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Riemann solitons on para-Sasakian geometry

De K.1, De U.C.2

The goal of the present article is to investigate almost Riemann soliton and gradient almost Rie-

mann soliton on 3-dimensional para-Sasakian manifolds. At first, it is proved that if (g, Z, λ) is an

almost Riemann soliton on a para-Sasakian manifold M3, then it reduces to a Riemann soliton and

M3 is of constant sectional curvature −1, provided the soliton vector Z has constant divergence.

Besides these, we prove that if Z is pointwise collinear with the characteristic vector field ξ, then Z

is a constant multiple of ξ and the manifold is of constant sectional curvature −1. Moreover, the al-

most Riemann soliton is expanding. Furthermore, it is established that if a para-Sasakian manifold

M3 admits gradient almost Riemann soliton, then M3 is locally isometric to the hyperbolic space

H3(−1). Finally, we construct an example to justify some results of our paper.
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Introduction

Since Einstein manifolds perform a significant role in mathematics and physics, the investi-

gation of Einstein manifolds and their generalizations is a fascinating topic in Riemannian and

semi-Riemannian geometry. In the last few years, several generalizations of Einstein manifolds

such as Ricci soliton, gradient Ricci soliton, gradient Einstein soliton, etc. have been studied.

The idea of Ricci flow was introduced by R.S. Hamilton [8] and expressed by ∂
∂t

g(t) = −2S(t),

where S indicates the Ricci tensor.

As a natural generalization, the notion of Riemann flow (see [18]) is expressed by
∂
∂t

G(t) = −2Rg(t), G = 1
2 g ⊗ g, where R is the Riemann curvature tensor and ⊗ is Kulkarni-

Nomizu product, defined as follows (see [1, p. 47])

(P ⊗ Q)(X, Y, U, W) = P(X, W)Q(Y, U) + P(Y, U)Q(X, W)

− P(X, U)Q(Y, W) − P(Y, W)Q(X, U),

where P and Q are (0, 2)-tensor field.

Similar to Ricci soliton, the interesting concept of Riemann soliton was introduced by

I.E. Hiricǎ and C. Udriste [11]. Analogous to I.E. Hiricǎ and C. Udriste [11], a semi-Riemannian

metric g on a semi-Riemannian manifold M is said to be a Riemann soliton if there exist a C∞

vector field Z and a real scalar λ such that

2R + λg ⊗ g + g ⊗ £Zg = 0. (1)
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The soliton will be named as expanding (λ > 0), steady (λ = 0) or shrinking (λ < 0), re-

spectively. If Z is gradient of the potential function γ, then the manifold is said to be gradient

Riemann soliton. Then the previous equation can be written as

2R + λg ⊗ g + g ⊗∇2γ = 0, (2)

where ∇2 f indicates the Hessian of γ. If we modify the equations (1) and (2) by fixing the

condition on the parameter λ to be a variable function, then it reduces to ARS and gradient

ARS respectively. Here the terminology “almost Riemann solitons” is written as ARS which

will be applied throughout the article.

Riemann solitons and gradient Riemann solitons on Sasakian manifolds have been dis-

cussed in detail by I.E. Hiricǎ and C. Udriste (see [11]). Moreover, Riemann soliton concerning

infinitesimal harmonic transformation was investigated in [17]. Here it is appropriate to notice

that R. Sharma in [15] investigated almost Ricci soliton in K-contact geometry and in [16] with

divergence free soliton vector field. Very recently in [7], the authors studied Riemann soli-

ton within the context of a contact manifold and proved various fascinating results. We may

mention [3, 6] and the references given there for more information about Riemann soliton.

The above studies motivate us to investigate an ARS and the gradient ARS in a 3-dimen-

sional para-Sasakian manifolds.

The current article is structured as follows. At first, we recollect a few formulas of para-

Sasakian manifolds. Beginning from Section 3, after providing the proof, we will write our

main theorems. After that, we construct an example to verify some results of our article.

1 Para-Sasakian manifolds

The very attractive topic of paracontact metric structures were published in [12]. This fasci-

nating subject (paracontact geometry), has been investigated in the previous years by various ar-

ticles concerning the theory of paracontact manifolds and mathematical physics (see [4,9,10]).

In this context, we refer the reader to [2, 12, 13] and references therein.

Let Mn be a C∞ differentiable manifold equipped with a 1-form η, a unique characteristic

vector field ξ and a (1, 1)-type tensor field φ such that

φ2E = E − η(E)ξ, φξ = 0, η(ξ) = 1, η(φE) = 0

and the almost paracomplex structure on each fibre of D = kerη is induced by the tensor field

φ. In other words, the eigendistributions D+
≺ and D−

≺ of φ have the equal dimension corre-

sponding to the eigenvalues 1 and −1, respectively. Then Mn is named as an almost paracontact

manifold. In addition, if Mn obeys

g(ξ, E) = η(E), g(φE, φF) = −g(E, F) + η(E)η(F), (3)

where g indicates a semi-Riemannian metric, then Mn is termed as almost paracontact metric

manifold [14] with the structure (φ, ξ, η, g).

The Nijenhuis torsion is defined by

[φ, φ](E, F) = φ2[E, F] + [φE, φF]− φ[φE, F]− φ[E, φF].
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The almost paracontact manifold is called normal if the tensor field Nφ = [φ, φ] − 2dη ⊗ ξ

vanishes. The fundamental 2-form of the almost paracontact metric manifold is defined by

Φ(E, F) = g(E, φF). If dη(E, F) = g(E, φF), then (M, φ, ξ, η, g) is verbally expressed to be

paracontact metric manifold.

A symmetric trace-free operator h = 1
2£ξφ in a paracontact manifold satisfies hξ = 0 and

∇Eξ = −φE + φhE. It is to be noted that ξ being Killing vector field is equivalent to the con-

dition h = 0 and (φ, ξ, η, g) is called K-paracontact structure. If the normality condition is

satisfied in a paracontact metric manifold Mn then it is said to be a para-Sasakian manifold. It

is well circulated that every para-Sasakian manifold is necessarily K-paracontact. The converse

is not true in general, but it holds when the manifold is of dimension three [5].

In Mn the subsequent results hold:

R(E, F)ξ = η(E)F − η(F)E, (4)

(∇E φ)F = −g(E, F)ξ + η(F)E,

∇Eξ = −φE, (5)

R(E, ξ)F = g(E, F)ξ − η(F)E, (6)

S(E, ξ) = −2nη(E), Qξ = −2nξ, (7)

for any E, F, where Q is the Ricci operator, i.e. g(QE, F) = S(E, F) on the manifold.

In a 3-dimensional semi-Riemannian manifold the Riemannian curvature tensor is written

by

R(E, F)Z = g(F, Z)QE − g(E, Z)QF + S(F, Z)E − S(E, Z)F −
r

2
[g(F, Z)E − g(E, Z)F], (8)

for any E, F, Z. Substituting F=Z=ξ in the foregoing equation and utilizing (4) and (7) we get

(see [10])

QE =
1

2
[(r + 2)E − (r + 6)η(E)ξ], (9)

which implies

S(E, F) =
1

2
[(r + 2)g(E, F)− (r + 6)η(E)η(F)]. (10)

Now we write the subsequent results.

Lemma 1 ([10, Lemma 3.3]). For a para-Sasakian manifold (M3, η, ξ, φ, g), we have

ξr = 0. (11)

Lemma 2 ([7, Lemma 3.8]). For any E, F on M, in a gradient ARS (M, g, γ, m, λ), we infer

R(E, F)Dγ = (∇FQ)E − (∇EQ)F + {F(2λ +△γ)E − E(2λ +△γ)F}, (12)

where △γ = div Dγ, △ is the Laplacian operator.
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2 ARS on 3-dimensional para-Sasakian manifolds

We consider a para-Sasakian manifold M3 admitting an ARS defined by (1). Using Kulkarni-

Nomizu product in (1) we write

2R(E, F, W, X) + 2λ{g(E, X)g(F, W) − g(E, W)g(F, X)}

+
{

g(E, X)(£Z g)(F, W) + g(F, W)(£Z g)(E, X) − g(E, W)(£Z g)(F, X)

− g(F, X)(£Z g)(E, W)
}

= 0.

(13)

Contracting (13) over E and X, we lead

(£Zg)(F, W) + 2S(F, W) + (4λ + 2divZ)g(F, W) = 0. (14)

Utilizing (10) in the foregoing equation we obtain

(£Zg)(F, W) = −(r + 2 + 4λ + 2divZ)g(F, W) + (r + 6)η(F)η(W) = 0. (15)

Taking covariant derivative along E and applying Z has constant divergence, we infer

(∇E£Zg)(F, W) =− [(Er) + 4(Eλ)]g(F, W) + (Er)η(F)η(W)

− (r + 6)[g(φE, F)η(W) + g(φE, W)η(F)] = 0.
(16)

Next recall the famous formula by Yano (see [19]):

(£Z∇Eg −∇E£Zg −∇[Z,E]g)(F, W) = −g((£Z∇)(E, F), W) − g((£Z∇)(E, W), F).

Hence by a simple calculation, we can easily get

(∇E£Zg)(F, W) = g((£Z∇)(E, F), W) + g((£Z∇)(E, W), F). (17)

Using symmetric property of £F∇ , it reveals from (17) that

g((£Z∇)(E, F), W) =
1

2
(∇E£Zg)(F, W) +

1

2
(∇F£Zg)(E, W) −

1

2
(∇W£Zg)(E, F). (18)

Using (16) in (18) we infer

2g((£Z∇)(E, F), W) =− [(Er) + 4(Eλ)]g(F, W) + (Er)η(F)η(W)

− (r + 6)[g(φE, F)η(W) + g(φE, W)η(F)]

− [(Fr) + 4(Fλ)]g(E, W) + (Fr)η(E)η(W)

− (r + 6)[g(φF, E)η(W) + g(φF, W)η(E)]

+ [(Wr) + 4(Wλ)]g(E, F) + (Wr)η(E)η(F)

− (r + 6)[g(φW, E)η(F) + g(φW, F)η(E)].

(19)

Then substituting E = F = ei in (19) and removing W, where {ei} is an orthonormal basis of

the tangent space at each point of the manifold and taking summation over i, 1 ≤ i ≤ 3, we

obtain

(£F∇)(ei, ei) = −4Dλ. (20)
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Again differentiating (14) and utilizing it in (17) we can readily produce

g((£Z∇)(E, F), W) = (∇WS)(E, F)− (∇ES)(F, W)− (∇FS)(E, W). (21)

Taking E = F = ei in (21) and summing over i we lead

(£Z∇)(ei, ei) = 0, (22)

where {ei} is an orthonormal frame. Combining (20) and (22) yields

Dλ = 0.

This means that λ is constant and leads to the following result.

Theorem 1. If the soliton vector Z has constant divergence in a 3-dimensional para-Sasakian

manifold, then an ARS reduces to a Riemann soliton.

Applying the above theorem and removing W from (19) gives

2(£Z∇)(E, F) =− (Er)F + (Er)η(F)ξ − (r + 6)[g(φE, F)ξ + φEη(F)]

− (Fr)E + (Fr)η(E)ξ − (r + 6)[g(φF, E)ξ + φFη(E)]

+ Dr[g(E, F) − η(E)η(F)] − (r + 6)[φEη(F) + φFη(E)].

Replacing Y by ξ and utilizing (11) yields

(£Z∇)(E, ξ) = −(r + 6)φE. (23)

Executing covariant derivative of (23) along F, we infer

(∇F£Z∇)(E, ξ) − (£Z∇)(E, φF) = −(Fr)φE − (r + 6)[−g(E, F)ξ + η(E)F].

If we use the subsequent formula

(£FR)(X, Y)Z = (∇X£F∇)(Y, Z) − (∇Y£F∇)(X, Z)

in the foregoing equation, we obtain

(£ZR)(E, F)ξ = −(£Z∇)(F, φE) + (£Z∇)(E, φF) + (Er)φF

− (Fr)φE − (r + 6)[η(E)F − η(F)E].
(24)

Setting F = ξ in the previous equation yields

(£ZR)(E, ξ)ξ = −(r + 6)[η(E)ξ − E]. (25)

Again from (15) we lead

(£Zg)(E, ξ) = (4 − 4λ − 2divZ)η(E). (26)

Lie-differentiating (3) along Z and by virtue of (26) we obtain

(£Zη)(E) − g(£Zξ, E) + (4λ + 2divZ − 4)η(E) = 0. (27)
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Replacing E by ξ in the previous equation gives

η(£Zξ) = (2λ + divZ − 2). (28)

Executing Lie derivative of (4) along Z we lead

(£ZR)(E, ξ)ξ + g(E, £Zξ)ξ − 2η(£Zξ)E = {(£Zη)E}ξ.

Utilizing (25), (27) and (28) in the above equation we infer

(−r − 10 + 4λ + 2divZ)[η(E)ξ − E] = 0.

Next tracing the foregoing equation yields

divZ =
( r

2
+ 5 − 2λ

)

.

Clearly, contracting the equation (24) leads

(£ZS)(E, ξ) = −g(Dr, φE)− 2(r + 6)η(E). (29)

Taking £Z to (7), recalling (10) gives

(£ZS)(E, ξ) +
( r

2
+ 1

)

g(E, £Zξ)−
( r

2
+ 3

)

η(£Zξ)η(E) = −2(£Zη)E.

Using (29) and (26) in the foregoing equation yields

−g(Dr, φE)− 2(r + 6)η(E) +
( r

2
+ 3

)

g(E, £Zξ)−
( r

2
+ 3

)

η(£Zξ)η(E) + 2η(E).

By a simple calculation, substituting E by ξ in (30) and using (29) we can easily get r = −6. If

r = −6, then from equation (10) we find that g is an Einstein metric, i.e. S = −2g. Therefore,

by utilizing equation (8) we infer that the manifold is of constant sectional curvature −1.

Thus we can write the following assertion.

Theorem 2. If a semi-Riemannian metric of a para-Sasakian manifold M3 is the ARS, then M3

is of constant sectional curvature −1, provided the soliton vector Z has constant divergence.

Now let Z be point-wise collinear with the characteristic vector field ξ, i.e. Z = bξ, where

b is a function on M3. Since divξ = 0 in a para-Sasakian manifold M3, we have divZ = (ξb).

Therefore from (14) we lead

g(∇Ebξ, F) + g(∇Fbξ, E) + 2(ξb)g(E, F) + 2S(E, F) + 4λg(E, F) = 0. (30)

Using (5) in (30), we get

(Eb)η(F) + (Fb)η(E) + 2(ξb)g(E, F) + 2S(E, F) + 4λg(E, F) = 0. (31)

Putting F = ξ in (31) and using (7) yields

(Eb) + 3(ξb)η(E) − 4η(E) + 4λη(E) = 0. (32)

Putting E = ξ in (32) we obtain

(ξb) = 1 − λ. (33)
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Putting the value of ξb in (32) yields

db = (1 − λ)η. (34)

Operating (34) by d and using Poincare lemma d2 ≡ 0, we obtain

0 = d2b = (1 − λ)dη + dλη. (35)

Taking wedge product of (35) with η, we have

(1 − λ)η ∧ dη = 0.

Since η ∧ dη 6= 0 in a para-Sasakian manifold M3, therefore

λ = 1. (36)

Using (36) in (34) gives db = 0, i.e. b =constant. Therefore from (31) we infer

S(E, F) = −2g(E, F),

which implies M3 is an Einstein manifold. Therefore from (8) we conclude that the manifold

is of constant sectional curvature −1.

Thus we state the following result.

Theorem 3. Let (M3, φ, ξ, η, g) ba a para-Sasakian manifold. If g represents an ARS and Z is

pointwise collinear with the characteristic vector field ξ, then Z is a constant multiple of ξ and

M3 is of constant sectional curvature −1. Moreover, the ARS is expanding.

In particular if Z = ξ, we can write the following assertion.

Corollary 1. If a para-Sasakian manifold M3 admits an ARS (g, ξ, λ), then the manifold is of

constant sectional curvature −1.

3 Gradient ARS

This section is devoted to investigate 3-dimensional para-Sasakian manifolds admitting

gradient ARS. First we write the subsequent result without proof, since, by a simple calcu-

lations, the result can be obtained from (9).

Lemma 3. For a para-Sasakian manifold (M3, η, ξ, φ, g) we have

(∇FQ)ξ =
( r

2
+ 3

)

φF, (∇ξ Q)E = 0.

Substituting F by ξ in (12) and using the above Lemma 3, we infer

R(E, ξ)Dγ = −
( r

2
+ 3

)

φE +
{

ξ(2λ +△γ)E − E(2λ +△γ)ξ
}

.

Then using (6), we get

g(E, Dγ + D(2λ +△γ))ξ = −
( r

2
+ 3

)

φE +
{

(ξγ) + ξ(2λ +△γ)
}

E. (37)
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Executing the inner product of the foregoing equation with ξ yields

E(γ + (2λ +△γ)) = {(ξγ) + ξ(2λ +△γ)}η(E), (38)

from which easily we lead

d(γ + (2λ +△γ)) = {(ξγ) + ξ(2λ +△γ)}η,

where the exterior derivative is denoted by d. From the above equation we conclude that

γ + (2λ +△γ) is invariant along the distribution D . In other terms, E(γ + (2λ +△γ)) = 0

for any E ∈ D. Utilizing (38) in (37), we infer

{(ξγ) + ξ(2λ +△γ)}[η(E)ξ − E] = −
( r

2
+ 3

)

φE. (39)

Contracting the previous equation gives

{(ξγ) + ξ(2λ +△γ)} = 0. (40)

Using (40) in (39), we lead

( r

2
+ 3

)

φE = 0.

If φE = 0. Clearly, operating φ we can easily obtain φ2E = 0, which is a contradiction. Thus

we infer r = −6. Then from (10) we obtain S = −2g. Therefore from (8) we state that M3

is of constant sectional curvature −1. Hence M3 is locally isometric to the hyperbolic space

H3(−1).

Hence we write the following result.

Theorem 4. If a para-Sasakian manifold M3 admits a gradient ARS (γ, ξ, λ), then the manifold

is locally isometric to the hyperbolic space H3(−1).

4 Example

We consider the manifold M3 = {(x, y, z) ∈ R
3} in which z 6= 0. The linearly independent

vector fields are

u1 = ez ∂

∂y
, u2 = ez

( ∂

∂x
+

∂

∂y

)

, u3 =
∂

∂z
.

Let g be the semi-Riemannian metric expressed by

g(u1, u1) = 1, g(u2, u2) = −1, g(u3, u3) = 1, g(u1, u2) = g(u1, u3) = g(u2, u3) = 0.

Let η and φ are defined by η(E) = g(E, u3) for any vector field E ∈ χ(M) and

φ(u1) = u2, φ(u2) = u1, φ(u3) = 0.
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Next utilizing the linearity property of φ and g we infer

η(u3) = 1,

φ2E = E − η(E)u3,

g(φE, φF) = −g(E, F) + η(E)η(F)

for any vector fields E, F ∈ χ(M). Thus for u3 = ξ, the structure (η, ξ, φ, g) satisfies a paracon-

tact structure on M3.

Then we infer

[u1, u2] = 0, [u1, u3] = −u1, [u2, u3] = −u2.

Apprehending u3 = ξ and utilizing Koszul’s formula for the semi-Riemannian metric g,

we can spontaneously calculate

∇u1 u1 = u3, ∇u1 u2 = 0, ∇u1 u3 = −u1,

∇u2 u1 = 0, ∇u2 u2 = −u3, ∇u2 u3 = −u2,

∇u3 u1 = 0, ∇u3 u2 = 0, ∇u3 u3 = 0.

Hence M3(η, ξ, φ, g) is a para-Sasakian manifold. Now it can be easily checked that

R(u1, u2)u3 = 0, R(u2, u3)u3 = −u2, R(u1, u3)u3 = −u1,

R(u1, u2)u2 = u1, R(u2, u3)u2 = −u3, R(u1, u3)u2 = 0,

R(u1, u2)u1 = u2, R(u2, u3)u1 = 0, R(u1, u3)u1 = u3.

Using the above expressions, the Ricci tensor can be obtained as

S(u1, u1) = −g(R(u1, u2)u2, u1) + g(R(u1, u3)u3, u1) = −2.

Similarly, we get

S(u2, u2) = 2, S(u3, u3) = −2.

Therefore, the scalar curvature r is calculated as

r = S(u1, u1)− S(u2, u2) + S(u3, u3) = −6.

Let us suppose that the manifold admit ARS (g, Z, λ). If we suppose that the soliton vector

Z has constant divergence, then from equation (29) we get

(Er) = 4(Eλ).

Since here r = −6, therefore λ = constant. Hence, the ARS reduces to a Riemann soliton

provided Z has constant divergence. Thus Theorem 1 is verified. Also from the components

of the curvature tensor we find that the manifold is of constant sectional curvature −1. Hence,

Theorem 2 is verified.
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Now from equation (31), we have

(ξb) + r + 6λ = 0. (41)

Also equation (33) holds for ARS in a para-Sasakian manifold. That is,

(ξb) = 1 − λ.

From the last two equations, we obtain λ = 1 and hence the ARS is expanding. Also from (41)

using r = −6 and λ = 1, we find (ξb) = 0. Utilizing this result in (32), we infer b = constant.

Thus, Theorem 3 is also verified.

Let us suppose that the manifold under consideration admit ARS (g, ξ, λ). Since £ξ g = 0 in

a para-Sasakian manifold, equation (13) reduces to

2R(E, F)W + 2λ{g(F, W)E − g(E, W)F} = 0, (42)

for all vector fields E, F, W. From the components of the curvature tensor we infer that the

manifold is of constant sectional curvature −1. Since the manifold is of constant sectional

curvature −1, therefore equation (42) implies that λ = 1. Hence Corollary 1 is verified.

5 Conclusion

The fascinating idea of Riemann soliton were recently introduced by I.E. Hiricǎ and

C. Udriste [11]. This soliton corresponds to a fixed point of the Riemannian flow and they

can be viewed as a dynamical system, on the space of Riemannian metric modulo diffeomor-

phism. In this context, we should mention that the space of constant sectional curvature is

generalized by the new idea of the Riemann soliton.

In the present investigation, we study ARS, the natural extension of the Riemann soliton in

a 3-dimensional para-Sasakian manifold M3 and observe that the ARS reduces to a Riemann

soliton and M3 is of constant sectional curvature −1, provided the soliton vector Z has constant

divergence. Also, a para-Sasakian manifold M3 admitting gradient ARS is shown to be locally

isometric to the hyperbolic space H3(−1).
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Метою цiєї статтi є дослiдити майже рiмановий солiтон i ґрадiєнтний майже рiмановий со-

лiтон на тривимiрному пара-Сасакяновому многовидi. Спочатку доведено, що якщо (g, Z, λ)

є майже рiмановим солiтоном на пара-Сасакяновому многовидi M3, то вiн зводиться до рiма-

нововго солiтону i M3 має сталу секцiйну кривину −1, при цьому солiтоновий вектор Z має

сталу дивергенцiю. Поза цим ми доводимо, що якщо Z є поточково колiнеарний з характери-

стичним векторним полем ξ, то Z є стало кратним до ξ i многовид має сталу секцiйну кривину

−1. Бiльше того, майже рiмановий солiтон розширюється. Крiм того, встановлено, що якщо

пара-Сасакяновий многовид M3 допускає ґрадiєнтний майже рiмановий солiтон, то M3 є ло-

кально iзометричним до гiперболiчного простору H3(−1). Насамкiнець ми збудували приклад

щоб обґрунтувати деякi результати нашої статтi.

Ключовi слова i фрази: пара-Сасакяновий многовид, майже рiмановий солiтон, ґрадiєнтний

майже рiмановий солiтон.


