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On finite state automaton actions of HNN extensions of free
abelian groups

Prokhorchuk V.

HNN extensions of free abelian groups are considered. For arbitrary prime p it is introduced a
class of such extensions that act by finite automaton permutations over an alphabet X of cardinality
p and belong to p-Sylow subgroup of the group of automaton permutations over such X. As a
corollary it implies that all corresponding HNN extensions are residually p-finite.
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Introduction

In recent decades groups defined by automata took a notable place among important
classes of groups. Introduced in the middle of the 20th century they serve as a basement
for brilliant properties and examples connecting various areas of mathematics (e.g. [2,4, 7]).
Algebraic properties of these groups are diverse and they are a constant object of study:.

One of the important research directions is formed by the question of which groups can be
generated using automata over finite alphabets. These groups are called groups of automaton
permutations and they can be viewed as automorphism groups of regular rooted trees. Resid-
ual finitness is the most valuable necessary condition for a group of automaton permutations.
Another natural condition is finitness of automata that define required groups.

We consider the group GA(X) of all automaton permutations over an alphabet X of prime
cardinality p. The group GA(X) is a profinite group and contains a naturally defined p-Sylow
subgroup Syl,(GA(X)). The latter group contains a countable subgroup p-FGA(X) of au-
tomaton permutations defined by finite automata. The group p-FGA(X) can be considered as
the finite state wreath power of the regular cyclic group of order p (see [5]). Each countable
residually p-finite group admits an isomorphic embedding into the group Syl,(GA(X)). The
main goal of the paper is to find HNN extensions of free abelian groups that admit such an
embedding into the group p-FGA(X).

We consider ascending HNN extension of free abelian groups Z", n > 1. Each extension of
this kind is defined by an invertible integer matrix M of size n. We give a sufficient condition
on M for which the corresponding extension admit an isomorphic embedding into the group
of p-FGA(X). We give a construction of embedding that is strongly based on automata con-
structed in [1]. As an interesting corollary we obtain that corresponding HNN extensions are
residually p-finite. For our best knowledge residually p-finite ascending HNN extension of
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free abelian groups are described only for the case n = 1 (see [3] and references therein).
Isomorphic embeddings of these groups into p-FGA(X) were constructed in [1]. It would be
interesting to find for n > 1 sufficient conditions and even criteria on M for existence of such
an embedding.

The paper is organized as follows. In Section 1 we briefly recall the required definitions
from automata theory and theory of groups defined by automata. Rooted trees, groups of
their automorphisms and their connections with groups defined by automata are considered
in Section 2. Our main constructions and results are presented in Section 3.

1 Automata and automaton permutations

Let X be a finite set called an alphabet, [X| > 2. A finite (infinite) sequence of elements from
the alphabet X is called finite (infinite) word over X. By X* we denote the set of all finite words
over X, including the empty word A. For the set of all infinite words over X notation X is
used. By |w| we denote the length of a finite word w. Let X(") be the set of all words of length
not greater than n:

W= |J X, n>o.
0<i<n

The set X* with respect to concatenation of words forms a free monoid with basis X. Also,
concatenation of infinite words to finite words from the right is well defined. Similarly, one
can define concatenation of countable sequence of finite words. In both cases the result is an
infinite word.

An arbitrary finite word w € X* of length | = |w| can be decomposed in the form

where wli] denotes the ith letter of the word w, 1 <i <.
For the word w € X* we will use notation w = (w[1], w[2],...,w][l]) for the corresponding
vector of length /.

Definition 1. An automaton A over alphabet X is a triple (Q, A, u) such that
e (Q is a non-empty set, that is called the set of inner states of A;
e A:Q x X — Q is the transition function;
* u:Q x X — Xis the output function.

An automaton is called finite, if the set of its inner states is finite.

For each state g € Q of the automaton A = (Q, A, u) we define the transformation 4 : X — X
by the equality p4(x) = u(q, x), x € X. The output function will be uniquely defined upon for
each state g € Q the function i, is defined.

Definition 2. An automaton A is called permutational, if for each state q of A the transforma-
tion i, is a permutation on the set X.

In this paper we will consider only permutational automata.
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Let A = (Q, A, u) be a permutational automaton over alphabet X. The output and transition
functions A and u of the automaton A can be naturally extended to the set Q x X*. Namely,
for arbitrary x € X, g € Q, w € X* we have

Mg, N) =g, Mg, xw) = A(A(q, x),w),
ulg, A) = A, u(q, xw) = p(q, x)u(A(g, x), w).

In each state g € Q of the automaton A the permutation on the set of all finite words X*
is defined. This permutation is called automaton permutation defined by the automaton A in
its state g and denoted by the same symbol 4. Since the length of the common prefix of words
is preserved under the action of g it can be uniquely extended to the set X*. The automaton
permutation g € Q acts on infinite words by the following recursive rule

q(uw) = pq(u)A(q,u)(w),

where u € X*, w € X%,

An automaton permutation over X is a permutation on the set X*, defined by some automa-
ton A over X in some its state. The automaton permutation is called finite state automaton
permutation if it is defined by a finite automaton.

By GA(X) we denote the set of all automaton permutations over X. With respect to compo-
sition GA(X) forms a group. The set FGA(X) of all finite state automaton permutations over
X is a subgroup of GA(X). For an automaton A over X the group of the automaton A is the
subgroup of GA(X) generated by all automaton permutations, defined in inner states of A.
The group of the automaton A is denoted by G(.A).

2 Rooted trees and their automorphisms

Let X be an alphabet of cardinality d, d > 2. Consider a d-rooted tree 7;(X) (see Figure 1).
The set of vertices of 7;(X) is the set X* of all finite words over X. Two vertices v and u from X*
are connected by an edge if and only if u = vx or v = ux for some x € X. The root of 7;(X) is
the empty word A.

A

Xq—1

X0X0 X0Xd—1 Xd—1%0 Xd—1Xd—1

Figure 1: d-rooted tree 7;(X).

An automorphism of the tree 7;(X) is a bijection f : X* — X* such that f preserves edges,
i.e. vertices f(v) and f(vx) are connected for each connected vertices v and vx, v € X*, x € X.
For an automorphism f and a vertex v € X* we consider the set of all vertices of the form
vx, x € X. Then the permutation 0, € S(X), such that g(vx) = g(v)ou(v), x € X, is well
defined.
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For an automorphism f let us consider the labeled tree 7;(X) such that every vertex v € X*
is labeled by 0, € S(X). Then such labeled tree is called the portrait of the automorphism f.
Every automorphism is uniquely defined by its portrait.

By Aut 7;(X) we denote the group of all automorphisms of the tree 7;(X). The group
Aut T3(X), as a group of permutations of the set X*, coincides with the group of automaton
permutations GA(X).

A set X! € X* is called the Ith level of the tree T4(X), 1 > 0. For each n > 0 we consider the
rooted sub-tree of the tree 7;(X), such that the set of its vertices equals to the set of first n + 1
levels of the tree T;(X), i.e. to X("). This tree is called d-rooted tree of depth 1 and denoted by
Tan(X).

For each n > 0 by Aut 7, ,(X) we denote the group of automorphisms of the tree 7;,,(X).
Let us define surjective homomorphisms

Y s AU T (X) = Aut T, 1(X), 1> 1.

The homomorphism ¢, maps each automorphism f € Aut 7;,(X) to its restriction on the
tree 7;,-1(X). Then we obtain the inverse system of finite groups Aut 7;,(X) and their ho-
momorphisms ¢, n > 1. The limit group of this inverse system is isomorphic to GA(X). It
implies that the group GA(X) is profinite.

Fix a prime number p and an alphabet X of cardinality p. In this case the group GA(X) is
a pro p-group (see [8]). The group GA(X) contains Sylow p-subgroups. We denote a Sylow
p-subgroup of GA(X) by Syl,(GA(X)). This group contains an isomorphic copy of arbitrary
countable residually finite p-group.

We denote by p-FGA(X) the intersection of Syl,(GA(X)) and FGA(X). Each element of
the group Syl,(GA(X)) can be naturally presented by automata of special kind. Namely, fix a
cycle o of length p over X.

Definition 3. An automaton A = (Q, A, ) over X is called p-automaton if for each state g € Q
the output function y satisfies the equality i, = o* for somek > 0.

The group Syl,(GA(X)) (the group p-FGA(X)) consists of automaton permutations that
can be defined by a p-automaton (finite p-automaton) over an alphabet X.

3 Main results

Let p be a fixed prime, n be a positive integer. Fix an integer square matrix M = (m;;) of
size n such that

(i) my=1(modp), 1 <i<mn
(ii) p divides mij fori #j,1<i,j<m
(iii) no positive degree of M is the identity matrix.

For instance, any matrix with positive integer elements such that each diagonal element
equals 1 and all others are divisible by p satisfy conditions (i)—(iii).
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Lemma 1. The determinant of the matrix M is coprime with p.
Proof. The determinant of M can be expressed in the following form
det(M) = myympy ... Myy +a,

where a is a sum of products of matrix elements such that each of them contains at least
one non-diagonal element of M. Condition (i) implies my1mp ... My, = 1 (mod p). From
condition (ii) it follows that p divides a.

Therefore, det(M) = 1 (mod p) and the proof is complete. O

In particular, Lemma 1 implies that the matrix M is non-degenerate. In fact, the proof only
requires conditions (i)—(ii). However, condition (iii) does not follow from (i)—(ii).
Recall that the norm of a real valued square matrix A = (a;;) of size n is defined as

[ A= max
i :

n
|aj;].
j=1

Lemma 2. The equality | M|| > p — 1 holds.

Proof. Let us consider two cases.

Let M be a non-diagonal matrix. From condition (ii) it follows, that for each element
m;; # 0, which is non-diagonal in the matrix M, the inequality |m;;| > p holds. Then we
have [M|| >p>p—1

Let M be a diagonal matrix. From condition (iii) it follows, that M is not the identity ma-
trix. Therefore, there exists a diagonal element m1;;, such that m;; # 1. Condition (i) implies
inequality |m;;| > p — 1. Hence, |[M| > p — 1.

In both cases we have the required inequality. O

Fix an alphabet X = {0,1, ..., p — 1} which we identify with the field of residues modulo
p- The alphabet X" we identify with the vector space V of dimension n over field Z,,.

In [1,6] it was constructed the automaton Ap; = (Q, A, i) over the alphabet X" such that

e (Q is the set of vectors-columns of dimension 7, such that each coordinate lies in the
closed interval [—| M|, | M| — 1];

* AMv,x) = Div(v+ Mx), v € Q, x € X", where Div denotes the operation of taking
coordinate-wise quotients from division by p;

* 1(v,x) = Mod(v + Mx), v € Q, x € X", where Mod denotes the operation of taking
coordinate-wise remainders from division by p.

Consider the group
Gm = (a1,4az,...,a4,,t|a; commute, tat~! = alm“ag'z” coap 1 <i < n).

The group Gy is an HNN extension of the free abelian group Z".

From Lemma 1 it follows, that the group of the automaton A, is isomorphic to the group
G (for the proof see [1, Proposition 4], [6, Proposition 4.7]).

Denote by G the additive group of the vector space V. The group G is isomorphic to the
direct product of n cyclic groups of order p, i.e. Zj,.
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Lemma 3. 1) For arbitrary v € Q, x € X", the following equality holds

ty(x) = Mod(v + x). (1)

2) In each state v € Q of the automaton Ay, the function y, defines the natural action of some
element of the group G on Zj,.

3) Each element of the group G is defined by some state of the automaton Ayy.

Proof. Fix astatev € Q.
Conditions (i) and (ii) imply that for each x € X" we have equalities

U1 +my1x1 + Z;lzz miiX;
to(x) = Mod(v + Mx) = Mod .
U + Z;’;ll MijXj + MupXn
U1 + X1
= Mod = Mod(v + x).
Un + Xn

Hence, equality (1) holds.
For v1,v, € Q, x € X", we have

o, (Ho, (x)) = Mod(v2 + Mod(v1 + x)) = Mod(vp + v1 + X) = po,+0,(%)

and the second statement holds.
Now, using equality (1) and Lemma 2, we immediately obtain the third statement of the
lemma. O

For arbitrary permutation o € S(X) and integer vector ¢ = (go, ..., gn—1) of lengthn,n > 1,
we define the automaton A(c, g) = (Q, A, i) over the alphabet X such that

e Q={v:ve X |v] <n—1},ie. the set Q is the set of vertices of the tree 7;,_1(X);

vx, if|v] <n—1,
veQ xeX

e Ao, x) = {

v, iflv]=n-1,
* uy, =0k, veQ.
From the definition of A(c, g) the below statement directly follows.

Lemma 4. The automaton permutation defined by A(c, g) in state A maps the word x1x, . .. xy,
over X of length n to the word 8 (x1)081(x) ... 08 1(xy).

Consider the permutationc = (0,1,...,p —1).

Let us define the automaton By; = (Qx, A, p«) over the alphabet X. To construct By we
modify the automaton Ay = (Q, A, ). For each state v € Q of the automaton .4 we consider
the automaton A(c,v) = (Qy, Ay, o) over X (see Figure 2). Since the state v is an integer
vector of length 1 the set of inner states Q, of the automaton A (o, v) is the set of vertices of the

p-rooted tree T, ,,_1(X) of depthn — 1, i.e. Zé”fl)_
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081 081
gt 82 082 032

U'gnfl O'gnfl

Figure 2: A portrait of the automaton permutation defined by the automaton .4(c, g) in the
state A.

Then the automaton By, is defined by the following equalities
* Q. =0x Zén_l);

(v, Ap(A, wx)), if lw| <n—1,

v,w) € Qy,x €X;
(A(v, wx), A), if|w|:n—1,( ) €

e A ((v,w),x) = {

* ix((v,w), x) = po(w, x), (v,0) € Qs x € X,

Let Hg be a subgroup of the group G(B)) generated by automaton permutations, defined
in states (v, A), v € Q.

Lemma 5. The group Hp is isomorphic to the group Gy,.

Proof. Consider an infinite word w = x1x2...x; ... over X. The word w can be naturally split-
ted into blocks of length n:

w = (x1%2 ... Xn) (X t1Xn42 - - X200) + + - (X1 Xkn42 - - - x(kﬂ)n) . ®

= w(l, n|w[2,n]...wk,n]....
Define the infinite word ¢(w) = y1y2. .. Yk ... over X", such that y; = w[i,n],i € N. Itis easy
to see, that the mapping ¢ from X to X" is one-to-one.
For each v € Q consider states v, (v, A) of the automata .4, and By, respectively. Denote
by f, and F, automaton permutations over alphabets X" and X defined in states v and (v, A)
respectively. To prove the lemma it is enough to show, that for arbitrary infinite word w over X
and arbitrary state v € Q the following equality holds

folp(w)) = ¢(Fo(w)). ®)
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Consider each part of equality (3). Split out an infinite word w on the blocks of the length
n (see (2)). Then we have w = w(1, n]w; for some infinite word wy over X.
Therefore, the following equality holds

Fy(w) = B (w[1,nJw) = p (v, A), w[1, n]) F(o,00[1,0) (w1)
= po (A, w([1,1]) Fr(o[1,0) (W1)-

Moreover, by the definition of the automaton 4 the state v € Q is an integer vector
(vo,v1,...,04—1). Then, by Lemma 4 the following equality holds

o (A, wll,n)) = (x1)0" (x2) ...0" 1 (xp).
Finally, we have
Fy(w) = 0™ (x1)0™ (x2) . .. 0”71 (xn) F (0,0[1,n]) (W1)- (4)

On the other hand, by the definition of automaton permutation, the left part of equality (3)
can be rewritten in the following form

folg(@)) = fo(@[Lnlg(wr)) = oL, m]) fy iy (P(@1)). ©)

Then by Lemma 3 we have

to(w([1,n]) = Mod(v 4+ w[1,n]) = (6% (x1), 0 (x2), ..., 0% 1 (xp)). (6)

Therefore, from equalities (4)—(6) it follows the required equality (3) and the statement of
the lemma is proved. O

Now we can formulate the main theorem.
Theorem 1. The group Gy is isomorphic to a subgroup of p-FGA(X).

Proof. Let g be an arbitrary state of the automaton Bys. Then by the definition of By the
permutation over X defined by state g is a power of the permutation ¢ = (0,1,...,p — 1).
Hence, the automaton B}, is a p-automaton.

By Lemma 5 the group Gy is generated by automaton permutations, defined in states of
the finite p-automaton B);. Therefore, we have the statement of the theorem. O

Corollary 1. The group Gy is residually p-finite.

Proof. Since the group p-FGA(X) is residually p-finite and subgroups of residually p-finite
groups posses this property the statement immediately follows from Theorem 1. O

We constructed a group isomorphic to Gy such that it is generated by automaton permu-
tations defined by a proper subset of states of Bys. A natural problem to describe the group
G(Bpm) of the automaton By, is left open.
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Posrastaryro HNN posmmpenHs: BiAbHMX abeAeBUX IpyI. AAsl AOBIABHOTO IIPOCTOTO p BU3HA-
YeHO KAAC TaKMX pO3IIMPEHD, SIKi AIIOTh CKiueHHO aBTOMaTHVMMMU MIACTAaHOBKaMM Hap aAdpaBiToM X
MOTY>KHOCTI p i HaAeXaTh p-mArpyni CuaoBa rpyny aBTOMaTHMX ITACTAaHOBOK Haa, X. SIK HacAiAOK
3BiACK BUIIAMBAE, 110 Bci BianoBiaHi HNN posmmperHs pesraAyaAbHO p-CKiHUCHHi.

Kntouosi cnosa i ppasu: rpytia aBTOMaTa, aBToMOpdism kopeHesoro aepesa, HNN posmmpersst.



