Карпатські матем. публ. 2022, Т.14, №2, С.442-452

doi:10.15330/cmp.14.2.442-452

On A-statistical convergence and A-statistical Cauchy via ideal

Edely O.H.¹, Mursaleen M.^{2,3,⊠}

In [Analysis 1985, 5 (4), 301-313], J.A. Fridy proved an equivalence relation between statistical convergence and statistical Cauchy sequence. In this paper, we define A^{I^*} -statistical convergence and find under certain conditions, that it is equivalent to A^{I} -statistical convergence defined in [Appl. Math. Lett. 2012, 25 (4), 733–738]. Moreover, we define A^{I} - and A^{I*} -statistical Cauchy sequences and find some equivalent relation with A^{I} - and A^{I*} -statistical convergence.

Key words and phrases: I-convergence, A^I-statistical convergence, A^{I*}-statistical convergence, A^{I} -statistical Cauchy convergence, A^{I^*} -statistical Cauchy convergence.

E-mail: osamaedely@yahoo.com(Edely O.H.), mursaleenm@gmail.com(Mursaleen M.)

1 Introduction

The natural density of $V \subseteq \mathbb{N}$ (the set of natural numbers) is defined by

$$\delta(V) = \lim_{n} \frac{1}{n} \Big| \{ v \le n : v \in V \} \Big|,$$

if the limit exists, where $|\cdot|$ denotes the cardinality of the enclosed set. The statistically convergence [14] of a sequence $\mu = (\mu_k)$ to the number L is obtained if $\forall \epsilon > 0$, $\delta(V(\epsilon)) = 0$, where $V(\epsilon) = \{k \in \mathbb{N} : |\mu_k - L| \ge \epsilon\}$, i.e. st-lim $\mu = L$. For an infinite matrix $A = (a_{nk})$, a sequence $\mu = (\mu_k)$ is A-summable to L if $\lim_n A_n(\mu) = L$, where $A_n(\mu) = \sum_{k=1}^{\infty} a_{nk} \mu_k$ and the series converges for each n. A matrix A is regular if A transforms every convergent sequence into a convergent sequence leaving the limit invariant, i.e. $A\mu \in c$ for every $\mu \in c$ and $\lim_n A_n(\mu) = \lim_k \mu_k$. Let Ω denote the class of all non-negative regular matrices. If C_1 is replaced by $A \in \Omega$, then x is A-statistically convergent to L [3, 23], i.e. if $\delta_A(V(\epsilon)) = \lim_n \sum_{k \in V(\epsilon)} a_{nk} = 0$ for every $\epsilon > 0$, and we write st_A - $\lim_k \mu_k = L$. J.A. Fridy [16] defined statistically Cauchy (i.e. a sequence $\mu = (\mu_k)$ is statistically Cauchy if for every $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that $\delta(\{k \in \mathbb{N} : |\mu_k - \mu_{N_{\epsilon}}| \geq \epsilon\}) = 0$ and showed that it is equivalent to statistical convergence. In [23], the same results were shown for A-statistically Cauchy sequences. Several generalizations and variants can be found in [4,9,17,18,22,30,31,36]. The concept of *I*-convergence [24] is one of such generalizations. Let $\emptyset \neq I$ (*F*, resp.) $\subseteq P(\mathbb{N})$, then I (F, resp.) is an ideal (filter, resp.) in $\mathbb N$ if for any $B,C\in I$ (F, resp.), we have (i) $B\cup C\in I$ $(B \cap C \in F, \text{resp.})$; (ii) $B \in I$ whenever $B \subseteq C$ and $C \in I$ ($C \in F$ whenever $B \subseteq C$ and $C \in I$) resp.); (iii) $\varnothing \in I$ ($\varnothing \notin F$, resp.).

УДК 517.52

2020 Mathematics Subject Classification: 40A05, 40A35, 40G15.

¹ Tafila Technical University, P.O.Box 179, Tafila 66110, Jordan

² China Medical University Hospital, China Medical University, Taichung, Taiwan

³ Aligarh Muslim University, Aligarh 202002, India

[⊠] Corresponding author

I is non-trivial if $\mathbb{N} \notin I$, and is admissible if I contains all finite subset of \mathbb{N} . Let Im denote the set of all non-trivial admissible ideals in \mathbb{N} . The filter associated with I is denoted by $F(I) = \{D = \mathbb{N} \setminus B : B \in I\}$. A sequence $\mu = (\mu_k)$ is I-convergent to $L \in \mathbb{R}$ if for every $\epsilon > 0$, the set $V(\epsilon) \in I$, and we write I-lim $\mu_k = L$. The notion of I^* -convergence was introduced in [24] and it was shown under certain conditions the equivalence of I- and I^* -convergence. A real sequence $\mu = (\mu_k)$ is I^* -convergent to $L \in \mathbb{R}$ if there is a set $B \in I$ such that for $D = \mathbb{N} \setminus B = \{d_i\}_{i=1}^{\infty}$, we have $\lim_i \mu_{d_i} = L$; and we write I^* -lim $\mu_k = L$. The notion of I-Cauchy sequence was studied by many authors see [7, 26, 35], which is a generalization of statistical Cauchy. A real sequence μ is I-Cauchy if for every $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that $\{k : |\mu_k - \mu_{N_{\epsilon}}| \geq \epsilon\} \in I$. A real sequence $\mu = (\mu_k)$ is I^* -Cauchy if there exists a set $D = \{d_i\}_{i=1}^{\infty} \in F(I)$ such that the subsequence (μ_{d_i}) is an ordinary Cauchy sequence in \mathbb{R} . One more generalization of A-statistical convergence is A^I -statistical convergence introduced by \mathbb{E} . Savas at el. [39], see also [2,7,8,13,19,21,25,27–29,32–34,38].

Definition 1. Let $I \in \text{Im}$ and $A \in \Omega$. A real sequence $\mu = (\mu_k)$ is said to be A^I -statistically convergent to $L \in \mathbb{R}$ if for every $\epsilon > 0$ and $\nu > 0$, the set $\left\{ n : \sum_{k \in V(\epsilon)} a_{nk} \ge \nu \right\}$ belongs to I, where $V(\epsilon)$ is same as above, and we write I-st $_A \lim x_k = L$.

Remark 1. (a) If $I = I_{fin} = \{V \subseteq \mathbb{N} : V \text{ is finite}\}$, then A^I -statistical convergence becomes A-statistical convergence due to [3].

(b) If $A = C_1$, then A^I -statistically convergent becomes I-statistical convergence due to [37] and we write I-st $\lim \mu_k = L$.

For related notions, see [5, 6, 18, 20, 25].

Definition 2. Let $I \in \text{Im}$, $A \in \Omega$ and $\mu = (\mu_k)$ be a real sequence. Then for some v > 0

$$I\text{-st}_A \limsup \mu = \left\{ \begin{array}{ll} \sup G_{\mu}, & \text{if } G_{\mu} \neq \emptyset, \\ -\infty, & \text{if } G_{\mu} = \emptyset, \end{array} \right.$$

and

$$I\text{-st}_A \liminf \mu = \left\{ \begin{array}{ll} \inf H_{\mu}, & \text{if } H_{\mu} \neq \emptyset, \\ \infty, & \text{if } H_{\mu} = \emptyset, \end{array} \right.$$

where

$$G_{\mu} = \left\{ g \in \mathbb{R} : \left\{ n \in \mathbb{N} : \sum_{\{k: \mu_k > g\}} a_{nk} > v \right\} \notin \mathfrak{I} \right\},$$

and

$$H_{\mu} = \left\{ h \in \mathbb{R} : \left\{ n \in \mathbb{N} : \sum_{\{k: \mu_k < h\}} a_{nk} > v \right\} \notin \mathfrak{I} \right\}.$$

Definition 3. Let $I \in \text{Im}$ and $A \in \Omega$. Then $\mu = (\mu_k)$ is called A^I -statistically bounded if for any v > 0,

$$\left\{n \in \mathbb{N} : \sum_{\{k: |\mu_k| > t\}} a_{nk} > v\right\} \in \mathfrak{I}, \quad t \in \mathbb{R}.$$

Remark 2. (a) A^I -statistical boundedness $\Rightarrow I$ -st $_A$ lim sup μ and I-st $_A$ lim inf μ are finite. (b) If μ is A^I -statistically convergent then μ is A^I -statistically bounded.

Remark 3. Throughout the paper, $I \in \text{Im and } A \in \Omega$.

2 A-statistical convergence and A-statistical Cauchy via ideal

We introduce the notion of A^{I^*} -statistical convergence, A^I -statistical Cauchy and A^{I^*} -statistical Cauchy and obtain some results. We study under what conditions A^I -statistical convergence (or Cauchy) and A^{I^*} -statistical convergence (or Cauchy) are equivalent.

Definition 4. A sequence $\mu = (\mu_k)$ is A^{I^*} -statistically convergent to the number L if there exists $D = \{d_i\}_{i=1}^{\infty} \in F(I)$ such that $\delta_A(D) = 1$ and μ is A^D -statistically convergent to L, i.e. for every $\epsilon > 0$, $\lim_i \sum_{k \in V(\epsilon)} a_{d_i k} = 0$, and we write I^* -st $_A \lim \mu_k = L$.

Remark 4. If $A = C_1$, then A^{I^*} -statistical convergence becomes I^* -statistical converges due to [11].

Now to show the equivalence between A^I -statistical convergence and A^{I^*} -statistical convergence, we need to define (APO) condition which is similar to the condition used in [4,15,24].

Definition 5. Let $I \in \text{Im}$ and $A \in \Omega$, then I is said to satisfy (APO) condition if for every sequence (B_n) of (pairwise disjoint) sets from I there exist sets $C_n \in I$, $n \in \mathbb{N}$, such that the symmetric difference $B_n \Delta C_n$ is finite for every $n, \bigcup_n C_n \in I$, $\delta_A(\bigcup_n C_n) = 0$.

The following proposition is an analogous to [1, Proposition 1].

Proposition 1. Let $I \in \text{Im}$ and $A \in \Omega$, then I satisfies (APO) if and only if for every sequence (B_n) of (pairwise disjoint) sets from I there exists $B \in I$, such that $B_n \setminus B$ is finite for every n and $\delta_A(B) = 0$.

Theorem 1. (a) I^* -st_A $\lim \mu_k = L \Rightarrow I$ -st_A $\lim \mu_k = L$.

(b) I- $st_A \lim \mu_k = L \Rightarrow I^*$ - $st_A \lim \mu_k = L$, provided I satisfies (APO).

Proof. (a) Let I^* - $st_A \lim \mu_k = L$. Then there exists $B \in I$ such that $D = \{d_i\} = \mathbb{N} \setminus B \in F(\mathcal{I})$, $\delta_A(D) = 1$, and $\forall \epsilon > 0$, $\lim_i \sum_{k \in V(\epsilon)} a_{d_i k} = 0$, where $V(\epsilon) = \{k \le n : |\mu_k - L| \ge \epsilon\}$. Therefore for each $\nu > 0$, there exists N such that $\frac{1}{N} < \nu$, so

$$E = \left\{ n : \sum_{k \in V(\epsilon)} a_{nk} \ge \nu \right\} \subseteq B \cup \left\{ d_1, d_2, \dots, d_N \right\}.$$

Since $B \in I$ and $\{d_1, d_2, ..., d_N\} \in I$, we have $E \in I$. Hence I- $st_A \lim \mu_k = L$.

(b) Let I- $st_A \lim \mu_k = L$. Then $\forall \epsilon > 0$ and for each $\nu > 0$, we have

$$\left\{n: \sum_{k\in V(\epsilon)} a_{nk} \geq \nu\right\} \in I,$$

where $V(\epsilon)$ is same as mentioned above. Therefore, define the sequence (B_i) of sets as

$$B_i = \left\{ n : \sum_{k \in V(\epsilon)} a_{nk} \ge \frac{1}{i} \right\}, \quad i \in \mathbb{N}.$$

Since I satisfies the condition (APO) and each $B_i \in I$, by Proposition 1, there exists a set $B \in I$ such that $\delta_A(B) = 0$ and $B_i \setminus B$ is finite for each i. Let $E = \mathbb{N} \setminus B$. Then $\delta_A(E) = 1$. Now for any $\eta > 0$, there is $N \in \mathbb{N}$ such that $\frac{1}{N} < \eta$. Therefore

$$B_N = \left\{ n : \sum_{k \in V(\epsilon)} a_{nk} \ge \frac{1}{N} \right\} \in I.$$

Now let us define the set *D* as

$$D = \left\{ n : \sum_{k \in V(\epsilon)} a_{nk} < \frac{1}{N} \right\} \setminus B.$$

Since B_N , $B \in I$, we have $D \in F(I)$ and $\delta_A(D) = 1$. Hence we have

$$\sum_{k \in V(\epsilon)} a_{nk} < \eta, \quad \forall n > N, \ n \in D,$$

i.e.

$$\lim_{n} \sum_{k \in V(\epsilon)} a_{nk} = 0, \quad n \in D.$$

Hence
$$st_{A^{D}}$$
- $\lim_{k} \mu_{k} = L$, $\delta_{A}(D) = 1$, i.e. \mathcal{I}^{*} - $st_{A}\lim \mu_{k} = L$.

Remark 5. The converse of Theorem 1 (a) need not be true.

Example 1. Let $B_m = \{2^{m-1}(2n-1) : n \in \mathbb{N}\}$ and

 $I = \{B \subset \mathbb{N} : B \text{ intersects only finite numbers of } B_m's\}$,

then $I \in \text{Im. Define } \mu = (\mu_k)$ as

$$\mu_k = \frac{1}{m}, \quad k^2 \in B_m,$$

and $A = (a_{nk}) = C_1$. Now for any $\epsilon > 0$, let $V(\epsilon) = \{k : |\mu_k - 0| \ge \epsilon\}$, therefore for any $\nu > 0$, we have

$$\left\{n: \sum_{k \in V(\epsilon)} a_{nk} \ge \nu\right\} \subseteq \left\{n \in \mathbb{N}: \frac{\sqrt{n}}{n} \ge \nu\right\} \in I.$$

Hence μ is A^I -statistically convergent to zero. Now we need to show that μ is not A^{I^*} -statistically convergent to zero. Suppose if it is possible that μ is A^{I^*} -statistically convergent to zero, then there exists a set $D=\mathbb{N}\setminus C=\{d_i\}\in F(I)$, where $C\in I$, $\delta_A(D)=1$ and $\lim_i\sum_{k\in V(\varepsilon)}a_{d_ik}=0$. Since $C\in I$, then there exists $t\in \mathbb{N}$ such that t is odd and $C\subseteq B_1\cup B_2\cup\ldots\cup B_t$. So $B_{t+1}\subseteq D$. Therefore $\mu_{d_i}=\frac{1}{t+1}$ for infinitely many i's. Now let us choose $\eta>0$ such that $\eta<\frac{1}{t+1}$. Hence,

$$\delta_A \left\{ d_i \in B_{t+1} : \sum_{k \in V(\epsilon)} a_{d_i k} \ge \eta \right\} = \frac{1}{2^{t+1}} \ne 0,$$

i.e. I^* - $s_A \lim_k \mu_k \neq 0$, a contradiction. Hence, μ is not A^{I^*} -statistically convergent to zero.

Definition 6. A sequence $\mu = (\mu_k)$ is A^I -statistical Cauchy if for any $\epsilon > 0$ and for each $\nu > 0$ there is $N_{\epsilon} \in \mathbb{N}$ such that

$$\left\{n: \sum_{k\in K(\epsilon)} a_{nk} \ge \nu\right\} \in \mathcal{I},$$

where $K(\epsilon) = \{k \le n : |\mu_k - \mu_{N_{\epsilon}}| \ge \epsilon\}$.

Definition 7. A sequence $\mu = (\mu_k)$ is A^{I^*} -statistical Cauchy if there is a set $D = \{d_i\}_{i=1}^{\infty} \in F(I)$ such that $\delta_A(D) = 1$ and (μ_k) is A^D -statistical Cauchy in \mathbb{R} , i.e. for every $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that $\lim_i \sum_{k \in K(\epsilon)} a_{d_i k} = 0$.

Remark 6. If $A = C_1$, then Definition 6 and Definition 7 reduce to I-statistical Cauchy and I^* -statistical Cauchy due to [13].

Theorem 2. A^{I^*} -statistical convergence $\Leftrightarrow A^{I^*}$ -statistical Cauchy.

Proof. Let μ be A^{I^*} -statistically convergent to L. Then μ is A^D -statistically convergent to L and hence by [23, Theorem 2.2] we can deduce that by replacing the regularity of A by A^D that μ is A^D -statistically convergent if and only if μ is A^D -statistical Cauchy.

Lemma 1. A^{I} -statistical Cauchy implies A^{I} -statistically bounded.

Proof. If μ is A^I -statistically Cauchy, then for any $\epsilon > 0$, there exists $N_{\epsilon} \in \mathbb{N}$ such that

$$T(\nu) = \left\{ n : \sum_{k \in F(\frac{\varepsilon}{2})} a_{nk} \ge \nu \right\} \in I \text{ for every } \nu > 0,$$

where $F(\frac{\epsilon}{2}) = \{k \le n : |\mu_k - \mu_{N_{\epsilon}}| \ge \frac{\epsilon}{2}\}$. Therefore

$$M(\nu) = \left\{ n : \sum_{k \in G(\frac{\epsilon}{2})} a_{nk} \ge \nu \right\} \in F(I),$$

where $G(\frac{\epsilon}{2}) = \{k \le n : |\mu_k - \mu_{N_{\epsilon}}| < \frac{\epsilon}{2}\}$. Let us define the set $E(\epsilon)$ as

$$E\left(\epsilon\right)=\left\{ k:\left|\mu_{k}\right|<\epsilon+\left|\mu_{m}\right|
ight\}$$
 ,

where $m \in \mathbb{N}$ satisfies $|\mu_m - \mu_{N_{\epsilon}}| < \frac{\epsilon}{2}$, such m exists because I is an admissible ideal, otherwise $T\left(\frac{1}{4}\right) = \mathbb{N} \notin I$. Now for any $a \in G\left(\frac{\epsilon}{2}\right)$, we have

$$|\mu_a - \mu_m| \leq |\mu_a - \mu_{N_{\varepsilon}}| + |\mu_{N_{\varepsilon}} - \mu_m| < \varepsilon.$$

Therefore

$$|\mu_a| \leq |\mu_a - \mu_m| + |\mu_m| < \epsilon + |\mu_m|$$
,

hence $a \in E(\epsilon)$. So we have $G(\frac{\epsilon}{2}) \subseteq E(\epsilon)$, therefore for every $\nu > 0$,

$$M(\nu)\subseteq\left\{n:\sum_{k\in E(\epsilon)}a_{nk}\geq\nu\right\},$$

since $M(\nu) \in F(I)$, we have

$$\left\{n: \sum_{k \in E(\epsilon)} a_{nk} \ge \nu\right\} \in F(I).$$

Hence
$$\left\{n: \sum_{\{k: |\mu_k| > \epsilon + |\mu_m|\}} a_{nk} \ge \nu\right\} \in I$$
, i.e. μ is A^I -statistically bounded.

Theorem 3. A^I -statistical convergence $\Leftrightarrow A^I$ -statistical Cauchy.

Proof. Let I- $st_A \lim_k \mu_k = L$. Then for any $\epsilon > 0$ and $\forall \nu > 0$, we have

$$B(\nu) = \left\{ n : \sum_{k \in K(\frac{\epsilon}{2})} a_{nk} \ge \nu \right\} \in I,$$

where $K(\frac{\epsilon}{2}) = \{k \le n : |\mu_k - L| \ge \frac{\epsilon}{2}\}$. Let us define $G(\epsilon)$ as

$$G(\epsilon) = \{k \leq n : |\mu_k - \mu_N| \geq \epsilon\}$$
,

where $N \notin K\left(\frac{\epsilon}{2}\right)$, such N exists because I is an admissible ideal, otherwise $B\left(\frac{1}{3}\right) = \mathbb{N} \notin I$. Now for any $a \in G\left(\epsilon\right)$, we have

$$\epsilon \leq |\mu_a - \mu_N| \leq |\mu_a - L| + |\mu_N - L|.$$

Since $N \notin K\left(\frac{\epsilon}{2}\right)$, we have

$$|\mu_N - L| < \frac{\epsilon}{2}$$

therefore

$$|\mu_a - L| > \frac{\epsilon}{2}.$$

Hence $a \in K\left(\frac{\epsilon}{2}\right)$, and so we have $G\left(\epsilon\right) \subseteq K\left(\frac{\epsilon}{2}\right)$. Therefore for any $\nu > 0$, we have

$$\left\{n: \sum_{k \in G(\epsilon)} a_{nk} \ge \nu\right\} \subseteq B(\nu) \in I.$$

Hence μ is A^I -statistically Cauchy.

Conversely, let μ be A^I -statistical Cauchy. Then by Lemma 1, we have μ is A^I -statistically bounded. Therefore I- st_A $\liminf \mu$ and I- st_A - $\limsup \mu$ are finite. Using [20, Theorem 3], we have u = I- st_A $\liminf \mu \le I$ - st_A $\limsup \mu = w$. Since μ is A^I -statistical Cauchy sequence, then for any $\epsilon > 0$, there exists $N_{\frac{\epsilon}{2}} \in \mathbb{N}$ such that for every $\nu > 0$ we have

$$\left\{n: \sum_{\left\{k: \left|\mu_k - \mu_{N_{\frac{\epsilon}{2}}}\right| \ge \frac{\epsilon}{2}\right\}} a_{nk} \ge \nu\right\} \in I.$$

Therefore

$$\left\{n: \sum_{\left\{k: \mu_k > \mu_{N_{\frac{\epsilon}{2}}} + \frac{\epsilon}{2}\right\}} a_{nk} \ge \nu\right\} \in I,$$

hence by the definition of I- st_A lim sup μ and [20, Theorem 1], we have

$$w < \mu_{N_{\frac{\epsilon}{2}}} + \frac{\epsilon}{2}.\tag{1}$$

Also, we have

$$\left\{n: \sum_{\left\{k: \mu_k < \mu_{N_{\frac{\epsilon}{2}}} - \frac{\epsilon}{2}\right\}} a_{nk} \ge \nu\right\} \in I,$$

hence by the definition of I- st_A lim inf μ and [20, Theorem 2], we have

$$\mu_{N_{\frac{\epsilon}{2}}} < u + \frac{\epsilon}{2}.\tag{2}$$

Using equations (1) and (2), we have

$$w < u + \epsilon$$
.

Hence, for any $\lambda > 0$, we always have $w < u + \lambda$, therefore $w \le u$. Hence $u = I - st_A \liminf \mu = I - st_A \limsup \mu = w$. Now by [20, Theorem 4], we have μ is A^I -statistically convergent.

Theorem 4. (a) If $\mu = (\mu_k)$ is A^{I^*} -statistical Cauchy then μ is A^I -statistical Cauchy. (b) A^I -statistical Cauchy $\Rightarrow A^{I^*}$ -statistical Cauchy, if I satisfies (APO).

Proof. (a) It follows from Theorem 2, Theorem 1 (a) and Theorem 3.

(b) The proof follows from Theorem 3, Theorem 1 (b) and Theorem 2.

Remark 7. The converse of Theorem 4 (a) is not true in general.

Example 2. From Example 1, since μ is A^I -statistically convergent to zero but not A^{I^*} -statistically convergent then from Theorem 2 and Theorem 3 we get the result.

Theorem 5. A sequence $\mu = (\mu_k)$ is A^I -statistically convergent to a number $L \Leftrightarrow$ there exists a subset $M \subseteq \mathbb{N}$ such that $\{n : \sum_{k \in M} a_{nk} \ge \nu\} \in F(I)$ and $\lim_{i \in M} \mu_i = L$.

Proof. If μ is A^I -statistically convergent to L, then $\forall r \in \mathbb{N}$ and for every $\nu > 0$, we have

$$\left\{n: \sum_{k \in V(r)} a_{nk} \ge \nu\right\} \in I$$
, where $V(r) = \left\{k \le n: |\mu_k - L| \ge \frac{1}{r}\right\}$.

Therefore $\left\{n: \sum_{k \in M(r)} a_{nk} \geq \nu\right\} \in F(I)$, where $M(r) = \left\{k \leq n: |\mu_k - L| < \frac{1}{r}\right\}$. Now we need to show that there exists M(i) such that the subsequence (μ_j) , $j \in M(i)$, is convergent to L. Suppose that for any r, the subsequence (μ_j) , $j \in M(r)$, is not convergent to L. So for each r, there exists $\epsilon_r > 0$ such that

$$|\mu_j - L| \ge \varepsilon_r$$

for infinitely many terms in M(r). So, we have

$$G\left(\epsilon_{r}\right)=\left\{ j\in M\left(r\right):\left|\mu_{j}-L\right|\geq\epsilon_{r}\right\}
eq\varnothing.$$

For every ϵ_r there exists $t_r \in \mathbb{N}$ such that

$$\frac{1}{t_r} < \epsilon_r < \frac{1}{r}, \quad \frac{1}{t_1} > \frac{1}{t_2} > \cdots > \frac{1}{t_r} > \cdots.$$

Now we construct a sequence of closed intervals $\{I_r\}_{r\in\mathbb{N}}$, where $I_r = \left\lfloor \frac{1}{t_r}, \frac{1}{r} \right\rfloor$. Since $\{I_r\}$ satisfies nested Intervals Theorem, there is a number $\alpha \in I_r$ for every r. Hence α must satisfy

$$0 < \alpha < \frac{1}{r}, \quad \forall r,$$

which contradicts Archimedean Property. Hence there exists M(i) such that the subsequence (μ_i) , $j \in M(i)$, is convergent to L.

Conversely, suppose that there exists a set $M \subseteq \mathbb{N}$, such that

$$D = \left\{ n : \sum_{k \in M} a_{nk} \ge \nu \right\} \in F(I)$$

and $\lim_{i} \mu_{i} = L$, $j \in M$. Therefore for every $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|\mu_j - L| < \epsilon$$
, $\forall j \ge N$, $j \in M$.

Let $\{j_1, j_2, ..., j_{N-1}\} = F \in M$. Then we have

$$T(\epsilon) = \{k \le n : |\mu_k - L| < \epsilon\} \supseteq M \setminus F$$
,

therefore

$$\left\{n: \sum_{k \in T(\epsilon)} a_{nk} \ge \nu\right\} \supseteq \left\{n: \sum_{k \in M \setminus F} a_{nk} \ge \nu\right\}.$$

Since $D \in F(I)$ and $D \setminus \{\text{finite set}\} \in F(I)$, we have $\{n : \sum_{k \in M \setminus F} a_{nk} \ge \nu\} \in F(I)$. Therefore

$$\left\{n: \sum_{k\in T(\epsilon)} a_{nk} \ge \nu\right\} \in F(I),$$

and so $\left\{n: \sum_{k\in V(\epsilon)} a_{nk} \geq \nu\right\} \in I$, where $V(\epsilon) = \{k \leq n: |\mu_k - L| \geq \epsilon\}$. Hence μ is A^I -statistically convergent to L.

From Theorem 3 and Theorem 5 we have equivalent statements.

Theorem 6. (a) μ is A^I -statistically convergent to L;

- (b) u is A^{I} -statistical Cauchy;
- (c) μ is such a sequence that there exists a subset $M \subseteq \mathbb{N}$ such that $\lim_{i \in M} \mu_i = L$ and

$$\left\{n: \sum_{k \in M} a_{nk} \ge \nu\right\} \in F(I).$$

Recall that a real sequence $\mu=(\mu_k)$ is said to be A^{I^*} -summable to L if there is a set $B\in I$, such that $D=\mathbb{N}\setminus B=\{d_i\}\in F(I)$ and $\lim_i\sum_k a_{d_ik}\mu_k=L$ and we write A^{I^*} - $\lim\mu_k=L$ [10]. Also we say that μ is statistically A^{I^*} -summable to L if there is a set $D=\{d_i\}\in F(I)$ and $\delta(D)=1$, such that st- $\lim_i\sum_k a_{d_ik}\mu_k=L$, and $(A^{I^*})_{st}$ - $\lim\mu=L$ [11].

Theorem 7. If μ is bounded then A^{I^*} -statistical convergence implies μ is A^{I^*} -summable and hence statistically A^{I^*} -summable.

Proof. Let μ be bounded and A^{I^*} -statistical convergent to L. Then μ is A^D -statistically convergent to L, where $D \in F(I)$. Now use [12, Theorem 2.1] by replacing the regularity of A by A^D , we have μ is A^{I^*} -summable to L and μ is statistically A^{I^*} -summable to L, i.e. $(A^{I^*})_{st}$ - $\lim \mu = L$.

Remark 8. The converse of Theorem 7 need not be true.

Example 3. Let *I* be the class defined in Example 1 and $A = C_1$. Let $\mu = (\mu_k)$ be defined by

$$\mu_k = \begin{cases}
1, & \text{if } k \in B_1, \\
0, & \text{otherwise.}
\end{cases}$$

Then $\sum_{k} a_{nk} \mu_k = \frac{1}{2}$.

Let us define $B = \{b_i \in B_2 : b_i \text{ is square}\}$. Then $B \in I$, so $D = \mathbb{N} \setminus B = \{d_i\} \in F(I) \text{ and } \delta(D) = 1$. Now $\lim_i \sum_k a_{d_ik} \mu_k = \frac{1}{2}$, so μ is A^{I^*} -summable to $\frac{1}{2}$ and st- $\lim_i \sum_k a_{d_ik} \mu_k = \frac{1}{2}$, i.e. μ is also statistically A^{I^*} -summable to $\frac{1}{2}$. Now we show that μ is not A^I -statistically convergent to any number and hence μ is not A^{I^*} -statistically convergent. Since for $\epsilon = \frac{1}{3}$ and for any $L \in \mathbb{R}$, the set $K(\frac{1}{3}) = \left\{k : |\mu_k - L| \ge \frac{1}{3}\right\}$ contains either B_1 (the set of odd) or the set of even or both. So $\sum_{k \in K(\frac{1}{3})} a_{nk} = \frac{1}{2}$ or 1. Therefore for $\nu = \frac{1}{3}$, we have

$$\left\{n: \sum_{k \in K(\frac{1}{3})} a_{nk} \ge \frac{1}{3}\right\} = \mathbb{N} \notin I,$$

since $I \in \text{Im}$, we have μ is not A^I -statistically convergent and hence μ is not A^{I^*} -statistically convergent.

References

- [1] Balcerzak M., Dems K., Komisarski A. *Statistical convergence and ideal convergence for sequences of functions*. J. Math. Anal. Appl. 2007, **328** (1), 715–729. doi:10.1016/j.jmaa.2006.05.040
- [2] Belen C., Mohiuddine S.A. *Generalized weighted statistical convergence and application*. Appl. Math. Comput. 2013, **219** (18), 9821–9826. doi:10.1016/j.amc.2013.03.115
- [3] Connor J. On strong matrix summability with respect to a modulus and statistical convergence. Canad. Math. Bull. 1989, **32**, 194–198. doi:10.4153/CMB-1989-029-3
- [4] Connor J. Two valued measures and summability. Analysis 1990, 10 (4), 373–386. doi:10.1524/anly.1990.10.4.373
- [5] Demirci K. A-statistical core of a sequence. Demonstr. Math. 2000, 33 (2), 343–353. doi:10.1515/dema-2000-0216
- [6] Demirci K. I-limit superior and limit inferior. Math. Commun. 2001, 6 (2), 165–172.
- [7] Dems K. On I-Cauchy sequences. Real Anal. Exchange 2004/2005, 30 (1), 123–128.
- [8] Dündar E., Arslan M., Yegül S. On I-uniform convergence of sequences of functions in 2-normed spaces. Rocky Mountain J. Math. 2020, **50** (5), 1637–1646.
- [9] Edely O.H. B-statistically A-summability. Thai J. Math. 2013, 11 (1), 1–10.
- [10] Edely O.H. On some properties of A^{I} -summability and $A^{I^{*}}$ -summability. Azerbaijan Jour. Math. 2021, 89 (1), 189–200.
- [11] Edely O.H. On statistical A^{I} and statistical A^{I^*} -summability. Thai J. Math. (Accepted).
- [12] Edely O.H., Mursaleen M. On statistical A-summability. Math. Comput. Modell. 2009, 49 (3), 672-680.
- [13] Edely O.H., Mursaleen M. On statistical \mathfrak{A} -Cauchy and statistical \mathfrak{A} -summability via ideals. J. Inequal. Appl. 2021, **34**, 1–11. doi:10.1186/s13660-021-02564-4

- [14] Fast H. Sur la convergence statistique. Colloq. Math. 1991, 2 (3-4), 241-244.
- [15] Freedman A.R., Sember J.J. Densities and summability. Pacific J. Math. 1981, 95 (2), 293–305. doi:10.2140/PJM.1981.95.293
- [16] Fridy J.A. On statistical convergence. Analysis 1985, 5 (4), 301–313. doi:10.1524/anly.1985.5.4.301
- [17] Fridy J.A., Miller H.I. A matrix characterization of statistical convergence. Analysis 1991, 11 (1), 59–66. doi:10.1524/anly.1991.11.1.59
- [18] Fridy J.A., Orhan C. *Statistical limit superior and limit inferior*. Proc. Amer. Math. Soc. 1997, **125** (12), 3625–3631. doi:10.1090/S0002-9939-97-04000-8
- [19] Georgioua D.N., Iliadis S.D., Megaritis A.C., Prinos G.A. *Ideal-convergence classes*. Topology Appl. 2017, 222, 217–226. doi:10.1016/j.topol.2017.02.045
- [20] Gürdal M., Sari H. External A-statistical limit points via ideals. J. Egyptian Math. Soc. 2014, 22 (1), 55–58. doi:10.1016/j.joems.2013.06.005
- [21] Kadak U., Mohiuddine S.A. *Generalized statistically almost convergence based on the difference operator which includes the* (*p*,*q*)-*gamma function and related approximation theorems*. Results Math. 2018, **73** (9), 1–31.
- [22] Kolk E. *Matrix summability of statistically convergent sequences*. Analysis 1993, **13** (1–2), 77–84. doi:10.1524/anly.1993.13.12.77
- [23] Kolk E. The statistical convergence in Banach Spaces. Acta Comment. Univ. Tartu. Math. 1991, 928, 41–52.
- [24] Kostyrko P., Šalát T., Wilczyńki W. I-convergence. Real Anal. Exchange 2000/2001, 26 (2), 669-686.
- [25] Kostyrko P., Macaj M., Šalát T., Sleziak M. *I-Convergence and External I-limits points*. Math. Slovaca 2005, **55** (4), 443–464.
- [26] Lahiri B.K., Das P. Further results on I-limit superior and limit inferior. Math. Commun. 2003, 8 (2), 151–156.
- [27] Mohiuddine S.A., Alamri B.S. *Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems*. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2019, **113** (2), 1955–1973. doi:10.1007/s13398-018-0591-z
- [28] Mohiuddine S.A., Asiri A., Hazarika B. Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems. Int. J. Gen. Syst. 2019, **48** (2), 1–15. doi:10.1080/03081079.2019.1608985
- [29] Mohiuddine S.A., Hazarika B., Alghamdi M.A. *Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems*. Filomat 2019, **33** (14), 4549–4560. doi:10.2298/FIL1914549M
- [30] Móricz F. Tauberian conditions under which statistical convergence follows from statistical summability (C,1). J. Math. Anal. Appl. 2002, 275, 277–287.
- [31] Mursaleen M., Edely O.H. Statistical convergence of double sequences. J. Math. Anal. Appl. 2003, 288 (1), 223–231. doi:10.1016/j.jmaa.2003.08.004
- [32] Mursaleen M., Mohiuddine S.A., Edely O.H. *On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces*. Comput. Math. Appl. 2010, **59** (2), 603–611. doi:10.1016/j.camwa.2009.11.002
- [33] Mursaleen M., Mohiuddine S.A. *On ideal convergence in probabilistic normed spaces*. Math. Slovaca 2012, **62**, 49–62. doi:10.2478/s12175-011-0071-9
- [34] Mursaleen M., Debnath S., Rakshit D. *I-statistical limit superior and I-statistical limit inferior*. Filomat 2017, **31** (7), 2103–2108. doi:10.2298/FIL1707103M
- [35] Nabiev A., Pehlivan S., Gürdal M. On I-Cauchy sequences. Taiwanese J. Math. 2007, 11 (2), 569–576. doi:10.11650/TJM.839

- [36] Šalát T. On statistically convergent sequences of real numbers. Math. Slovaca 1980, 30 (2), 139–150.
- [37] Savas E., Das P. *A generalized statistical convergence via ideals*. Appl. Math. Lett. 2011, **24** (6), 826–830. doi:10.1016/j.aml.2010.12.022
- [38] Savas E., Das P., Dutta S. *A note on some generalized summability methods*. Acta Math. Univ. Comenianae 2013, **82** (2), 297–304..
- [39] Savas E., Das P., Dutta S. *A note on strong matrix summability via ideals*. Appl. Math. Lett. 2012, **25** (4), 733-738. doi:10.1016/j.aml.2011.10.012

Received 04.06.2021 Revised 28.08.2021

Еделі О.Х., Мурсалін М. Про A-статистичну збіжність та A-статистичну збіжність за Коші иерез ідеал // Карпатські матем. публ. — 2022. — Т.14, \mathbb{N}^2 2. — С. 442—452.

У статті [Analysis 1985, 5 (4), 301–313], J.A. Fridy довів еквівалентне відношення між статистичною збіжністю та статистичною послідовністю Коші. У цій статті ми визначаємо A^{I^*} -статистичну збіжність та доводимо, що за певних умов вона еквівалентна до A^I -статистичної збіжності, що визначена у [Appl. Math. Lett. 2012, **25** (4), 733–738]. Більше того, ми визначаємо A^I - та A^{I^*} -статистичну послідовність Коші та знаходимо певне еквівалентне співвідношення з A^I - та A^{I^*} -статистичною збіжністю.

Kлючові слова і фрази: I-збіжність, A^I -статистична збіжність, A^{I^*} -статистична збіжність за Kоші, A^{I^*} -статистична збіжність за Kоші.