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On some integral inequalities for (h, m)-convex functions
in a generalized framework
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In this paper, we present some new integral inequalities of Hermite-Hadamard type. To obtain

these results, general convex functions of various type are considered such as (h, m)-convex func-

tions. The main results extend some previously known inequalities by taking fractional integral

operators.
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1 Preliminaries

One of the most fruitful notions in current mathematics is that of the convex function.

Definition 1. A function ψ : I → R, I := [ξ1, ξ2], is said to be convex if

ψ
(

λx + (1 − λ)y
)

≤ λψ(x) + (1 − λ)ψ(y)

holds for all x, y ∈ I and λ ∈ [0, 1].

If the above inequality is reversed, then function ψ is called concave on I. These notions

has spread in various directions (the interested reader can consult [30], where a fairly complete

overview of the generalizations and extensions of the convex function concept is presented).

For convex functions, the following inequality is known, undoubtedly one of the most fa-

mous in mathematics, for its multiple connections and applications

ψ

(

ξ1 + ξ2

2

)

≤
1

ξ2 − ξ1

∫ ξ2

ξ1

ψ(x) dx ≤
ψ(ξ1) + ψ(ξ2)

2
, (1)

this is called the Hermite-Hadamard inequality. The interested reader is referred to [1,6–8,11–

13,17,18,21,23,25,31,37] and the references therein for more information and other extensions

of the Hermite-Hadamard inequality.

G. Toader in [38] defined m-convexity in the following way.

Definition 2. The function ψ : [0, ξ2] → R, ξ2 > 0, is said to be m-convex, where m ∈ [0, 1], if

ψ
(

tx + m(1 − t)y
)

≤ tψ(x) + m(1 − t)ψ(y)

holds for all x, y ∈ [0, ξ2] and t ∈ [0, 1].
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If the above inequality holds in reverse, then we say that the function ψ is m-concave.

The following definitions are successive extensions of the concept of convex function and,

as we will see later, they are particular cases of our definition.

Definition 3 ([8, 19]). Let s ∈ (0, 1] be a real number. Function ψ : [0, ξ2] → [0, ∞) with ξ2 > 0

is said to be s-convex in the first sense if

ψ
(

tx + (1 − t)y
)

≤ tsψ(x) + (1 − ts)ψ(y)

for all x, y ∈ [0, ξ2] and t ∈ (0, 1).

Definition 4 ([8, 19]). Let s ∈ (0, 1] be a real number. Function ψ : [0, ξ2] → [0, ∞) with ξ2 > 0

is said to be s-convex in the second sense if

ψ
(

tx + (1 − t)y
)

≤ tsψ(x) + (1 − t)sψ(y)

for all x, y ∈ [0, ξ2] and t ∈ (0, 1).

In [42], the above definition was extended for s ∈ [−1, 1], these functions are called ex-

tended s-convex. In [24] and [35], the following classes of generalized convex functions were

presented.

Definition 5. Function ψ : [0, ξ2] → [0, ∞) with ξ2 > 0 is said to be (α, m)-convex, where

α, m ∈ (0, 1], if for every x, y ∈ [0, ξ2] and t ∈ [0, 1] the following inequality holds

ψ
(

tx + m(1 − t)y
)

≤ tαψ(x) + m(1 − tα)ψ(y).

Definition 6. Function ψ : [0, ξ2] → [0, ∞) with ξ2 > 0 is called (s, m)-convex in the second

sense, where s, m ∈ (0, 1], if for every x, y ∈ [0, ξ2] and t ∈ [0, 1] the following inequality holds

ψ
(

tx + m(1 − t)y
)

≤ tsψ(x) + m(1 − t)sψ(y).

In [27], the authors presented two classes of s-(α, m)-convex functions (“redefined” in [41]),

but the one used there is equivalent to the class of (α, m)-convex functions, therefore we do not

go in details. In [23], the following definition is introduced.

Definition 7. Let h : [0, 1] → [0, ∞) be a function, h 6≡ 0. Function ψ : [0, ξ2] → [0, ∞) with

ξ2 > 0 is said to be (h, m)-convex on [0, ξ2] if inequality

ψ
(

tx + m(1 − t)y
)

≤ h(t)ψ(x) + mh(1 − t)ψ(y)

is fulfilled for m ∈ [0, 1], all x, y ∈ [0, ξ2] and t ∈ [0, 1].

Remark 1. In the above definition, if we put

1) h(t) = ts, s ∈ (0, 1], then ψ is (s, m)-convex in the second sense on [0, ξ2),

2) h(t) = ts, s ∈ [−1, 1], m = 1, then ψ is extended s-convex on [0, ξ2),

3) h(t) = t, then ψ is m-convex on [0, ξ2),

4) h(t) = t and m = 1, then ψ is convex on [0, ξ2).
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On the basis of these definitions, we present one more class of functions that will be used

in our work.

Definition 8. Let h : [0, 1] → [0, ∞) be a function, h 6≡ 0. Function ψ : [0, ξ2] → [0, ∞) with

ξ2 > 0 is said to be modified (h, m)-convex on [0, ξ2] if

ψ
(

tx + m(1 − t)y
)

≤ h(t)ψ(x) + m
(

1 − h(t)
)

ψ(y)

holds for m ∈ [0, 1], all x, y ∈ [0, ξ2] and t ∈ [0, 1].

Remark 2. In the above definition, if we put

1) h(t) = tα with α ∈ (0, 1], then ψ is (α, m)-convex on [0, ξ2),

2) h(t) = ts, s ∈ (0, 1], m = 1, then ψ is s-convex in the first sense on [0, ξ2),

3) h(t) = t, then ψ is m-convex on [0, ξ2),

4) h(t) = t and m = 1, then ψ is convex on [0, ξ2).

In the last decades, we have witnessed the development of new ways of generalization,

some via integrals, which include both fractional and generalized. These integrals are origi-

nated from local derivatives and the integral operators that may or may not be fractional. To

date, the study of this area has attracted the attention of many researchers, not only in pure

mathematics, but in multiple fields of applied science. Between its own theoretical develop-

ment and the multiplicity of applications, the field has grown rapidly in the recent years, in

such a way that a single definition of “fractional derivative or integral” does not exist, or at least

is not unanimously accepted. In [5], D. Baleanu and A. Fernandez suggest and justifies the idea

of a fairly complete classification of the known operators of the fractional calculus, on the other

hand, in the work [4], some reasons are presented why new operators linked to applications

and developments theorists appear every day. These operators had been developed by numer-

ous mathematicians with a barely specific formulation, for instance, the Riemann-Liouville

(RL), the Weyl, Erdelyi-Kober, Hadamard integrals, and the Liouville and Katugampola frac-

tional operators, while many authors have introduced new fractional operators generated from

general classical local derivatives.

In addition, [2, Chapter 1] presents a history of differential operators, both local and global,

from Newton to Caputo and presents a definition of local derivative with new parameter,

providing a large number of applications, with a difference qualitative between both types of

operators, local and global. Most importantly, [2, Section 1.4] concludes: “We can therefore

conclude that both the Riemann-Liouville and Caputo operators are not derivatives, and then

they are not fractional derivatives, but fractional operators. We agree with the result [39] that,

the local fractional operator is not a fractional derivative” (see [2, p. 24]). As we said before,

they are new tools that have demonstrated their usefulness and potential in the modeling of

different processes and phenomena (see also [3]).

In fractional and generalized calculus, the functions Γ (see [34, 36, 43, 44]) and Γk (see [9])

Γ(z) =
∫

∞

0
tz−1e−t dt, Γk(z) =

∫

∞

0
tz−1e−tk/k dt, Re(z) > 0, k > 0,

are used.
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Unmistakably, if k → 1 we have Γk(z) → Γ(z), moreover Γk(z) = kz/k−1
Γ(z/k) and

Γk(z + k) = zΓk(z).

One of the first operators that can be called fractional is that of Riemann-Liouville fractional

derivatives of order α ∈ C, Re(α) > 0, defined as follows (see [15]).

Definition 9. Let f ∈ L1[ξ1, ξ2], ξ1, ξ2 ∈ R, ξ1 < ξ2. The right and left side Riemann-Liouville

fractional integrals of order α are defined by

RL Jα
ξ1

+ f (t) =
1

Γ(α)

∫ t

ξ1

(t − s)α−1 f (s) ds, t > ξ1,

RL Jα
ξ2

− f (t) =
1

Γ(α)

∫ ξ2

t
(s − t)α−1 f (s) ds, t < ξ2.

Their corresponding differential operators are given by

Dα
ξ1

+ f (t) =
d

dt

(

RL J1−α
ξ1

+ f (t)
)

=
1

Γ(1 − α)

d

dt

∫ t

ξ1

f (s)

(t − s)α
ds,

Dα
ξ2

− f (t) = −
d

dt

(

RL J1−α
ξ2

− f (t)
)

= −
1

Γ(1 − α)

d

dt

∫ ξ2

t

f (s)

(s − t)α
ds.

In [29], a generalized fractional derivative was defined in the following way (see also [14]

and [45]).

Definition 10. Given a function f : [0, ∞) → R. Then the N-derivative of f of order α is

defined by

Nα
F f (t) = lim

ε→0

f
(

t + εF(t, α)
)

− f (t)

ε

for all t > 0, α ∈ (0, 1), being F(t, α) is some function.

If f is N-differentiable of order α on some interval (0, t0) and limt→0+ Nα
F f (t) exists, then

define Nα
F f (0) = limt→0+ Nα

F f (t). Note that if f is differentiable, then Nα
F f (t) = F(t, α) f ′(t),

where f ′(t) is the ordinary derivative.

It is easy to verify that this operator contains, as particular cases, most of the known local

differential operators, both conformable and non-conformable.

Now, we give the definition of a general integral. Throughout the work we will consider

that the integral operator kernel F defined below is an absolutely continuous function (the

interested reader is referred to [22, 40]).

Definition 11. Let I be an interval I ⊆ R, ξ1, ξ2, t ∈ I and α ∈ R. The integral operators, right

and left, is defined for every locally integrable function f on I as

Jα
F,ξ1+

( f )(t) =
∫ t

ξ1

f (s)

F((t − s)/(ξ2 − ξ1), α)
ds, t > ξ1,

Jα
F,ξ2−

( f )(t) =
∫ ξ2

t

f (s)

F((s − t)/(ξ2 − ξ1), α)
ds, ξ2 > t.

Definition 12. Let I be an interval I ⊆ R, ξ1, ξ2, t ∈ I, α ∈ R and m ∈ [0, 1]. The m-integral

operators, right and left, is defined for every locally integrable function f on I as

Jα,m
F,ξ1+

( f )(t) =
∫ t

ξ1

f (s)

F((t − s)/(mξ2 − ξ1), α)
ds, t > ξ1,

Jα,m
F,ξ2−

( f )(t) =
∫ ξ2

t

f (s)

F((s − t)/(ξ2 − mξ1), α)
ds, ξ2 > t.
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Definition 13. We will also use the “central” integral operator defined as follows (see [14, 45])

Jα
F,ξ1

( f )(ξ2) =
∫ ξ2

ξ1

f (t)

F(t, α)
dt, ξ2 > ξ1.

To cite just two particular cases of the central integral operator: if we consider F ≡ 1 we

obtain the classical Riemann integral and if we put F(t, α) = t1−α we obtain the Riemann-

Liouville integral of Definition 9. Note that the latter is a fractional integral operator, which

can be generated from the conformable differential operator of [20].

Definition 14. Let p > 0 and α ∈ (0, 1]. We define the space L
p
α[ξ1, ξ2] as the set of func-

tions over [ξ1, ξ2] such that Jα
F,ξ1

(| f (t)|p)(ξ2) < ∞. Similarly, L
p
α,+[ξ1, ξ2] denotes the func-

tions for wich Jα
F,ξ1+

(| f (t)|p)(ξ2) < ∞, L
p
α,−[ξ1, ξ2] the ones satisfy Jα

F,ξ2−
(| f (t)|p)(ξ1) < ∞,

L
p
α,m,+[ξ1, ξ2] the ones satisfy Jα,m

F,ξ1+
(| f (t)|p)(ξ2) < ∞, and L

p
α,m,−[ξ1, ξ2] the ones satisfy

Jα,m
F,ξ2−

(| f (t)|p)(ξ1)<∞.

The following statement is analogous to the one known from the ordinary calculus [14, 16, 45].

Theorem 1. Let f be an N-differentiable function on (t0, ∞) for some t0 ∈ R with α ∈ (0, 1].

For all t > t0, if Nα
F f ∈ L1

α[t0, t], we have the following.

(a) If f is differentiable on (t0, t), then Jα
F,t0

(Nα
F f (t)) = f (t)− f (t0).

(b) If f is continuous on [t0, t], then Nα
F(Jα

F,t0
( f )(t)) = f (t).

An important and necessary property in our work is the following established result.

Theorem 2 (Integration by parts). Let f and g be differentiable functions on (t0, ∞) with

α ∈ (0, 1]. Then for all t > t0, if Nα
F f , Nα

F g ∈ L1
α[t0, t], we have

Jα
F,t0

(( f Nα
F g)(t)) = [ f g(t) − f g(t0)]− Jα

F,t0
((gNα

F f )(t)).

In this article, using the notion of modified (h, m)-convex function, we establish new inte-

gral inequalities via the generalized integral operators of Definitions 11, 12, and 13.

2 Results

We present our first result.

Lemma 1. Let I ⊂ R be an open interval and ψ : I → R be a differentiable function on I,

furthermore ξ1, ξ2 ∈ I, m ∈ [0, 1] and ξ1 < mξ2. If Nα
Fψ ∈ L1

α,m,+[ξ1, mξ2] for α ∈ (0, 1], then

ψ(ξ1) + ψ(mξ2)

2
−

1

mξ2 − ξ1
Jα,m
F,ξ1+

(ψ)(mξ2)

=
mξ2 − ξ1

2
Jα
F,0[(1 − 2t)Nα

F ψ(tξ1 + m(1 − t)ξ2)](1).

(2)

Proof. It is enough to apply Theorem 2 to the integral of the right member of (2), to obtain the

left member.
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Remark 3. One can obtain a similar result in case of taking ψ(tξ2 + m(1 − t)ξ1) instead of

ψ(tξ1 + m(1 − t)ξ2). On the other hand, it is clear that we can work with the ψ function in

tξ1 + (1− t)ξ2 and tξ2 + (1− t)ξ1, getting a result already known for several integral operators

(see e.g. [23]).

Remark 4. Putting F ≡ 1 and m = 1 we have [10, Lemma 2.1].

Hereafter, we will provide various extensions of the Hermite-Hadamard inequality (1),

using the above lemma.

Theorem 3. Under the assumptions of Lemma 1, if |Nα
F ψ| is (h, m)-convex, then we have

∣

∣

∣

ψ(ξ1) + ψ(mξ2)

2
−

1

mξ2 − ξ1
Jα,m
F,ξ1+

(ψ)(mξ2)
∣

∣

∣

≤
mξ2 − ξ1

2
Jα
F,0[|N

α
F ψ(ξ1)||1 − 2t|h(t) + m|Nα

F ψ(ξ2)||1 − 2t|h(1 − t)](1).

Proof. Using Lemma 1 and (h, m)-convexity of |Nα
F ψ| we have

∣

∣

∣

ψ(ξ1) + ψ(mξ2)

2
−

1

mξ2 − ξ1
Jα,m
F,ξ1+

(ψ)(mξ2)
∣

∣

∣

≤
mξ2 − ξ1

2
Jα
F,0[|1 − 2t||Nα

F ψ(tξ1 + m(1 − t)ξ2)|](1)

≤
mξ2 − ξ1

2
Jα
F,0[|N

α
F ψ(ξ1)||1 − 2t|h(t) + m|Nα

F ψ(ξ2)||1 − 2t|h(1 − t)](1),

which is the required inequality.

Remark 5. In case of considering F ≡ 1, one can obtain [23, Theorem 2.6].

An analogous theorem could be proved in a similar way.

Theorem 4. Under the assumptions of Lemma 1, if |Nα
F ψ| is modified (h, m)-convex, then we

have

∣

∣

∣

ψ(ξ1) + ψ(mξ2)

2
−

1

mξ2 − ξ1
Jα,m
F,ξ1+

(ψ)(mξ2)
∣

∣

∣

≤
mξ2 − ξ1

2
Jα
F,0[|N

α
F ψ(ξ1)||1 − 2t|h(t) + m|Nα

F ψ(ξ2)||1 − 2t|(1 − h(t))](1).

Remark 6. In case of F ≡ 1 and h(t) = tαs, from this result one can obtain [27, Theorem 2.3], if

in addition, α = m = 1, then this result implies [26, Theorem 2].

Theorem 5. Under the assumptions of Lemma 1, if |Nα
F ψ|q is (h, m)-convex with q = p/(p − 1)

and p > 1, then we have

∣

∣

∣

ψ(ξ1) + ψ(mξ2)

2
−

1

mξ2 − ξ1
Jα,m
F,ξ1+

(ψ)(mξ2)
∣

∣

∣

≤
mξ2 − ξ1

2
(Jα

F,0|1 − 2t|p(1))1/p(Jα
F,0[|N

α
F ψ(ξ1)|

qh(t) + m|Nα
F ψ(ξ2)|

qh(1 − t)](1))1/q .
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Proof. Using Lemma 1, the (h, m)-convexity of |Nα
F ψ|q and the well-known Hölder integral

inequality, we get

∣

∣

∣

ψ(ξ1) + ψ(mξ2)

2
−

1

mξ2 − ξ1
Jα,m
F,ξ1+

(ψ)(mξ2)
∣

∣

∣

≤
mξ2 − ξ1

2
Jα
F,0[|1 − 2t||Nα

F ψ(tξ1 + m(1 − t)ξ2)|](1)

≤
mξ2 − ξ1

2
(Jα

F,0|1 − 2t|p(1))1/p(Jα
F,0|N

α
F ψ(tξ1 + m(1 − t)ξ2)|

q(1))1/q

≤
mξ2 − ξ1

2
(Jα

F,0|1 − 2t|p(1))1/p(Jα
F,0[|N

α
F ψ(ξ1)|

qh(t) + m|Nα
F ψ(ξ2)

∣

∣

q
h(1 − t)](1))1/q ,

that is the desired inequality.

Remark 7. If we consider F ≡ 1 and h(t) = ta from this result we obtain [27, Theorem 2.5], if

you also have a = m = 1, then this result reduces to [26, Theorem 4].

The following theorem can be proved analogously.

Theorem 6. Under the assumptions of Lemma 1, if |Nα
F ψ|q is modified (h, m)-convex with

q = p/(p − 1) and p > 1, then we have

∣

∣

∣

ψ(ξ1) + ψ(mξ2)

2
−

1

mξ2 − ξ1
Jα,m
F,ξ1+

(ψ)(mξ2)
∣

∣

∣

≤
mξ2 − ξ1

2
(Jα

F,0|1 − 2t|p(1))1/p(Jα
F,0[|N

α
F ψ(ξ1)|

qh(t) + m
∣

∣Nα
F ψ(ξ2)

∣

∣

q(
1 − h(t))](1))1/q .

Theorem 7. Under the assumptions of Lemma 1, if |Nα
F ψ|q is (h, m)-convex with q > 1 and

q = p/(p − 1), then

∣

∣

∣

ψ(ξ1) + ψ(mξ2)

2
−

1

mξ2 − ξ1
Jα,m
F,ξ1+

(ψ)(mξ2)
∣

∣

∣

≤
mξ2−ξ1

2
(Jα

F,0|1−2t|(1))1/p(Jα
F,0[|N

α
F ψ(ξ1)|

q|1−2t|h(t)+m|Nα
F ψ(ξ2)|

q|1−2t|h(1−t)](1))1/q .

Proof. Using Lemma 1, the (h, m)-convexity of |Nα
F ψ|q and taking into account the well-known

power mean inequality, we have

∣

∣

∣

ψ(ξ1) + ψ(mξ2)

2
−

1

mξ2 − ξ1
Jα,m
F,ξ1+

(ψ)(mξ2)
∣

∣

∣

≤
mξ2 − ξ1

2
Jα
F,0[|1 − 2t||Nα

F ψ(tξ1 + m(1 − t)ξ2)|](1)

≤
mξ2 − ξ1

2
(Jα

F,0|1 − 2t|(1))1/p(Jα
F,0[|1 − 2t||Nα

F ψ(tξ1 + m(1 − t)ξ2)|
q](1))1/q

≤
mξ2 − ξ1

2
(Jα

F,0|1 − 2t|(1))1/p

× (Jα
F,0[|N

α
F ψ(ξ1)|

q|1 − 2t|h(t) + m|Nα
F ψ(ξ2)|

q|1 − 2t|h(1 − t)](1))1/q ,

that completes the proof.

Remark 8. If as before, we consider F ≡ 1 and h(t) = tas from this result we obtain [27,

Theorem 2.7], if additionally a = m = 1, then this result reduces to [26, Theorem 6]. If we

consider the kernel F ≡ 1 and work with convex functions, that is, h is the identity function

and m = 1, this result becomes [33, Theorem 1].
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The following theorem can be proved analogously.

Theorem 8. Under the assumptions of Lemma 1, if |Nα
F ψ|q is modified (h, m)-convex with

q > 1 and q = p/(p − 1), then

∣

∣

∣

ψ(ξ1) + ψ(mξ2)

2
−

1

mξ2 − ξ1
Jα,m
F,ξ1+

(ψ)(mξ2)
∣

∣

∣

≤
mξ2−ξ1

2
(Jα

F,0|1−2t|(1))1/p(Jα
F,0[|N

α
F ψ(ξ1)|

q|1−2t|h(t)+m|Nα
F ψ(ξ2)|

q|1−2t|(1−h(t))](1))1/q.

Theorem 9. Let ψ : [0, ∞) → R be an (h, m)-convex function with m ∈ (0, 1]. If 0≤ ξ1< ξ2<∞,

ψ(t) ∈ L1
α,+[ξ1, ξ2] ∩ L1

α,−[ξ1/m, ξ2/m] and h(t), h(1 − t) ∈ L1
α[0, 1], h(1/2) 6= 0, then we have

the following inequality

F

h(1/2)
ψ
(ξ1+ξ2

2

)

≤
1

ξ2−ξ1

(

Jα
F,ξ1+

(ψ)(ξ2) + m2 Jα

F,
ξ2
m −

(ψ)
( ξ1

m

))

≤
(

ψ(ξ1)+m2ψ
( ξ2

m2

))

Jα
F,0(h(t))(1)m

(

ψ
(ξ1

m

)

+ψ
(ξ2

m

))

Jα
F,0(h(1−t))(1)

(3)

with

F =
∫ 1

0

dt

F(t, α)
.

Proof. For x, y ∈ [0, ∞) and t = 1/2, we have

ψ
(x + y

2

)

≤ h
(1

2

)

ψ(x) + mh
(1

2

)

ψ
( y

m

)

.

If we choose x = tξ1 + (1 − t)ξ2 and y = tξ2 + (1 − t)ξ1 with t ∈ [0, 1], we get

ψ
(ξ1 + ξ2

2

)

≤ h
(1

2

)(

ψ(tξ1 + (1 − t)ξ2) + mψ
(

t
ξ2

m
+ (1 − t)

ξ1

m

))

. (4)

After dividing the members of the previous inequality by F(t, α) and integrating with respect

to t on [0, 1], and changing variables brings us to the first inequality of (3).

Using the (h, m)-convexity of ψ again, we obtain

h
(1

2

)(

ψ(tξ1 + (1 − t)ξ2) + mψ
(

t
ξ2

m
+ (1 − t)

ξ1

m

))

≤ h
(1

2

)(

h(t)ψ(ξ1) + mh(1 − t)ψ
(ξ2

m

)

+ mh(1 − t)ψ
(ξ1

m

)

+ m2h(t)ψ
( ξ2

m2

))

.

After division by F(t, α) and integration with respect to t, between 0 and 1, we obtain the

second inequality of (3).

Remark 9. If in the previous Theorem we consider the Riemann integral, or what is the same,

F ≡ 1 and ψ is a convex function
(

h(t) = t and m = 1
)

, then from (4) we obtain the classic

Hermite-Hadamard inequality (1). This result also extends and corrects [32, Theorem 9].

As we will see, the following result complements the previous one.
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Theorem 10. Let ψ : [0, ∞) → R be an (h, m)-convex function with m ∈ (0, 1]. If 0 ≤ ξ1 <

mξ2 < ∞, ψ(t) ∈ L1
α,m,+[ξ1, mξ2] and h(t), h(1 − t) ∈ L1

α[0, 1], then we have the following

inequality

1

mξ2 − ξ1
[Jα,m

F,ξ1+
(ψ)(mξ2)] ≤ ψ(ξ1)Jα

F,0(h(t))(1) + mψ(ξ2)Jα
F,0(h(1 − t))(1). (5)

Proof. Using the (h, m)-convexity of ψ, we have

ψ(tξ1 + m(1 − t)ξ2) ≤ h(t)ψ(ξ1) + mh(1 − t)ψ(ξ2).

After dividing the members of the previous inequality by F(t, α) and integrating with respect

to t on [0, 1], we obtain

∫ 1

0

ψ(tξ1 + m(1 − t)ξ2)

F(t, α)
dt ≤ ψ(ξ1)

∫ 1

0

h(t)

F(t, α)
dt + mψ(ξ2)

∫ 1

0

h(1 − t)

F(t, α)
dt.

The required result is easily obtained by changing variables in the first integral.

Remark 10. It is easy to verify that if F ≡ 1 and ψ is a convex function, then from (5) we get

the right member of the classic Hermite-Hadamard inequality (1). Also, Theorem 10 extends

[32, Theorem 10], and taking F ≡ 1, we obtain [23, Theorem 2.1], while [23, Remark 2.1] is

also still valid. If, on the contrary, we consider the kernel F(t, α) = t1−α/Γ(α), the following

inequality not reported in the literature, is valid for Riemann-Liouville fractional integrals

1

(mξ2 − ξ1)1−α
[RL Jα

ξ1
+ψ(mξ2)] ≤ ψ(ξ1)[

RL Jα
0+(h(t))(1)] + mψ(ξ2)[

RL Jα
0+(h(1 − t))(1)].

Naturally, if we consider different kernels, we will get new variants of (5).

A more general result than the previous one, in which two (h, m)-convex functions are

involved, is as follows.

Theorem 11. Let ψ1 be an (h1, m)-convex function and ψ2 an (h2, m)-convex function with

m ∈ (0, 1]. If 0 ≤ ξ1 < mξ2 < ∞, ψ1(t)ψ2(t) ∈ L1
α,m,+[ξ1, mξ2] ∩ L1

α,m,−[mξ1, ξ2], and

h1(t)h2(t), h1(1 − t)h2(1 − t), h1(t)h2(1 − t), h1(1 − t)h2(t) ∈ L1
α[0, 1],

then we have the following inequality

1

mξ2 − ξ1
Jα,m
F,ξ1+

(ψ1ψ2)(mξ2) +
1

ξ2 − mξ1
Jα,m
F,ξ2−

(ψ1ψ2)(mξ1)

≤ (ψ1(ξ1)ψ2(ξ1) + ψ1(ξ2)ψ2(ξ2))(Jα
F,0[h1(t)h2(t)](1) + mJα

F,0[h1(1 − t)h2(1 − t)](1))

+ m(ψ1(ξ1)ψ2(ξ2) + ψ1(ξ2)ψ2(ξ1))Jα
F,0[h1(t)h2(1 − t) + h1(1 − t)h2(t)](1).

Proof. Since ψ1 and ψ2 are (h1, m)-convex and (h2, m)-convex, respectively, we have

ψ1(tξ1+m(1 − t)ξ2)ψ2(tξ1 + m(1 − t)ξ2)

≤ (h1(t)ψ1(ξ1) + mh1(1 − t)ψ1(ξ2))(h2(t)ψ2(ξ1) + mh2(1 − t)ψ2(ξ2))
(6)

and

ψ1(tξ2+m(1 − t)ξ1)ψ2(tξ2 + m(1 − t)ξ1)

≤ (h1(t)ψ1(ξ2) + mh1(1 − t)ψ1(ξ1))(h2(t)ψ2(ξ2) + mh2(1 − t)ψ2(ξ1)).
(7)
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After multiplying and ordering from (6) and (7) we get

ψ1(tξ1+m(1 − t)ξ2)ψ2(tξ1 + m(1 − t)ξ2) + ψ1(tξ2 + m(1 − t)ξ1)ψ2(tξ2 + m(1 − t)ξ1)

≤ h1(t)h2(t)(ψ1(ξ1)ψ2(ξ1) + ψ1(ξ2)ψ2(ξ2))

+ mh1(t)h2(1 − t)ψ1(ξ1)ψ2(ξ2) + mh1(1 − t)h2(t)ψ1(ξ2)ψ2(ξ1)

+ mh1(t)h2(1 − t)ψ1(ξ2)ψ2(ξ1) + mh1(1 − t)h2(t)ψ1(ξ1)ψ2(ξ2)

+ m2h1(1 − t)h2(1 − t)
(

ψ1(ξ1)ψ2(ξ1) + ψ1(ξ2)ψ2(ξ2)
)

.

The sought inequality is obtained after dividing the members of the previous inequality by

F(t, α) and then integrating with respect to t between 0 and 1.

Remark 11. In the Theorem 11, if we put F ≡ 1 and consider only (6), we can obtain

[23, Theorem 2.2]. If we consider the kernel F(t, α) = t1−α, we can obtain new inequalities

under the Riemann-Liouville fractional integrals. If we use another kernel F, we can obtain

inequalities not reported in the literature.

Another general conclusion is given in the following result.

Theorem 12. Let ψ1 be an (h1, m1)-convex function and ψ2 an (h2, m2)-convex function with

m1, m2 ∈ (0, 1]. If 0 ≤ ξ1 < ξ2 < ∞, ψ1(t)ψ2(t) ∈ L1
α,+[ξ1, ξ2] ∩ L1

α,−[ξ1, ξ2] and

h1(t)h2(t), h1(1 − t)h2(1 − t), h1(t)h2(1 − t), h1(1 − t)h2(t) ∈ L1
α[0, 1],

then the following inequality is satisfied

1

ξ2 − ξ1
[Jα

F,ξ1+
(ψ1ψ2)(ξ2) + Jα

F,ξ2−
(ψ1ψ2)(ξ1)] ≤ (ψ1(ξ1)ψ2(ξ1) + ψ1(ξ2)ψ2(ξ2))Jα

F,0(h1h2)(1)

+ m1

[

ψ1

( ξ2

m1

)

ψ2(ξ1) + ψ1

( ξ1

m1

)

ψ2(ξ2)

]

Jα
F,0[h1(1 − t)h2(t)](1)

+ m2

[

ψ1(ξ1)ψ2

( ξ2

m2

)

+ ψ1(ξ2)ψ2

( ξ1

m2

)]

Jα
F,0[h1(t)h2(1 − t)](1)

+ m1m2

(

ψ1

( ξ1

m1

)

ψ2

( ξ1

m2

)

+ ψ1

( ξ2

m1

)

ψ2

( ξ2

m2

))

Jα
F,0[h1(1 − t)h2(1 − t)](1).

Proof. Inequalities (6) and (7) can be rewritten as follows

ψ1(tξ1+(1 − t)ξ2)ψ2(tξ1 + (1 − t)ξ2)

= ψ1

(

tξ1 + m1(1 − t)
ξ2

m1

)

ψ2

(

tξ1 + m2(1 − t)
ξ2

m2

)

≤
(

h1(t)ψ1(ξ1) + m1h1(1 − t)ψ1

( ξ2

m1

))(

h2(t)ψ2(ξ1) + m2h2(1 − t)ψ2

( ξ2

m2

))

(8)

and

ψ1(tξ2+(1 − t)ξ1)ψ2(tξ2 + (1 − t)ξ1)

= ψ1

(

tξ2 + m1(1 − t)
ξ1

m1

)

ψ2

(

tξ2 + m2(1 − t)
ξ1

m2

)

≤
(

h1(t)ψ1(ξ2) + m1h1(1 − t)ψ1

( ξ1

m1

))(

h2(t)ψ2(ξ2) + m2h2(1 − t)ψ2

( ξ1

m2

))

.
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Adding up the members yields

ψ1(tξ1+(1 − t)ξ2)ψ2(tξ1 + (1 − t)ξ2) + ψ1(tξ2 + (1 − t)ξ1)ψ2(tξ2 + (1 − t)ξ1)

≤ h1(t)h2(t)
(

ψ1(ξ1)ψ2(ξ1) + ψ1(ξ2)ψ2(ξ2)
)

+ m2h1(t)h2(1 − t)ψ1(ξ1)ψ2

( ξ2

m2

)

+ m1h1(1 − t)h2(t)ψ1

( ξ2

m1

)

ψ2(ξ1)

+ m2h1(t)h2(1 − t)ψ1(ξ2)ψ2

( ξ1

m2

)

+ m1h1(1 − t)h2(t)ψ1

( ξ1

m1

)

ψ2(ξ2)

+ m1m2h1(1 − t)h2(1 − t)
(

ψ1

( ξ1

m1

)

ψ2

( ξ1

m2

)

+ ψ1

( ξ2

m1

)

ψ2

( ξ2

m2

))

.

Proceeding as in the proof of Theorem 11, we obtain the required inequality.

Remark 12. If we consider the kernel F ≡ 1 and use only (8), we get an analogous result

to [23, Theorem 2.3]. Using different kernels, we obtain new integral inequalities, in particular,

for the Riemann-Liouville fractional integrals.

3 Conclusions

In this paper, using a generalized integral operator, we have obtained various integral in-

equalities, which generalize several interesting results reported in the literature and which

open up new work possibilities, depending on the kernel used: for example, if we use that of

the generalized fractional integral of Hilfer (see [28]), we can derive new inequalities not yet

published.

Finally, we want to emphasize that the results presented contain generalized inequalities

valid for various functional classes such as convex, h-convex functions, m-convex functions,

and s-convex functions, defined on a closed interval of non-negative real numbers. The prob-

lem of extending these results to other types of generalized convex functions remains open.

References
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[6] Bermudo S., Kórus P., Nápoles V.J.E. On q-Hermite–Hadamard inequalities for general convex functions. Acta

Math. Hungar. 2020, 162, 364–374. doi:10.1007/s10474-020-01025-6

[7] Bessenyei M., Páles Z. On generalized higher-order convexity and Hermite–Hadamard-type inequalities. Acta Sci.

Math. (Szeged) 2004, 70 (1–2), 13–24.

[8] Breckner W.W. Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen
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Корус П., Наполес Вальдес Х.Е. Про деякi iнтегральнi нерiвностi для (h, m)-опуклих функцiй у

рамках певного узагальнення // Карпатськi матем. публ. — 2023. — Т.15, №1. — C. 137–149.

У цiй статтi розглядаються загальнi опуклi функцiї рiзного типу, такi як (h, m)-опуклi фун-

кцiї. Отримано деякi новi iнтегральнi нерiвностi типу Ермiта-Адамара. Показано, що основнi

результати розширюють деякi ранiше вiдомi нерiвностi у термiнах операторiв дробового iн-

тегрування.

Ключовi слова i фрази: iнтегральна нерiвнiсть, нерiвнiсть Ермiта-Адамара, (h, m)-опукла

функцiя, модифiкована (h, m)-опукла функцiя, узагальнений iнтегральний оператор.


