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Riemann solitons on para-Sasakian geometry

De K.!, De U.C.2

The goal of the present article is to investigate almost Riemann soliton and gradient almost Rie-
mann soliton on 3-dimensional para-Sasakian manifolds. At first, it is proved that if (g, Z, A) is an
almost Riemann soliton on a para-Sasakian manifold M3, then it reduces to a Riemann soliton and
M3 is of constant sectional curvature —1, provided the soliton vector Z has constant divergence.
Besides these, we prove that if Z is pointwise collinear with the characteristic vector field ¢, then Z
is a constant multiple of ¢ and the manifold is of constant sectional curvature —1. Moreover, the al-
most Riemann soliton is expanding. Furthermore, it is established that if a para-Sasakian manifold
M? admits gradient almost Riemann soliton, then M3 is locally isometric to the hyperbolic space
H3(—1). Finally, we construct an example to justify some results of our paper.
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Introduction

Since Einstein manifolds perform a significant role in mathematics and physics, the investi-
gation of Einstein manifolds and their generalizations is a fascinating topic in Riemannian and
semi-Riemannian geometry. In the last few years, several generalizations of Einstein manifolds
such as Ricci soliton, gradient Ricci soliton, gradient Einstein soliton, etc. have been studied.
The idea of Ricci flow was introduced by R.S. Hamilton [8] and expressed by a% g(t) = =25(t),
where S indicates the Ricci tensor.

As a natural generalization, the notion of Riemann flow (see [18]) is expressed by
%G(t) = —2Rg(t), G = ;g ® g, where R is the Riemann curvature tensor and ® is Kulkarni-
Nomizu product, defined as follows (see [1, p. 47])

(P®Q)(X,Y,U,W) = P(X, W)Q(Y, U) + P(Y, U)Q(X, W)
— P(X,U)Q(Y, W) — P(Y,W)Q(X, U),

—~

where P and Q are (0, 2)-tensor field.

Similar to Ricci soliton, the interesting concept of Riemann soliton was introduced by
LE. Hiricd and C. Udriste [11]. Analogous to I.E. Hiricd and C. Udriste [11], a semi-Riemannian
metric g on a semi-Riemannian manifold M is said to be a Riemann soliton if there exist a C*
vector field Z and a real scalar A such that

2R+Ag®g+g®Ezg =0. 1)
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The soliton will be named as expanding (A > 0), steady (A = 0) or shrinking (A < 0), re-
spectively. If Z is gradient of the potential function <y, then the manifold is said to be gradient
Riemann soliton. Then the previous equation can be written as

2R+Ag@g+g®Viy =0, (2)

where V2f indicates the Hessian of 7. If we modify the equations (1) and (2) by fixing the
condition on the parameter A to be a variable function, then it reduces to ARS and gradient
ARS respectively. Here the terminology “almost Riemann solitons” is written as ARS which
will be applied throughout the article.

Riemann solitons and gradient Riemann solitons on Sasakian manifolds have been dis-
cussed in detail by L.E. Hiricd and C. Udriste (see [11]). Moreover, Riemann soliton concerning
infinitesimal harmonic transformation was investigated in [17]. Here it is appropriate to notice
that R. Sharma in [15] investigated almost Ricci soliton in K-contact geometry and in [16] with
divergence free soliton vector field. Very recently in [7], the authors studied Riemann soli-
ton within the context of a contact manifold and proved various fascinating results. We may
mention [3,6] and the references given there for more information about Riemann soliton.

The above studies motivate us to investigate an ARS and the gradient ARS in a 3-dimen-
sional para-Sasakian manifolds.

The current article is structured as follows. At first, we recollect a few formulas of para-
Sasakian manifolds. Beginning from Section 3, after providing the proof, we will write our
main theorems. After that, we construct an example to verify some results of our article.

1 Para-Sasakian manifolds

The very attractive topic of paracontact metric structures were published in [12]. This fasci-
nating subject (paracontact geometry), has been investigated in the previous years by various ar-
ticles concerning the theory of paracontact manifolds and mathematical physics (see [4,9,10]).
In this context, we refer the reader to [2,12,13] and references therein.

Let M" be a C* differentiable manifold equipped with a 1-form 7, a unique characteristic
vector field ¢ and a (1, 1)-type tensor field ¢ such that

¢$’E=E—n(E)5, ¢¢=0, 5(5) =1 n(¢E)=0

and the almost paracomplex structure on each fibre of D = kery is induced by the tensor field
¢. In other words, the eigendistributions D, and D= of ¢ have the equal dimension corre-
sponding to the eigenvalues 1 and —1, respectively. Then M" is named as an almost paracontact
manifold. In addition, if M" obeys

8(C,E) =n(E), &(¢E ¢F) = —g(E, F) +n(E)y(F), 3)

where g indicates a semi-Riemannian metric, then M" is termed as almost paracontact metric
manifold [14] with the structure (¢, ¢, 7, ).
The Nijenhuis torsion is defined by

[, §](E,F) = ¢*[E,F] + [pE, pF] — ¢[9E, F] — ¢[E, ¢F].
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The almost paracontact manifold is called normal if the tensor field Ny = [¢,¢p] —2dn ® ¢
vanishes. The fundamental 2-form of the almost paracontact metric manifold is defined by
®(E,F) = g(E,¢F). If dy(E,F) = g(E,¢F), then (M, ¢,&,1,8) is verbally expressed to be
paracontact metric manifold.

A symmetric trace-free operator h = 3£z¢ in a paracontact manifold satisfies /¢ = 0 and
VEeE = —¢E + ¢hE. It is to be noted that ¢ being Killing vector field is equivalent to the con-
dition h = 0 and (¢, ¢, 7,g) is called K-paracontact structure. If the normality condition is
satisfied in a paracontact metric manifold M" then it is said to be a para-Sasakian manifold. It
is well circulated that every para-Sasakian manifold is necessarily K-paracontact. The converse
is not true in general, but it holds when the manifold is of dimension three [5].

In M" the subsequent results hold:

R(E,F)¢ = n(E)F —n(F)E, 4)

(Ve ¢)F = —g(E, F)§ + n(F)E,

VEG = —¢FE, 5)
R(Erg)F = g(E/ F>§ - W(F>Er (6)
S(E,§) = —2ny(E), QG = —2ng, 7)

for any E, F, where Q is the Ricci operator, i.e. §(QE, F) = S(E, F) on the manifold.
In a 3-dimensional semi-Riemannian manifold the Riemannian curvature tensor is written
by

mamz:gﬁsz—gasz+ﬂRmE—ﬂamF—gngE—gamH, )

for any E, F, Z. Substituting F=Z=C in the foregoing equation and utilizing (4) and (7) we get
(see [10])

QE= Sl(r+2)E ~ (r+6)(E)E, ©)

which implies

S(E,F) = 5[(r+2)g(E,F) = (r+6)y(E)y(F)]. (10)

N

Now we write the subsequent results.
Lemma 1 ([10, Lemma 3.3]). For a para-Sasakian manifold (M3, 1,8,¢,8), we have
¢r=0. (11)
Lemma 2 ([7, Lemma 3.8]). Forany E, F on M, in a gradient ARS (M, g, y,m, A), we infer
R(E,F)Dy = (VEQ)E — (VEQ)F + {F(2A + Ay)E — E(2A + Avy)F}, (12)

where Ay =div Dy, A is the Laplacian operator.
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2 ARS on 3-dimensional para-Sasakian manifolds

We consider a para-Sasakian manifold M> admitting an ARS defined by (1). Using Kulkarni-
Nomizu product in (1) we write

2R(E,F, W, X) +2M{g(E, X)g(F, W) — g(E,W)g(F, X)}
+{8(E, X)(£28)(F, W) + g(F, W)(£28)(E, X) — g(E,W)(£28)(F, X) ~ (13)
—g(F, X)(£28)(E,W)} = 0.

Contracting (13) over E and X, we lead
(£28)(F,W) +2S(F, W) + (4A 4 2divZ)g(F, W) = 0. (14)
Utilizing (10) in the foregoing equation we obtain
(£z8)(F,W) = —(r +2+4A +2divZ)g(F, W) + (r + 6)n(F)n(W) = 0. (15)
Taking covariant derivative along E and applying Z has constant divergence, we infer

(Ve£z8)(F, W) = —[(Er) +4(EA)Ig(F, W) + (Er)y(F)n(W)

— (r + 6)S(PE, F)(W) + g(9E, Wyn(F)] = 0. 1o
Next recall the famous formula by Yano (see [19]):
(£2Veg — Vikzg — Vi) (FW) = —g((E2V)(E, F), W) — g((£,V)(E, W), F)
Hence by a simple calculation, we can easily get
(Ve£28)(F, W) = g((£29) (E, ), W) + (£, ) (E, W), F). 1)

Using symmetric property of ££V , it reveals from (17) that

S((EV)(E, F), W) = 5(Ve£sg)(E,W) + 5(Ve£sg)(E,W) — 5 (Viwkzg) (EF). (18)
Using (16) in (18) we infer

28((£2V)(E,F), W) = —

(19)

r+6)[g(¢F, E)(W) + g(¢F, W)y (E)]
+ [(Wr) +4(WA)|g(E, F) + (Wr)n(E)y (F)
— (r+6)[g(¢W, E)n(F) + g(¢W, F)n(E)].

Then substituting E = F = ¢; in (19) and removing W, where {e;} is an orthonormal basis of
the tangent space at each point of the manifold and taking summation over i, 1 < i < 3, we
obtain

(EFV)(EZ', 61') = —4DA. (20)
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Again differentiating (14) and utilizing it in (17) we can readily produce
8((£zV)(E, F),W) = (VwS)(E, F) = (VES)(F, W) = (VES)(E, W). (21)
Taking E = F = ¢; in (21) and summing over i we lead
(£2V)(ei ei) =0, (22)
where {¢;} is an orthonormal frame. Combining (20) and (22) yields
DA = 0.
This means that A is constant and leads to the following result.

Theorem 1. If the soliton vector Z has constant divergence in a 3-dimensional para-Sasakian
manifold, then an ARS reduces to a Riemann soliton.

Applying the above theorem and removing W from (19) gives

2(£zV)(E, F) = = (Er)F + (Er)y(F)¢ — (r + 6)[g(E, F)¢ + ¢En (F)]
— (Fr)E+ (Fr)n(E)¢ — (r +6)[8(¢F, E)¢ + ¢Fn(E)]
+ Drlg(E, F) —n(E)n(F)] — (r + 6)[¢En(F) + ¢Fy(E)].

Replacing Y by ¢ and utilizing (11) yields
(£2V)(E, &) = —(r + 6)¢E. (23)
Executing covariant derivative of (23) along F, we infer
(VE£zV)(E,§) = (£2V)(E, ¢F) = —(Fr)¢E — (r + 6)[—g(E, F){ + 1 (E)F].
If we use the subsequent formula
(£rR)(X,Y)Z = (Vx£rV)(Y, Z) — (Vy£eV) (X, Z)
in the foregoing equation, we obtain

(£zR)(E, F)§ = —(£2V)(F, ¢E) + (£2V)(E, oF) + (Er)¢F

(24)
— (Fr)¢E — (r +6)[n(E)F —n(F)E].
Setting F = ¢ in the previous equation yields
(£zR)(E, )¢ = —(r+6)[n(E)¢ — EJ. (25)
Again from (15) we lead
(£28)(E, &) = (4 — 41 — 2divZ)y (E). 26)

Lie-differentiating (3) along Z and by virtue of (26) we obtain

(Ezn)(E) — g(£28,E) + (4A +2divZ — 4)y(E) = 0. (27)
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Replacing E by ¢ in the previous equation gives
N(£z¢) = (2A +divZ — 2). (28)
Executing Lie derivative of (4) along Z we lead
(£zR)(E, §)¢ + 8(E, £28)¢ — 27(£28)E = {(£217)E}¢.
Utilizing (25), (27) and (28) in the above equation we infer
(—r —10+4A + 2divZ)[n(E)¢ — E] = 0.
Next tracing the foregoing equation yields
divZ = (5+5-24).

Clearly, contracting the equation (24) leads

(£25)(E, &) = —&(Dr, ¢E) —2(r + 6)11(E). (29)

Taking £ to (7), recalling (10) gives

(£28)(E, &) + (5 +1)2(E £28) — (5 +3)n(£28)n(E) = =2(£2m)E.

Using (29) and (26) in the foregoing equation yields

—g(Dr,¢E) —2(r + 6)1(E) + (% + 3)g(E, £28) — (% + 3)17(£z€)17(E) + 2 (E).

By a simple calculation, substituting E by ¢ in (30) and using (29) we can easily get r = —6. If

r = —6, then from equation (10) we find that g is an Einstein metric, i.e. S = —2g. Therefore,

by utilizing equation (8) we infer that the manifold is of constant sectional curvature —1.
Thus we can write the following assertion.

Theorem 2. If a semi-Riemannian metric of a para-Sasakian manifold M? is the ARS, then M®
is of constant sectional curvature —1, provided the soliton vector Z has constant divergence.

Now let Z be point-wise collinear with the characteristic vector field ¢, i.e. Z = b¢, where
b is a function on M>. Since div¢ = 0 in a para-Sasakian manifold M3, we have divZ = (&b).
Therefore from (14) we lead

9(Vgbg, F) + g(VEbE, E) +2(Eb)g(E, F) +2S(E, F) +4Ag(E, F) = 0. (30)
Using (5) in (30), we get
(Eb)y(F) + (Fb)y(E) +2(&b)g(E, F) +2S(E,F) +4Ag(E, F) = 0. (31)

Putting F = ¢ in (31) and using (7) yields
(Eb) 4+ 3(¢b)n(E) — 4n(E) +4An(E) = 0. (32)
Putting E = ¢ in (32) we obtain

(Eb) =1—A. (33)
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Putting the value of ¢b in (32) yields
db = (1—-A)y. (34)
Operating (34) by d and using Poincare lemma d? = 0, we obtain
0=d?b = (1—A)dy +dAn. (35)
Taking wedge product of (35) with 77, we have
(I1-=A)yANdy=0.
Since 17 A dnj # 0 in a para-Sasakian manifold M3, therefore
A =1 (36)
Using (36) in (34) gives db = 0, i.e. b =constant. Therefore from (31) we infer
S(E,F) = —2g(E,F),

which implies M3 is an Einstein manifold. Therefore from (8) we conclude that the manifold
is of constant sectional curvature —1.
Thus we state the following result.

Theorem 3. Let (M3, ¢,&,1,¢) ba a para-Sasakian manifold. If g represents an ARS and Z is
pointwise collinear with the characteristic vector field ¢, then Z is a constant multiple of ¢ and
M is of constant sectional curvature —1. Moreover, the ARS is expanding.

In particular if Z = ¢, we can write the following assertion.
Corollary 1. If a para-Sasakian manifold M?3 admits an ARS (,G,A), then the manifold is of
constant sectional curvature —1.

3 Gradient ARS

This section is devoted to investigate 3-dimensional para-Sasakian manifolds admitting
gradient ARS. First we write the subsequent result without proof, since, by a simple calcu-
lations, the result can be obtained from (9).

Lemma 3. For a para-Sasakian manifold (M?3,7,&,¢,g) we have

(VeQ)E = (5 +3)9F, (V:QE=0.

Substituting F by ¢ in (12) and using the above Lemma 3, we infer

R(E,&)Dy = — (% + 3) OF + {E(2A + Ay)E — EQA + Ay)E}.

Then using (6), we get

§(E, DY+ DA+ A7) = — (5 +3)9E+{(67) +E(20 + Av)}E. (37)
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Executing the inner product of the foregoing equation with ¢ yields

E(y+ 2A+ A7) = {(G7) +EQ2A + Av) n(E), (38)

from which easily we lead

Ay + A+ A7) = {(87) +52A+ A7)},

where the exterior derivative is denoted by d. From the above equation we conclude that
v+ (2A + A7) is invariant along the distribution D . In other terms, E(y + (2A + Ay)) =0
for any E € D. Utilizing (38) in (37), we infer

{(€n) + 2@+ A} () — E] = - (5 +3)9E. (39)

Contracting the previous equation gives

{(€7) +32A+ Ay)} =0. (40)

Using (40) in (39), we lead
.
(5+3)¢E =0.

If E = 0. Clearly, operating ¢ we can easily obtain $?E = 0, which is a contradiction. Thus
we infer r = —6. Then from (10) we obtain S = —2¢. Therefore from (8) we state that M>
is of constant sectional curvature —1. Hence M3 is locally isometric to the hyperbolic space
H3(-1).

Hence we write the following result.

Theorem 4. If a para-Sasakian manifold M?3 admits a gradient ARS (v, ¢, A), then the manifold
is locally isometric to the hyperbolic space H3(—1).

4 Example

We consider the manifold M® = {(x,y,z) € R3} in which z # 0. The linearly independent

vector fields are

3 9 o 3
_z Y _ 22 9 _ Y
M=oy, M= <8x+8y)' =5

Let g be the semi-Riemannian metric expressed by
g(ull ul) == 1/ g(u2; uZ) == _1/ g(u?)/ u3) == 1/ g(ull uZ) - g(”11u3) = g(uZI u3) =0.
Let 7 and ¢ are defined by #(E) = g(E, u3) for any vector field E € x(M) and

Pp(ur) =u, P(uz) =ur, P(uz) =0.
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Next utilizing the linearity property of ¢ and g we infer
n(us) =1,
¢2E =E— W(E)u?ﬂ

S(¢E,¢F) = —g(E, F) +1(E)y(F)

for any vector fields E, F € x(M). Thus for uz = ¢, the structure (7, ¢, ¢, g) satisfies a paracon-
tact structure on M>.
Then we infer

[ul’ uz] =0, [ull u3] = —uy, [uZI u3] = —Uj.

Apprehending u3 = ¢ and utilizing Koszul’s formula for the semi-Riemannian metric g,
we can spontaneously calculate

vulul = Us, vuluz = 0/ Vu1u3 = —Uy,
vuzul = Or vuzuz = —us, vu2u3 = —Up,
Vu3u1 = O, Vu3u2 = 0, Vu3u3 =0.
Hence M3(7, ¢, ¢, g) is a para-Sasakian manifold. Now it can be easily checked that
R(uy, uz)uz =0, R(up,uz)uz = —up, R(uy,uz)uz = —uy,
R(u1,uz)up = w1, R(up,uz)up = —uz, R(uy,uz)uz =0,
R(uy, up)ur =z, R(ug,uz)ur =0, R(uy, uz)ur = us.
Using the above expressions, the Ricci tensor can be obtained as
S(uy,u1) = —g(R(uy, uz)uz, u1) + g(R(uy, uz)us, ug) = —2.

Similarly, we get
S(uz, uz) = 2, S(u3, u3) = -2

Therefore, the scalar curvature r is calculated as
r = S(uy,u1) — S(up, up) + S(uz, uz) = —6.

Let us suppose that the manifold admit ARS (g, Z, A). If we suppose that the soliton vector
Z has constant divergence, then from equation (29) we get

(Er) = 4(EA).

Since here r = —6, therefore A = constant. Hence, the ARS reduces to a Riemann soliton
provided Z has constant divergence. Thus Theorem 1 is verified. Also from the components
of the curvature tensor we find that the manifold is of constant sectional curvature —1. Hence,
Theorem 2 is verified.
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Now from equation (31), we have
(Cb) +r+6A =0. (41)
Also equation (33) holds for ARS in a para-Sasakian manifold. That is,
(¢b) =1—A.

From the last two equations, we obtain A = 1 and hence the ARS is expanding. Also from (41)
using ¥ = —6 and A = 1, we find (¢b) = 0. Utilizing this result in (32), we infer b = constant.
Thus, Theorem 3 is also verified.

Let us suppose that the manifold under consideration admit ARS (g, ¢, A). Since £;¢ = 0 in
a para-Sasakian manifold, equation (13) reduces to

2R(E,F)W +2A{g(F, W)E — g(E,W)F} =0, (42)

for all vector fields E, F, W. From the components of the curvature tensor we infer that the
manifold is of constant sectional curvature —1. Since the manifold is of constant sectional
curvature —1, therefore equation (42) implies that A = 1. Hence Corollary 1 is verified.

5 Conclusion

The fascinating idea of Riemann soliton were recently introduced by LE. Hiricd and
C. Udriste [11]. This soliton corresponds to a fixed point of the Riemannian flow and they
can be viewed as a dynamical system, on the space of Riemannian metric modulo diffeomor-
phism. In this context, we should mention that the space of constant sectional curvature is
generalized by the new idea of the Riemann soliton.

In the present investigation, we study ARS, the natural extension of the Riemann soliton in
a 3-dimensional para-Sasakian manifold M® and observe that the ARS reduces to a Riemann
soliton and M? is of constant sectional curvature —1, provided the soliton vector Z has constant
divergence. Also, a para-Sasakian manifold M® admitting gradient ARS is shown to be locally
isometric to the hyperbolic space H3(—1).
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Mertoro 11i€l CTaTTi € AOCAIAMTY MaliXXe piMaHOBUII COAITOH i I'paAieHTHMII Mavike piMaHOBMIA CO-
AiTOH Ha TpuBMMipHOMY napa-CacakssHOBOMY MHOTOBMAL. CIIOYaTKy AOBEAEHO, IO SIKIIIO ( 87, A)
€ Malike pPiMaHOBMM COAITOHOM Ha napa-CacaksiHOBOMY MHOTOBMA] M3, TO BiH 3BOAMTBCSI AO piMa-
HOBOBIO COAITOHY i M® Mae cTaAy cexuiiiHy KpUBMHY — 1, U LIbOMY COAITOHOBMIT BeKTOp Z Mae
cTaAy AmBepreHuiro. IToza M My AOBOAMMO, IIO SIKIIO Z € IOTOYKOBO KOAIHeapHMIA 3 XapaKTepu-
CTUYHMM BEKTOPHMM ITOAEM {, TO Z € CTAAO KPaTHUM AQ § i MHOTOBMA Ma€ CTaAy CeKIIHY KpUBMHY
—1. Biapire Toro, Mayike piMaHOBMIL COAITOH pO3IIMPIOETHCSI. KpiM TOro, BCTAaHOBAEHO, IIO SIKIIIO
napa-CacakstHOBMIT MHOTOBMA M® AOTIyCcKae TpaaieHTHMIT Mavke piMaHOBUIt COAITOH, TO M3 € Ao-
KAaABHO i30MeTPUUHMM AQ Tiep6oaiuroro mpoctopy H>(—1). Hacamkiems My 36y AyBaAM IPUKAAA
06 06IPYHTYBaTH AesIKi pe3yAbTaTV HaIlIol CTaTTi.

Kntouosi cnoea i ¢ppasu: mapa-CacaksTHOBMII MHOTOBMA, Malike PiMaHOBMII COAITOH, I'pPaAi€HTHIMIA
MarKe piMaHOBMIA COAITOH.



