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Some results on 7-Yamabe solitons in 3-dimensional
trans-Sasakian manifold

Roy S."*™, Dey S.2, Bhattacharyya A.!

The object of the present paper is to study some properties of 3-dimensional trans-Sasakian
manifold whose metric is #-Yamabe soliton. We have studied here some certain curvature conditions
of 3-dimensional trans-Sasakian manifold admitting #-Yamabe soliton. Lastly, we construct a 3-
dimensional trans-Sasakian manifold satisfying 7-Yamabe soliton.
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Introduction

The concept of Yamabe flow was first introduced by R. Hamilton [7] to construct Yamabe
metrics on compact Riemannian manifolds. On a Riemannian or pseudo-Riemannian mani-
fold M, a time-dependent metric g(-, ) is said to evolve by the Yamabe flow if the metric ¢
satisfies the given equation

28(t) = —rg(t), $(0) =g,

where 7 is the scalar curvature of the manifold M.

In 2-dimension case, the Yamabe flow is equivalent to the Ricci flow, which is defined by
% g(t) = —25(g(t)), where S denotes the Ricci tensor. But in dimension > 2 the Yamabe and
Ricci flows do not agree, since the Yamabe flow preserves the conformal class of the metric but
the Ricci flow does not in general.

A Yamabe soliton [1,13] corresponds to self-similar solution of the Yamabe flow, is defined
on a Riemannian or pseudo-Riemannian manifold (M, g) by a vector field ¢ satisfying the
equation

1
SEvg = (r= Mg, )
where £;¢ denotes the Lie derivative of the metric ¢ along the vector field ¢, r is the scalar

curvature and A is a constant. Moreover a Yamabe soliton is said to be expanding if A > 0,
steady if A = 0 and shrinking if A < 0.
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Yamabe solitons on a three-dimensional Sasakian manifold were studied by R. Sharma [14].
If the potential vector field V is of gradient type, V = grad(f), for f a smooth function on M,
then (V, A) is called a gradient Yamabe soliton.

Definition. As a generalization of Yamabe soliton, a Riemannian metric on (M, g) is said to be
a n7-Yamabe soliton [3] if

1
Fleg = (r=Mg—men, (2)

where A and y are contants and 7 is a 1-form.

If A and p are two smooth functions then (2) is said to be an almost #-Yamabe soliton or a
quasi-Yamabe soliton [3].

Moreover if u = 0, the above equation (2) reduces to (1) and so the 77-Yamabe soliton be-
comes Yamabe soliton. Similarly an almost #-Yamabe soliton reduces to almost Yamabe soliton
if in (2), A is a smooth function and y = 0.

Denote
R(X,Y)Z = VxVyZ - VyVxZ - VixyZ, 3)
H(X,Y)Z = R(X,Y)Z — ﬁ[g(Y,Z)QX — (X, 2)QY +S(Y,2)X —S(X,2)Y], ()
P(X,Y)Z = R(X,)Z - 25 [8(QY, 2)X ~ 5(QX,2)7), ©)
C(X,Y)Z = R(X,Y)Z — m[g(Y,Z)X — (X, 2)Y], 6)

C*(X,Y)Z = aR(X,Y)Z 4+ b[S(Y, Z)X — S(X,Z)Y + g(Y, Z)QX — g(X, Z)QY]

_ % {n 2 -+ Zb] (Y, Z2)X —¢(X,Z)Y],

where g, b are constants,

Wa(X,Y)Z = R(X,Y)Z + = [3(X, Z)QY — g(¥,Z)QX ®)

the Riemannian-Christoffel curvature tensor R [10], the conharmonic curvature tensor H [8],
the projective curvature tensor P [15], the concircular curvature tensor C [11], the quasi-con-
formal curvature tensor C* [16] and the W,-curvature tensor [11] respectively in a Riemannian
manifold (M", g), where Q is the Ricci operator, defined by S(X,Y) = ¢g(QX,Y), S is the Ricci
tensor, ¥ = tr(S) is the scalar curvature, where tr(S) is the trace of Sand X, Y, Z € x(M), x(M)
being the Lie algebra of vector fields of M.

Now in (7),ifa =1and b = —ﬁ, then we get

C*(X,Y)Z = R(X,Y)Z — %[S(Y,Z)X _S(X,2)Y + (Y, Z)QX — g(X, Z)QY]

Th-Dm-2)

g(Y,2)X —¢(X,Z)Y] =C(X,Y)Z,

where C is the conformal curvature tensor [5]. Thus the conformal curvature tensor C is a
particular case of the tensor C*.
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In the present paper, we study y-Yamabe soliton on 3-dimensional trans-Sasakian mani-
folds. The paper is organized as follows. After introduction, Section 2 is devoted for prelim-
inaries on 3-dimensional trans-Sasakian manifolds. In Section 3, we have studied #-Yamabe
soliton on 3-dimensional trans-Sasakian manifolds. Here we examine if a 3-dimensional trans-
Sasakian manifold admits #-Yamabe soliton, then the scalar curvature is constant and the
manifold becomes #-Einstein. We also characterized the nature of the manifold if the man-
ifold is Ricci symmetric and the Ricci tensor is #-recurrent. Section 4 deals with the cur-
vature properties of 3-dimensional trans-Sasakian manifold. In this section we have shown
the nature of the #-Yamabe soliton, when the manifold is ¢-projectively flat, ¢-concircularly
flat, {-conharmonically flat, -quasi-conformally flat. Here we have obtained some results on
#-Yamabe soliton satisfying the conditions R(&, X) - S = 0 and W;(&, X) - S = 0. In last section
we gave an example of a 3-dimensional trans-Sasakian manifold satisfying #-Yamabe soliton.

1 Preliminaries

Let M be a connected almost contact metric manifold with an almost contact metric struc-
ture (¢,¢,7,8), where ¢ is a (1,1) tensor field, ¢ is a vector field, # is a 1-form and g is the
compatible Riemannian metric such that

P*(X) = —X+n(X)¢& n@E) =1 nop=0 ¢&=0, 9)
g(PX, pY) = g(X,Y) —n(X)n(Y), (10)

g(X, ¢Y) = —g(¢X,Y), (11)

8(X,¢) = n(X), (12)

for all vector fields X, Y € x(M).

An almost contact metric structure (¢, ¢, 1, g) on M is called a trans-Sasakian structure [9],
if (M x R, ], G) belongs to the class Wy [6], where ] is the almost complex structure on M x R
defined by J(X, f4) = (¢X — f& 1(X)4) for all vector fields X on M and smooth functions f
on M x R. It can be expressed by the condition [2]

(Vx¢)Y = a(g(X,Y)¢ —n(Y)X) + B(g(¢X, )¢ — n(Y)9X), (13)

for some smooth functions &, f on M and we say that the trans-Sasakian structure is of type
(a, B). From the above expression we can write

Vx¢ = —apX + B(X —1(X)5), (14)
(Vxn)Y = —ag(¢X,Y) + Bg($X, §Y). (15)
For a 3-dimensional trans-Sasakian manifold the following relations hold [4,12]:
20 +¢u =0, S(X,¢) = (2(a®—p*) —&P)n(X) — X — (pX)u,

S(X,Y) = [3+EB— (a2 = B)|2(X,Y) = |5+ B —3(a® = 1) n(X)n(Y)
— (YB+ (9V)a)n(X) — (XB+ (9X)a)(Y),

where S denotes the Ricci tensor of type (0,2), r is the scalar curvature of the manifold M and
«, B are defined as earlier.
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For a, B = const, the following relations hold [4, 12]:

S(X,Y) = |5 (@ = B)]2(X,Y) = [5 =32 = B) | () (¥), (16)
$(X,8) = 2(a — By (X),

R(X,Y)E = (a2 = B[ (V)X = n(X)Y), (17)

R(Z,X)Y = (2 = B)[g(X, V)¢ —n(Y)X], (18)

R(E,X)§ = (&% — B [(X)E — X],
N(R(X,Y)Z) = (% = B*)[g(Y, Z)n(X) — (X, Z)n(Y)],
where R is the Riemannian curvature tensor, and
QX = |5 — (@@ = 1) X = |5 =3(a? = B)| n(X)2,

where Q is the Ricci operator defined earlier.
Again,

(£:8)(X,Y) = (Veg)(X,Y) —ag(¢pX,Y) +2Bg(X,Y) —2B7(X)n(Y) — ag(X, ¢Y).

Then using (11), the above equation becomes

(£8)(X,Y) = 2Bg(X,Y) = 2By (X)n(Y), (19)
where V is the Levi-Civita connection associated with ¢ and £z denotes the Lie derivative
along the vector field ¢.

2 py-Yamabe soliton on 3-dimensional trans-Sasakian manifold
Let M be a 3-dimensional trans-Sasakian manifold. Consider the 77-Yamabe soliton on M as

S(E9)(X,Y) = (r = (X, Y) — up(X)y(Y), (20)

for all vector fields X, Y on M.

Theorem 1. If a 3-dimensional trans-Sasakian manifold M admits an y-Yamabe soliton (g,¢),
¢ being the Reeb vector field of M, then the scalar curvature is constant.

Proof. From (19) and (20), we get
(r=A=p)g(X,Y) = (u = p)n(X)n(Y).
Taking Y = ¢ in the above equation and using (9), we have
(r=A—pn(X) =0.

Since 71(X) # 0, so we get
r=A4pu. (21)

Now as both A and y are constants, r is also constant. O



162 Roy S., Dey S., Bhattacharyya A.

Corollary 1. If a 3-dimensional trans-Sasakian manifold M admits a Yamabe soliton (g, ),
¢ being the Reeb vector field of M, then ¢ becomes a Killing vector field.

Proof. In (21), if p = 0, we get r = A and so (20) becomes, £;¢ = 0. Thus ¢ is a Killing vector
field. O

Corollary 2. If a 3-dimensional trans-Sasakian manifold M admits an n-Yamabe soliton (g, ),
¢ being the Reeb vector field of M, then the manifold becomes 1-Einstein manifold.

Proof. From (16) and (21), we have

A+ A+
SX,Y) =[S = (@@= )X, y) - [F5E =3 = B g 0n(Y) @)
for all vector fields X, Y on M. This concludes the proof. O

Proposition 1. Let a 3-dimensional trans-Sasakian manifold M admits an 1-Yamabe
soliton (g,¢), ¢ being the Reeb vector field of M. If the manifold is Ricci symmetric then
A+ u = 6(a® — B?), where A, i, , B are constants.

Proof. We know (VxS)(Y,Z) = XS(Y,Z) — S(VxY,Z) — S(Y,VxZ) for all vector fields
X,Y,Zon Mand V is the Levi-Civita connection associated with g.
Now replacing the expression of S from (22), we obtain

A
(VxS)(Y,2) = —[FE =32 = )] () (Vim)Y +0(0)(Vx)Z) @)
for all vector fields X, Y, Z on M.

Now, if the manifold is Ricci symmetric, i.e. VS = 0, then from (23) we have

[Azﬂ —3(a? ~ /52)} [1(Z)(Vxn)Y +57(Y)(Vxn)Z] =0

for all vector fields X, Y, Z on M.
Taking Z = ¢ in the above equation and using (15), (9), we get

[Azﬂ —3(a? - )] [B($X, ) — ag(¢pX, )] = 0

for all vector fields X, Y on M. Hence we get A + u = 6(a® — p?). O

Proposition 2. Let a 3-dimensional trans-Sasakian manifold M admits an 1-Yamabe soliton
(g,¢), ¢ being the Reeb vector field of M. If the Ricci tensor S is nj-recurrent, then o« = +p.

Proof. If the Ricci tensor S is #-recurrent, then we have VS = 1 ® S, which implies that
(VxS)(Y, 2) = n(X)S(Y, Z)

for all vector fields X, Y, Z on M. Then using (23), we get

- [Azﬂ = 3(a2 = B3| n(2) (V)Y +1(X) (Vxn)Z] = n(X)S(Y, Z)

for all vector fields X, Y, Z on M.
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Using (15), the above equation becomes

N [# = 3(a® = )| [1(2)( — ag(9X, Y) + B3(9X, §Y))
+1(Y)(—ag(¢X, Z) + Bg(¢X, 9Z))] = n(X)S(Y, Z).

Now, taking Y = ¢, Z = ¢ and using formulas (9), (22), the above equation becomes 2(a? —
B%)1(X) = 0. Since 7(X) # 0, for all X on M, we have

= =£p. (24)
This completes the proof. O

Proposition 3. Let a 3-dimensional trans-Sasakian manifold M admits an 1-Yamabe soliton
(g,8), ¢ being the Reeb vector field of M. If the manifold is Ricci symmetric and the Ricci
tensor S is nj-recurrent, then the manifold becomes flat.

Proof. If the manifold is Ricci symmetric and the Ricci tensor S is #-recurrent, then using (24)
in A + u = 6(a? — B?) and from (21) we obtain the result. O

Theorem 2. Let M be a 3-dimensional trans-Sasakian manifold admitting an n-Yamabe soliton
(g, V), V being a vector field on M. If V is pointwise co-linear with ¢, then V is a constant
multiple of {, where ¢ being the Reeb vector field of M.

Proof. Let an #-Yamabe soliton be defined on a 3-dimensional trans-Sasakian manifold M as

1
FEvg = (r—M)g —pun @1, (25)

where £y¢ denotes the Lie derivative of the metric ¢ along a vector field V, r is defined by
(1) and A, p are defined by (2). Let V be pointwise co-linear with ¢, i.e. V = b¢, where b is a
function on M.

Then the equation (25) becomes

(£oe8) (X, Y) = 2(r = M)g(X, Y) = 2un(X)5(Y)

for any vector fields X, Y on M.
Applying the property of Lie derivative and Levi-Civita connection we have

bg(VxZ,Y) + (Xb)n(Y) +bg(VyE, X) + (Y0)n(X) = 2(r — A)g(X,Y) — 2un(X)n(Y).
Using (14) and (11), the above equation reduces to
2bB[g(X,Y) —n(X)n(Y)] + (Xb)yp(Y) + (Yb)y(X) = 2(r = 1)g(X,Y) — 2un(X)n (Y).
Now taking Y = ¢ in the above equation and using (9), (12), we obtain
Xb+ (eb)n(X) = 2(r — A)y(X) — 2un(X). (26)

Again taking X = ¢, we get
b=r—A—pu. (27)



164 Roy S., Dey S., Bhattacharyya A.

Then using (27), the equation (26) becomes

Xb=(r—A—pun(X). (28)

Applying exterior differentiation in (28), we have (r — A — u)dy = 0. Since dy # 0 [4], the last
equation gives
r=A4pu. (29)

Using (29), the equation (28) becomes Xb = 0, which implies that b is constant. This concludes
the proof. O

Corollary 3. Let M be a 3-dimensional trans-Sasakian manifold admitting an n7-Yamabe soliton
(g, V), V being a vector field on M, which is pointwise co-linear with ¢, where ¢ being the Reeb
vector field of M. V is a Killing vector ftield iff the soliton reduces to a Yamabe soliton.

Proof. Using (29), the equation (25) becomes

(Evg)(X,Y) = 2u[g(X,Y) = n(X)n(Y)],
for all vector fields X, Y, Z on M. Hence the proof. O

Theorem 3. Let M be a 3-dimensional trans-Sasakian manifold admitting an n-Yamabe soliton
(g,8), ¢ being the Reeb vector field on M. Then Q and S are parallel along {, where Q is the
Ricci operator, defined by S(X,Y) = ¢g(QX,Y) and S is the Ricci tensor of M.

Proof. From the equation (22), we get

Aty

@ p))x - A

ox = | 3(e? = B) | (x)¢ (30)

for any vector field X on M and Q is defined as earlier. We know

(VeQ)X = V:QX — Q(VX) (31)
for any vector field X on M. Then using (30), the equation (31) becomes

PR3- )] (Vem X0z

(VeQ)X = —[
Using (15) in the above equation, we get (VzQ)X = 0, for any vector field X on M. Hence Q is
parallel along ¢.
Again from (23), we obtain

(VeS) () = - [F 1 —3

(& = )| n(V)(Vem) X +1(X)(Ven)Y]

for any vector fields X, Y on M. Using (15) in the above equation, we get (VS)(X,Y) = 0, for
any vector fields X, Y on M. Hence, S is parallel along . O
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3 Curvature properties on 3-dimensional trans-Sasakian manifold admit-
ting #-Yamabe soliton

In this section, we have discussed and proved some of the curvature properties on 3-dimen-
sional trans-Sasakian manifold admitting #-Yamabe soliton.

Theorem 4. A 3-dimensional trans-Sasakian manifold M admitting n-Yamabe soliton (g,¢),
¢ being the Reeb vector field on M, is {-projectively flat.

Proof. From the definition of projective curvature tensor (5), defined on a 3-dimensional trans-
Sasakian manifold, using the property ¢(QX,Y) = S(X,Y), we have

P(X,Y)Z = R(X,Y)Z — %[S(Y,Z)X _S(X,2)Y]

for any vector fields X, Y, Z on M. Putting Z = ¢ in the above equation and using (17) and (22),
we obtain

P(X,Y)§ = (o = ) (V)X — n(X)Y] = S[2(a® = B*)n(Y)X — 2(a — B)y(X)Y],
which implies that P(X, Y)¢ = 0. Hence the proof. O

Theorem 5. A 3-dimensional trans-Sasakian manifold M admitting n-Yamabe soliton (g, ¢),
& being the Reeb vector field on M, is ¢-concircularly flat iff A + u = 6(a% — p?).

Proof. From the definition of concircular curvature tensor (6), defined on a 3-dimensional
trans-Sasakian manifold, we have

C(X,Y)Z = R(X,Y)Z — g[g(Y,Z)X — ¢o(X,2)Y]

for any vector fields X, Y, Z on M. Putting Z = ¢ in the above equation and using (12) and (17),
we obtain

CX,Y)E = (@ = B)[y(Y)X —5(X)Y] = L[ ()X ~p(X)Y] (32)
Now using (21), we get

g = [~ ) - “EE x — nxv),

This implies that C(X, Y)& = 0iff A + u = 6(a® — B?). O
Corollary 4. Let M be a 3-dimensional trans-Sasakian manifold admitting an n7-Yamabe soliton
(g,¢), ¢ being the Reeb vector field on M. If the manifold is -concircularly flat and the Ricci

tensor is nj-recurrent, then the manifold M becomes flat.

Proof. If the Ricci tensor S is i-recurrent, then using (24) in (32), we have the result. O
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Theorem 6. A 3-dimensional trans-Sasakian manifold M admitting n-Yamabe soliton (g,¢),
¢ being the Reeb vector field on M, is {-conharmonically flat iff A + u = 0.

Proof. From the definition of conharmonic curvature tensor (4), defined on a 3-dimensional
trans-Sasakian manifold, we have

H(X,Y)Z = R(X,Y)Z — [g(Y,Z)QX — (X, Z)QY + S(Y, Z)X — S(X, Z)Y]

for any vector fields X, Y, Z on M. Putting Z = ¢ in the above equation and using (12), (17),
(22) and (30), the above equation becomes

HXYE = (@~ B MX —n (Y]~ 25+ (@ = )] ()X — (X))

Hence we get

Py n)x —(x)v)

This implies that H(X,Y)¢ = 0iff A +u = 0. O

H(X,Y)E = —

Theorem 7. A 3-dimensional trans-Sasakian manifold M admitting 1-Yamabe soliton
(8,¢), ¢ being the Reeb vector field on M, is {-quasi-conformally flat iff either a +b = 0 or
A+ =6(a®—B?).

Proof. From the definition of quasi-conformal curvature tensor (7), defined on a 3-dimensional
trans-Sasakian manifold, we have

C'(X,Y)Z =aR(X,Y)Z+b[S(Y,2)X —S(X,Z)Y +g(Y,Z2)QX — g(X, Z)QY]
rra
—§b+ﬂMgnaX—gxzw]

for any vector fields X, Y, Z on M and 4, b are constants. Putting Z = ¢ in the above equation
and using (12), (17), (21), (22) and (30), the above equation becomes

C*(X, V)& = a(e — )y (V)X —g(X)Y] +b[ 2T 4 (@2 — 6] [y(1)X — p(x)Y]

AR o] )X (Y],

Hence we have

A+y A+

* a
C(X,Y)E = |a@® = B) +b| S E + (o = )| - S5 E [ 5 + 28] [ [n ()X —n(X)Y). 33)
This implies that C*(X, Y)& = 0iff a(a® — B2) + b[TP‘ (a® — B2)] - Aﬂl[ +2b] = 0. Then

by simplifying, we obtain C*(X,Y)& = 0 iff (a + b)[(a® — B?) — %] =0, i.e. eithera+b =0
or A + u = 6(a® — B?). This concludes the proof. O
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Corollary 5. Let a 3-dimensional trans-Sasakian manifold M admits an n7-Yamabe soliton (g, ),
¢ being the Reeb vector field on M. If the manifold is {-quasi-conformally flat and the Ricci
tensor is 1j-recurrent, then the manifold M becomes flat, provided a + b # 0.

Proof. 1f the Ricci tensor S is i7-recurrent, then using (24) in (33), we get

N a+b
CXY)E = ———A+p) (V)X - n(X)Y]. (34)
Hence using (21) in (34), we have the result. O

Theorem 8. If a 3-dimensional trans-Sasakian manifold M admitting n-Yamabe soliton (g,¢),
& being the Reeb vector field on M, is ¢-semi symmetric, then either (a*> — B*) = 0 or
Aty =6(a®—p?).

Proof. We know
R(¢,X)-S=S(R(¢,X)Y,Z)+S(Y,R(¢,X)Z) (35)

for any vector fields X, Y, Z on M.

Now let the manifold be ¢-semi symmetric, i.e. R(¢, X) - S = 0. Then from (35), we have
S(R(E, X)Y,Z) + S(Y,R(¢,X)Z) = 0 for any vector fields X,Y,Z on M. Using (18), the last
equation becomes

S((a? = B)(8(X, Y)E = n(Y)X), Z) + S(Y, (&% — p*)(3(X, 2)Z — (2)X)) = 0.
Replacing the expression of S from (22) and simplifying we get

@~ )25 3 — )] 13X, )1(2) + 8(X, 2)n(Y) —20(X)(¥)(2)] = 0.

Taking Z = ¢ in the above equation and using (9), (12), we obtain

@~ ) [T 3@ - )] 55, ¥) —y(x)n(0)] =0

for any vector fields X, Y on M. Using (10), the above equation becomes

@~ ) [ATE 3 - )] 50X, pv) = 0

for any vector fields X, Y on M. Hence we get (a* — %) {/\% —3(a? — ﬁz)] = 0. Then either
(0 — %) =0o0r A+ u = 6(a® — p?). O

Theorem 9. If a 3-dimensional trans-Sasakian manifold M admits an 17-Yamabe soliton (g, ¢),
¢ being the Reeb vector field on M and satisties W, (¢, X) - S = 0, where W is the W,-curvature
tensor and S is the Ricci tensor, then either A + y = 2(a®> — B?) or A + u = 6(a® — p2).

Proof. From the definition of W)-curvature tensor (8), defined on a 3-dimensional trans-
Sasakian manifold, we have

Wa(X,Y)Z = R(X,Y)Z + 2 [3(X, Z)QY — g(Y, Z)QX] (36)

for any vector fields X, Y, Z on M.
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Again we know, W;(§, X) - S = S(WL(&, X)Y,Z) + S(Y, W, (¢, X)Z) for any vector fields
X,Y,Z on M. Replacing the expression of S from (22), on simplifying we get

Wal@, X) -5 =[ M5 E — (@~ )] [s(Wa(E X)Y, 2) + g(Y, Wa(E, X)2)

N [# = 3(e? — B2)| [ (Wa (& X)Y)(2) + (V) (Wa (&, X)Z)].

Now, from the definition of Wj-curvature tensor (36) and then by using (18), the property
2(QX,Y) = S5(X,Y) and (22), the above equation becomes

Wa(,X) - =3 [A 2 — @~ )] [F2E 3@~ )]
x [g(X, Y)n(Z) + (X, Z)n(Y) = 2n(X)n(Y)n(Z)]

for any vector fields X,Y,Z on M. Let in this manifold M, W,(¢, X) - S = 0. Then from the
above equation, we get

2@ )] [ s — )] [5(X, VIn(2) + 8(X, 2y (¥) — 25 (X () (2)] =0,

for any vector fields X, Y, Z on M. Taking Z = ¢ in the above equation and using (9), (12), we
obtain

A A
3 - @ - )| [F3E -3 - )] I8, ) — 00 (v)] =0
for any vector fields X, Y on M. Using (10), the above equation becomes
A A
A ] [P st o

for any vector fields X, Y on M. Hence we get,

e o] - o
Then either A + u = 2(a? — B2) or A + u = 6(a® — B2). O

Corollary 6. If a 3-dimensional trans-Sasakian manifold M admits an n-Yamabe soliton (g, ¢),
¢ being the Reeb vector field on M and satisties W, (¢, X) - S = 0, where W is the W,-curvature
tensor and S is the Ricci tensor which is 1- recurrent, then the manifold becomes flat.

Proof. If the Ricci tensor S is y#-recurrent then using (24) in (37) and from (21), we have the
result. O

4 Example of a 3-dimensional trans-Sasakian manifold admitting #-Yama-
be soliton

In this section, we give an example of a 3-dimensional trans-Sasakian manifold with «, 8
being constants. We consider the 3-dimensional manifold M = {(x,y,z) € R3,z # 0}, where
(x,y,z) are standard coordinates in R3. Leteq, ey, e3be a linearly independent system of vector

tields on M given by
R )
1— ax! 2 = ayl 3 = az'
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Let ¢ be the Riemannian metric defined by

gler,e1) = glex,e2) = gles,e3) =1, gler, e2) = glez, e3) = g(es, e1) = 0.
Let 77 be the 1-form defined by 17(Z) = g(Z, e3) for any Z € x(M), where x(M) is the set of all
differentiable vector fields on M and ¢ be the (1, 1)-tensor field defined by ¢e; = —ey, per = ey,
¢ez = 0. Then, using the linearity of ¢ and g, we have
n(es) =1, ¢*(2) =-Z+n(Z)es and g($Z,¢W) =g(Z, W) —5(Z)n(W)
for any Z,W € x(M). Let V be the Levi-Civita connection with respect to the Riemannian
metric g. Then we have [e1,e;] = 0, [ep,e3] = —ep, [e1,e3) = —e1. The connection V of the
metric g is given by
24(VxY, Z) = Xg(Y, Z) + Y3(2,X) — Zg(X,Y) — g(X, Y, Z]) — g(¥,[X,Z]) +g(Z, [X, Y]),
which is known as Koszul’s formula. Using Koszul’s formula, we can easily calculate,
Vele?) = —e, V€263 = —éy, v63e3 =0,

velel = ée3, Vezel =0, V6361 =0,

Vglez = 0, VEZEQ = €3, Ve3€2 =0.
We see that

(V€1¢)el = V614)61 - 4)V€1€1 = _V€162 —¢e3 =0
= 0(g(e1,e1)es —n(er)er) — 1(g(ger, e1)es — 11(e1)Per). (38)

(Vel(P)ez = Vel(PEZ — (,bVelez = Velel —0= €3
= 0(g(e1,e2)es —1(e2)er) — 1(g(¢er, e2)es — 11(ea)per ). (39)

(Ve,¢p)es = Ve,pes — pVees = 0+ ey = —er
= 0(g(e1,e3)e3 —17(es)er) — 1(g(ger, e3)es — 17(e3)per ). (40)
Hence from (38), (39) and (40) we can see that the manifold M satisfies (13) for X = ey,
« =0, B = —1and e3 = ¢. Similarly, it can be shown that for X = e, and X = e3 the manifold
also satisfies (13) fora =0, 8 = —1and e3 = ¢.
Hence the manifold M is a 3-dimensional trans-Sasakian manifold of type (0, —1). Also,
from the definition of the Riemannian curvature tensor R (3), we get

R(ep,e2)ea = —e1, Rey,e3)es = —e1, R(ezer)er = —ey,
R(ez,e3)e3 = —ea, R(es,e1)er = —e3, R(es, e2)ex = —es.
Then the Ricci tensor S is given by
S(e1,e1) = =2, S(ep,e2) = =2, S(es, e3) = —2. (41)
Then the scalar curvature is r = —6. From (22), we have
A+ A+
S(er,e1) = 2L — (@ =), S(erne) = Tt — (@2 ), S(enen) =202 — ). (42)
Then from (41) and (42), we get # — (&> — B?) = —2 and a® — B2 = —1. This implies
the equality A + u = —6. Then the value of A + u is same as the value of r and so it sat-

isfies Theorem 1. Hence g defines an y#-Yamabe soliton on a 3-dmensional trans-Sasakian
manifold M.
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MerToro i€l CTAaTTi € BUBUEHHS A@SKMX BAACTUBOCTEN TPHOXBUMMIpHOro TpaHc-CacaksHOBOIO
MHOTOBUMAY, UMEI0 METPUKOI € fj-SIMabe COAITOH. MU BUBUMAM AeSIKi YMOBM KPUBM3HM TPHOXBU-
MmipHOTO TpaHc-CacaksTHOBOTO MHOTOBMAY, IIO AOMycKae 1j-SIMabe coairon. Hapemri, My 6yayemMo
TpBhOXBUMipHIIT TpaHc-CacaksTHOBMIT MHOTOBMA, IIIO 3aA0BOABHSIE 7-SIMabe cOAITOH.

Kntouosi croea i ppasu: coaiTon SImabe, 17-SIMabe COAITOH, #-alfHIITaHIBCHKIIT MHOTOBHA, TPaHC-
CacaxkstTHOBMII MHOTOBUA.



