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On A-statistical convergence and A-statistical Cauchy via ideal

Edely O.H.!, Mursaleen M.

In [Analysis 1985, 5 (4), 301-313], J.A. Fridy proved an equivalence relation between statistical
convergence and statistical Cauchy sequence. In this paper, we define Al -statistical convergence
and find under certain conditions, that it is equivalent to A’-statistical convergence defined in [Appl.
Math. Lett. 2012, 25 (4), 733-738]. Moreover, we define Al- and Al -statistical Cauchy sequences
and find some equivalent relation with Al- and A" -statistical convergence.

Key words and phrases: I-convergence, Al gtatistical convergence, Al _statistical convergence,
Al-statistical Cauchy convergence, A! -statistical Cauchy convergence.
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1 Introduction

The natural density of V' C IN (the set of natural numbers) is defined by

4

5(V) zlirrln%){v <n:veV}

if the limit exists, where | - | denotes the cardinality of the enclosed set. The statistically con-
vergence [14] of a sequence y = (i) to the number L is obtained if Ve > 0, 6(V(e)) = 0,
where V(e) = {k € IN : |y — L| > €}, i.e. st-limpu = L. For an infinite matrix A = (a,),
a sequence y = (yy) is A-summable to L if lim, A,(p) = L, where A, (1) = Y571 Guxhi
and the series converges for each n. A matrix A is regular if A transforms every conver-
gent sequence into a convergent sequence leaving the limit invariant, i.e. Ay € c for every
p € cand lim, A,(¢) = limg pg. Let Q denote the class of all non-negative regular ma-
trices. If C; is replaced by A € (), then x is A-statistically convergent to L [3,23], i.e. if
5a(V(e)) = limy Yrey(e) ank = 0 for every € > 0, and we write st 4-limy p = L. J.A. Fridy [16]
defined statistically Cauchy (i.e. a sequence u = (py) is statistically Cauchy if for every € > 0
there exists Ne € N such that §({k € IN : |y — pn.| > €}) = 0 and showed that it is equiva-
lent to statistical convergence. In [23], the same results were shown for A-statistically Cauchy
sequences. Several generalizations and variants can be found in [4,9,17,18,22,30,31,36]. The
concept of I-convergence [24] is one of such generalizations. Let @ # I (F, resp.) C P (IN),
then I (F, resp.) is an ideal (filter, resp.) in IN if for any B, C € I (F, resp.), we have (i) BUC € I
(BNC € F,resp.); (i) B € I whenever BC Cand C € I (C € F whenever B C Cand B € F,
resp.); (iii) @ € I (& ¢ F, resp.).
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I is non-trivial if N ¢ I, and is admissible if I contains all finite subset of IN. Let Im denote
the set of all non-trivial admissible ideals in IN. The filter associated with I is denoted by
F(I) ={D =N \B: B € I}. Asequence yt = () is [-convergent to L € R if for every € > 0,
the set V(e) € I, and we write [-limy, = L. The notion of I*-convergence was introduced
in [24] and it was shown under certain conditions the equivalence of I- and [*-convergence.
A real sequence pu = (py) is I*-convergent to L € R if there is a set B € I such that for
D = N\ B = {d;};Z;, we have lim; 3, = L; and we write I*-limy; = L. The notion of
I-Cauchy sequence was studied by many authors see [7, 26, 35], which is a generalization of
statistical Cauchy. A real sequence y is I-Cauchy if for every € > 0 there exists N. € IN
such that {k: |ux — un.| > €} € I. A real sequence u = () is I*-Cauchy if there exists a set
D = {d;};-; € F(I) such that the subsequence (j4.) is an ordinary Cauchy sequence in R.
One more generalization of A-statistical convergence is A!-statistical convergence introduced
by E. Savas at el. [39], see also [2,7,8,13,19,21,25,27-29,32-34,38].

Definition 1. Let I € Im and A € Q. A real sequence y = () is said to be Al-statistically
convergent to L € R if for every € > 0 and v > 0, the set {n : Ykev(e) Ank = 1/} belongs to I,
where V (€) is same as above, and we write [-st 4 lim x; = L.

Remark 1. (a) If I = I, = {V CIN:V is finite}, then Al-statistical convergence becomes
A-statistical convergence due to [3].

(b) If A = Cy, then A!-statistically convergent becomes I-statistical convergence due to [37]
and we write I-st lim p = L.

For related notions, see [5, 6, 18,20, 25].
Definition 2. LetI € Im, A € Q) and u = () be a real sequence. Then for some v > 0

sup Gy, if e #+ O,

I-stAlimsupy:{ oo G o
’ n ’

and . '
I-styliminfy = { zlfHH' i; g: 7: 2:
where
Gy:{gelR: {nelN: Z ank>v} eéj},
{eeme>g}
and

Hy:{helR:{nelN: )y ank>v}§éj}.

{k:yk<h}
Definition 3. Let I € Im and A € Q. Then u = (uy) is called Al-statistically bounded if for
anyv > 0,
{nE]N: ) ank>v} €3, teR.
{k:lpe >t}

Remark 2. (a) Al-statistical boundedness = I-st 4 lim sup y and I-st 4 liminf u are finite.
(b) If u is Al-statistically convergent then y is Al-statistically bounded.

Remark 3. Throughout the paper, I € Im and A € Q).
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2 A-statistical convergence and A-statistical Cauchy via ideal

We introduce the notion of A! -statistical convergence, Al-statistical Cauchy and A’ -sta-
tistical Cauchy and obtain some results. We study under what conditions A-statistical con-
vergence (or Cauchy) and A! -statistical convergence (or Cauchy) are equivalent.

Definition 4. A sequence i = (jy) is Al -statistically convergent to the number L if there exists
D = {d;}?°, € F(I) such that 64 (D) = 1 and y is AP -statistically convergent to L, i.e. for every
€ >0, lim; Y kev(e) 44,k = 0, and we write [*-st 4 lim py = L.

Remark 4. If A = Cj, then Al -statistical convergence becomes I*-statistical converges due
to [11].

Now to show the equivalence between A!-statistical convergence and A! -statistical conver-
gence, we need to define (APO) condition which is similar to the condition used in [4, 15, 24].

Definition 5. Let I € Im and A € Q), then I is said to satisfy (APO) condition if for every
sequence (By,) of (pairwise disjoint) sets from I there exist sets C, € I, n € IN, such that the
symmetric difference B,AC,, is finite for every n,|JC, € I,54(UCy) = 0.

n n

The following proposition is an analogous to [1, Proposition 1].

Proposition 1. Let I € Im and A € (), then [ satisfies (APO) if and only if for every sequence
(By) of (pairwise disjoint) sets from I there exists B € I, such that B, \ B is finite for every n
and d4(B) = 0.
Theorem 1. (a) [*-stylimpy = L = I-stqlimpy = L.

(b) I-st g lim pyy = L = I*-stp lim yy = L, provided I satisfies (APO).
Proof. (a) Let I*-st o lim iy = L. Then there exists B € I such that D = {d;} = N\ B € F(I),
54(D) =1,and Ve > 0,lim; Yrcy(e) asx = 0, where V(e) = {k <n: [y — L| > €}. Therefore
for each v > 0, there exists N such that % <V, S0

E:{Vli Z llnkZV}gBU{dl,dz,...,dN}.
keV(e)

Since B € I and {dy,d>,...,dn} € I, we have E € I. Hence I-st 4 lim . = L.
(b) Let I-st y lim uy = L. Then V € > 0 and for each v > 0, we have

{n: ) ankzv}el,
keV(e)
where V(€) is same as mentioned above. Therefore, define the sequence (B;) of sets as
1
Bi:{n: Zﬂnkz—.}, i€ N.
keV(e) !

Since I satisfies the condition (APO) and each B; € I, by Proposition 1, there exists a set
B € I'such thatd4(B) = 0 and B; \ B is finite for each i. Let E = IN \ B. Then d4(E) = 1. Now
for any # > 0, there is N € IN such that % < 11. Therefore

1
BN:{HZ Z ankZN}EI.
€)

kev(
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Now let us define the set D as

{ Zﬂnk< }\B

kevi(e

Since By, B € I, wehave D € F(I) and 64(D) = 1. Hence we have

Y. aw<mu, Vn>N,neD,

keV(e)
ie.
1i£nk€%€) ag =0, ne€D.
Hence stAD—liin ur=1L,04(D)=1,ie T*-stylimpy; = L. O

Remark 5. The converse of Theorem 1 (a) need not be true.

Example 1. Let B, = {2"'(2n —1) : n € N} and

I = {B C N : B intersects only finite numbers of Bys } ,

then I € Im. Define y = (i) as

1
]’lk - E/ k2 S B?’H/
and A = (a,;) = C1. Now forany e > 0, letV (€) = {k : |ux — 0| > €}, therefore for any v > 0,
we have

{ Zank>v}_{n€N:ng}€I.

keV(e

Hence u is Al-statistically convergent to zero. Now we need to show that u is not
AT _statistically convergent to zero. Suppose if it is possible that u is A" -statistically conver-
gent to zero, then there exists a set D = N\ C = {d;} € F(I), where C € I,54(D) =1
and lim;} yey(e)dgx = 0. Since C € I, then there exists t € N such thatt is odd and
CCBiUByU....UBy. So Bt+1 C D. Therefore py, = for infinitely many i’s. Now let

t+1
us choosen > 0 such thatn < t+1 Hence,

5A{di€Bt+1' Y. ﬂdk_ﬂ} ) # 0,

keV(e

ie. I*-s 4 limy ;. # 0, a contradiction. Hence, u is not Al -statistically convergent to zero.



446 Edely O.H., Mursaleen M.

Definition 6. A sequence u = () is Al-statistical Cauchy if for any e > 0 and for eachv > 0

there is N. € IN such that
{n: Z ankzv} ez,
keK(e)

whereK(e) = {k < n: |y, —un.| > €}.

Definition 7. A sequence i = (ju) is A -statistical Cauchy if there isa set D = {d;}°, € F(I)
such that 64(D) = 1 and () is AP-statistical Cauchy in R, i.e. for every € > 0 there exists
N € N such that lim; ZkEK(e) agx = 0.

Remark 6. If A = C;, then Definition 6 and Definition 7 reduce to I-statistical Cauchy and
I*-statistical Cauchy due to [13].

Theorem 2. Al -statistical convergence <> Al -statistical Cauchy.

Proof. Let ube A" -statistically convergent to L. Then y is AP-statistically convergent to L and
hence by [23, Theorem 2.2] we can deduce that by replacing the regularity of A by AP that u
is AP-statistically convergent if and only if u is AP-statistical Cauchy. O

Lemma 1. Al-statistical Cauchy implies A-statistically bounded.
Proof. If u is Al -statistically Cauchy, then for any € > 0, there exists N. € IN such that
T(v)= {n: Y am > 1/} €I foreveryv >0,
keF(5)

where F(§) = {k < n: |jux — pn.| > §} . Therefore

M((v) = {n: Y ag > 1/} € F(I),

keG(5)
where G(5) = {k < n: |y — un.| < §}. Let us define the set E(e) as
E(e) = {k: [l < e+ |pml},
where m € IN satisfies |, — pin,| < 5, such m exists because I is an admissible ideal, otherwise
T (411) =IN ¢ I. Now for any a € G (§), we have
[Ha — pim| < |pta — BN+ |1Ne — pim| <&

Therefore
[Hal < |pa — pim| + |ptm| < €+ |pml,
hence a € E (€) . So we have G(5) C E (¢), therefore for every v > 0,

M(v) C {n : A > 1/},
keE(e)

since M (v) € F(I), we have

{n DY Ay > v} € F(I).

keE(e)

Hence {n : Y Appe > v} € I,i.e. uis Al-statistically bounded. O
{k:|pi| =€+ pm!}
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Theorem 3. Al-statistical convergence < Al-statistical Cauchy.

Proof. Let I-st 4 limy py = L. Then for any € > 0 and V v > 0, we have

B(v):{n: ﬂnkZV}El,

keK(5)

where K(5) = {k <n: |y — L| > §} . Let us define G (¢) as

Ge)={k<n:|uy—pun|=>c¢},
where N ¢ K (%), such N exists because [ is an admissible ideal, otherwise B <%> =N ¢ I.

Now for any a € G (€), we have
€ < [pta = un| < [pta — L[ + |pn — L.

Since N ¢ K (§) , we have

therefore
\#a — L| >

Hence  is Al-statistically Cauchy.

Conversely, let 1 be Al-statistical Cauchy. Then by Lemma 1, we have y is Al-statistically

bounded. Therefore I-st 4 liminfyu and I-st o-lim sup u are finite. Using [20, Theorem 3], we
have u = I-st4 liminf u < I-st 4 limsup u = w. Since u is Al-statistical Cauchy sequence, then

for any € > 0, there exists N¢ € IN such that for every v > 0 we have

{n : Ak = v} el
{ki‘ﬂk—#N%‘Zﬁ}

Z ankzv}ell

Therefore
{n
{kl‘uk>}ll\]% +%}

hence by the definition of I-st 4 lim sup y and [20, Theorem 1], we have
w < + :
HNe T o

Also, we have
{n

Y ankzv}el,
}

{kiﬂk<HN% -5

1)
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hence by the definition of I-st 4 liminf y and [20, Theorem 2], we have
€

: @

UNe <u-+
2
Using equations (1) and (2), we have
w<u-+e.

Hence, for any A > 0, we always have w < u + A, therefore w < u. Hence u = I-st 4 liminfyu =
I-st4 lim sup p = w. Now by [20, Theorem 4], we have y is Al-statistically convergent. O

Theorem 4. (a) If 4 = (1) is A! -statistical Cauchy then u is Al-statistical Cauchy.
(b) Al-statistical Cauchy = Al -statistical Cauchy, if I satisfies (APO).

Proof. (a) It follows from Theorem 2, Theorem 1 (a) and Theorem 3.
(b) The proof follows from Theorem 3, Theorem 1 (b) and Theorem 2. O

Remark 7. The converse of Theorem 4 (a) is not true in general.

Example 2. From Example 1, since y is Al-statistically convergent to zero but not Al -statis-
tically convergent then from Theorem 2 and Theorem 3 we get the result.

Theorem 5. A sequence i = (py) is Al-statistically convergent to a number L < there exists a
subset M C IN such that {n : Y jcpaq. > v} € F(I) and hr]{}I uy = L.
j€

Proof. 1f p is Al-statistically convergent to L, then V r € IN and for every v > 0, we have

{n: Z ankzv} €I, where V(r)= {kgn:\yk—L] > 1}
kev(r) r

Therefore {n : Y keM(r) nk = 1/} € F(I), where M(r) = {k <mn:|u—L|< %} . Now we need

to show that there exists M(i) such that the subsequence (y;), j € M(i), is convergent to L.

Suppose that for any r, the subsequence (y;), j € M (r), is not convergent to L. So for each r,

there exists €, > 0 such that
|uj— L[ > &

for infinitely many terms in M (r). So, we have
Gle)={jeM(r):|uyj—L| >e} # .
For every ¢, there exists t, € IN such that

1 1 1 1 1
— <<=, —>—>> = >
t r t

Now we construct a sequence of closed intervals {I, },cN, where [, = [tl_,' %] . Since {I,}

satisfies nested Intervals Theorem, there is a number « € I, for every r. Hence « must satisfy
1
O<a< P Vr,

which contradicts Archimedean Property. Hence there exists M(i) such that the subsequence
(#j), j € M(i), is convergent to L.
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Conversely, suppose that there exists a set M C IN, such that

D:{n: Zanka}eF(l)

keM

and lim; y; = L, j € M. Therefore for every € > 0, there exists N € IN such that
lui—L| <e, Vj>N,jeM.
Let {j1,/2,...,jN—1} = F € M. Then we have
T(e)={k<n:|uy—Ll <€} DM\F,

therefore

{n: Ze)ankzv}g{n; ) ﬂnkZV}.

keT( ke M\F

Since D € F(I) and D \ {finite set} € F(I), wehave {n : Yy panx > v} € F(I). Therefore

{n: ) anka} € F(I),

keT(e)

and so {n DY ag > 1/} € I, where V(e) = {k<mn:|u—L|>e€e}. Hence u is
keV(e)

Al-statistically convergent to L. O
From Theorem 3 and Theorem 5 we have equivalent statements.

Theorem 6. (a)  is Al-statistically convergent to L;
(b) u is Al-statistical Cauchy;
(c) p is such a sequence that there exists a subset M C IN such that limjcp p; = L and

{n: Y g > v} € F(I).

keM

Recall that a real sequence p = (j) is said to be A" -summable to L if there is a set B € I,
such that D = IN'\ B = {d;} € F(I) and lim; Y a;xpx = L and we write Al -lim ;. = L [10].
Also we say that u is statistically A" -summable to L if there is a set D = {d;} € F(I) and
6 (D) =1, such that st-lim; Yy agxpx = L, and (Al )g-limp = L [11].

Theorem 7. If i is bounded then A! -statistical convergence implies y is A" -summable and
hence statistically A" -summable.

Proof. Let i be bounded and A -statistical convergent to L. Then y is AP-statistically conver-
gent to L, where D € F(I). Now use [12, Theorem 2.1] by replacing the regularity of A by AP,
we have y is Al -summable to L and y is statistically AT -summable to L, i.e. (Al )g-limpu = L.

O
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Remark 8. The converse of Theorem 7 need not be true.

Example 3. Let I be the class defined in Example 1 and A = Cy. Let u = () be defined by

[ 1, ifke By,
Pe = 0, otherwise.

Then Y a,puy = %
k
Let us define B = {b; € B, : b; issquare}. Then B € I, soD = IN\ B = {d;} € F(I) and
0 (D) = 1. Now lim; }  ay xpx = %, so y is A" -summable to % and st-lim; Y ag iy = %, ie. u

is also statistically A" -summable to 1. Now we show that y is not Al-statistically convergent

to any number and hence y is not Al -statistically convergent. Since for € = } and for any

L € R, thesetK(3) = {k Sl —L| > %} contains either By (the set of odd ) or the set of even

or both. So ZkeK( ) Ank = % or 1. Therefore forv = %, we have

1
3

{n: ) ankE%}ZNQfl,
)

keK(}

since 1€ Im, we have yu is not Al-statistically convergent and hence u is not A -statistically
convergent.
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Eaeni O.X., Mypcanaia M. [Ipo A-cmamucmuuny 36ixcricmo ma A-cmamucmuuny 30isxcHicmo 3a Kowti
uepes idean // KapmaTchbki MaTeM. my6a. — 2022. — T.14, Ne2. — C. 442452,

VY crarti [Analysis 1985, 5 (4), 301-313], J.A. Fridy AoBiB exBiBaAeHTHe BiAHOIIEHHS MiX cTa-
TUCTUYHOIO 361KHICTIO Ta CTATMCTUYHOK MOCAiAoBHIcTIO Ko, V mitt crarti Mu BusHauaemo Al .
CTaTUCTIUHY 361KHICTD Ta AOBOAVMMO, IIIO 3a IIEBHMX YMOB BOHA €KBiBaA€HTHA AO Al-cratucrmanot
36ixHOCTI, 10 Bu3HaueHa y [Appl. Math. Lett. 2012, 25 (4), 733-738]. BiabIe Toro, Mu BU3HaYaeMO
Al ta A! *-CTaTI/ICTI/I‘-]Hy nocAiaOBHIicTh KoIrri Ta 3HaXOAMMO II€BHE eKBiBaA€HTHE CITiBBiAHOIITCHHS
3 Al- ta A" -cratueTitusom0O 36iKHICTIO.

. . . . . . * . .
Kntouosi cnosa i ¢ppasu: [-361KHICTS, Al-cratucriuna 36ixsicrts, Al -cratmernana 36ixHiCTS,
. . . * . . .
Al-cratueryana 36ixsicrs 3a Kormi, AL -cratuerrana 36ixwicTs 3a Korri.



