre6pu AeribHina L
HasMBaTMMeMO AudpepeHIitoBaHHIM arre6pu L, sikmo f([a,b]) = [f(a),b] + [a, f(D)] Arst Bcix ene-
MeHTiB 4,b € L. Aobpe BiAOMO, III0 MHOXMHA yciX AndpepentitoBarb Der(L) aarebpu AeribHina L e
miaaarebporo aare6pu Ai Endp (L) ycix AiHiliHUX IepeTBopeHb aarebpu L. Aarebpu andpepeHrito-
BaHb aAre6p AeiibHiLla BiAirpaloTh BaXXAMBY POAb y BUBUEHHI CTPYKTypu aArebp AeribHina. Ix poab
aHaAOTiUHa Tilf, sIKy BiAirparoTh rpymm aBToMOpdri3MiB ITpy BUBUEHHI CTPYKTYPH TPYIL.

Y 1iit poboTi OTpMMaHO MOBHMIA OIC aATe6pU AMIdpepEeHIII0BaHb HiABIIOTEHTHOI IIMKAIYHOT aA-
rebpm AetibHina. 3okpema, 6yA0 AOBEAEHO, IIO LIS aArebpa € MeTabeAeBOIO Ta HAAPO3B I3HOIO aATe-
6poro Ai, a 1i BUMipHicTh AOpiBHIOE BUMipHOCTI aATebpm L.

Kntouosi cnosa i ppasu: (1mkaivuHa) arrebpa AevibHina, aarebpa Ai, inear, aAudpepeHIioBaHHSI.



