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Generalization of Szdsz operators: quantitative estimate and
bounded variation

Bozkurt K.!, Limmam M.L.2, Aral A.2™

Difference of exponential type Szdsz and Szadsz-Kantorovich operators is obtained. Similar es-
timates are given for higher order y-derivatives of the Szdsz operators and the Szdsz-Kantorovich
type operators acting on the same order p-derivative of the function. These differences are given in
quantitative form using the first modulus of continuity. Convergence in variation of the operators in
the space of functions with bounded variation with respect to the variation seminorm is obtained.
The results propose a general framework covering the results provided by previous literature.
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Introduction

In recent years, the investigations of differences of two linear positive operators have at-
tracted the attention of scientists. The reason it is still a popular research area is that such
differences have some information about the approximation properties of the operators given
to us. This means that if the approximation properties of one of the operators are known,
similar properties of the other can be determined. With this viewpoint, A. Lupas [21] ob-
tained quantitative type theorems for the difference of B, o B, — B, o B,, where B, and B,
are Bernstein and Beta operators, respectively. After this fundamental study, H. Gonska and
I. Rasa [15] obtained more general results in regard to Lupas’ problem using the Taylor expan-
sion with Peano remainder in view of the least concave majorant of the modulus of continuity.
H. Gonska, P. Pitul and I. Rasa in [14] have continued their research on the differences of pos-
itive linear operators by giving estimates about the Bernstein operators, and Beta operators of
the second kind, as introduced by Lupas. In [16], similar results were presented with emphasis
on the use of the second modulus of continuity. A.M. Acu and I. Rasa in [5] obtained new es-
timates of the differences of certain positive linear operators using Taylor’s formula. In [6], the
quantitative estimates for the differences of certain positive linear operators and their deriva-
tives, provided some numerical results. Very recently, A. Aral and H. Erbay in [9] presented
the estimate of the difference of the exponential-type Bernstein and Bernstein-Kantorovich op-
erators. Also, they studied the difference of mentioned operators and their y-derivatives with
supporting the theory with some numerical results. Other contributions can be found in [8]
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and [10]. Because of better approximation properties of the operators preserving exponential
operator than classical ones, similar contributions have been the subject of research in other
well-known operators. In this sense, we recall the sequence S, of linear positive operators in-
troduced and studied in [2] and [3], that are called exponential Szasz operators. The operators
preserving the exponential functions exp (ut) and exp(2ut), u > 0, (exp,, (x) = et¥) are defined
by

) k : k
Suf(x) = Sn(frx) = L F(EYermtrmgr HenX)) -
where x € RT,n € N,
ay(x) = %, 2
Snf(x) = expy(x)sn <e){—py;(xn(x)> ,

where S, (+; x) is the classical Szasz operators for a fixed real parameter y > 0. As usual, we
denote by e; the polynomial functions defined by ¢;(t) = t'.

In order to furnish an approximation process for space of integrable functions on the in-
terval [0, o0), integral modification of the operators S, are defined in [11] by setting for n > 1,
p>0and x € R

Kyn=DyoS,0l, (3)

where the operators D, : C}(R") — C(R") and I, : C(R") — C'(R"), and defined by

Li(f, x) :e’”/oxe’”f(t)dt, feCR") and xeRT,

Du(f,x) = f/(x) —uf(x) feCR) and xeRY, @
(see [22]). Using the operators in (3), which are different from the classical approach, we have
oo ko p(k+1)/n
= —nay (x) ppx M /
Knf(x) =npBue e k; 7 e fu(t)dt, (5)

where a,(x) is given in (2), a},(x) = B, and f,(t) = e # f(t). Other contributions on this topic
can be found in [17,18] and recently [12].

The present article consists of two parts. In the first part, some auxiliary conclusions re-
garding higher order u-derivative of the operators S, and K, are obtained. Then, we prove
some estimates of the differences of the modified exponential-type Szasz operator and Szasz-
Kantorovich variant and their differences between their higher order y-derivatives of the oper-
ators with the operators applied to the same order of yu-derivative of the function, respectively.
Also, a relation between the operators is presented.

In the second part, another outstanding tool to achieve the measurement of the effective-
ness of the approximation, variation detracting property is introduced. Although this topic
was first studied by G.G. Lorentz [20], important contributions were given in [13] which pre-
sented that both Bernstein and genuine Kantorovich operators possess the variation detract-
ing property. Very recently, in [4] the variation detracting property of Bernstein-Kantorovich
operators was presented. For the operators defined on unbounded interval similar contribu-
tions can be found in [1,7,19]. Based on the articles, in order to obtain a convergence result
in the variation seminorm, firstly we state the variation detracting property for the operators
Sy and Ky,
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1 Auxiliary results

Firstly we recall exponential moments of the operator S, and K.
Lemma 1. For the operators (S;),>1 we have:

1) Sn(eg;x) = enx(1—e7").

2) Sn(expy;x) = el*;

3) Sn(expi;x) = e2hx,
Lemma 2. For the operators (K,),>1 we have:

1) Ky (e; x) = etx(—e")=m/n,

2) Ku(exp,;x) = pe!™/ (n(e"" —1));

3) Kn(exp’%;x) = 2%,

Let us calculate the r-th order p-derivative of the operator Sj,.
Lemma 3. Foreveryr € N and n € IN, we have

D,Su(f;x) = nrﬁZSn(expy AL fuix), x€RT, (6)

where

M) = 1 () (<1 + k.

k=0
Proof. Using the formula (4), it is easily seen that

DHSn(f,' x) — Ple—nan(x)e}tx i (n“n( )) fy( ) +n“ ( )e—nzxn(x)eyx i Mﬁ(ﬂ)

k=0 k=1

e s £ O ()t £ 10500

k=0 k=0

_ n“;(x)e—nan(x)eyx i (nﬂén( )) {fy(k—{_ 1) _fpl <§)] = nﬁnSYl(eXpH Al/nfy;x)

k=0 n

and

D25, (fi%) = nppue ™ Wf a2 (FED) g ()]

k=0
© (nay,(x))k1
ot () - (3]
ﬁZ” [ () -4 (8)
e £ (50 < ()]
- gemin £ O 1 (502) g (500) ()

= n?B2Sy (exp,, A%, f;x).
By induction, we have D}, S, (f;x) = n"B;,Su(exp, A7, fu; x)- O
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r-th order p-derivative of the operator K, is following.
Lemma 4. Foreveryr € N and n € IN, we have
Dy Kn(f;x) = n’H[SZHSn(eXpH A;}LiFH;x), x € RT,

where

Fu(x) = /0 " fu (b,

Proof. We can write

0 ko r(k+1)/n
an(x) — nﬁnefntxn(x)ellx Z %/k - fy(t) At

k=0 /n
= rpetnen £ A (1) - ()
Using (4), we have
DyCn(f; x) = punpPue"n(eh I; (W’;((!x))k [Fy <k ;: 1) —F, <§>]
e £ 050 () < )
g G () -5 ()
e e L () < ()]
= gt £ O8O (502) g, (01 g ()
= rgtemtue £ L ()
— nZﬁ%SH(expy A%/nFH; X).
By induction, we have Dj,KC,(f; x) = nHgrls, (eXPH A@L;FH; x). 0

The purpose of the following quantitative inequality with having the difference, if the ap-
proximation properties of one operator in the difference are known, it means the approxima-
tion properties of the other are known as well.

Let f : R™ — R be a continuous function. For § > 0, the modulus of continuity of f defined
by

w(fi) = sup |f(1) = f(x)].
[t—x|<d
We will need following property of the modulus of continuity. For f € C(R), § > 0 and
t,x € RT, the inequality
() = f(2)] < w(f [t —x]) (7)
holds.
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Theorem 1. Forany r € N, n € N, x € Rt and f € C(Rt) N B(R™), the following
inequality holds

DLSn(f; %) = Su(Dyf;x)| < e (Byw(exp, Dyfir/n) + (By = DIIDyflleo)- ®)
Proof. Recall the equation (6),
D;Sn(fr x) = ﬂrﬁzsn(expy A’i/nfﬂ; x)'
Then
DySn(f;x) = Sn(Dyf;x) = 0" By Su(expy, 8/, fu; %) = BuSn(Dyfr %) + (By — 1)Su(D,f; x)
= BuSn(exp, WAy fru = Dy fu; %) + (By — 1)Sn(Dyf; x).
Using the equality

nrAﬁ/nfﬂG):r![E’m k+rf”]:f (k). ©

n
where k/n < & < (k+r)/n, we have

0 k
D!, Su(f;x) — Su(Djf; x) = Ble ™" e”xZ%[fﬁ”@—e”k/"Dﬁf (E)}

k=0 n
Since eﬂxf;ﬁ’) (x) = Dy f(x), we have
D;an(f?x> - Sn(D;Zf}@ = 5ZSH(DLf(Ci) - DLf;x) + (Bn — 1)Sn(D;,f;x).
Finally, since 0 < ¢y — k/n < r/n, from (7) we have the estimate (8). O
Now we give a similar result as in previous theorem for the operator ;.

Theorem 2. Foranyn € N, x € R" and f € C(R") N B(R"), the following inequality holds

D (f; %) = Kn(Dlfix)| < (B = Bu)e™ | £ oo + Bue™ w(exp,, Dif; (r +1) /).

Proof. From Lemma 4, we can write

Dy Ku(f;x) = n" B Su(exp,, ATf 1 Fys x) = n”lﬁz“e‘”“"(’”e’”gio w AT/ aF <,’§)}

Using the equality (9) for the function F;,, we can write

o0 k
r r+1 fmxn( ) HHx (mx?l(x» E k—I—?’—i—l_
DI, Ka(f;x) = e kgo - <r+1>![n, S F|
) k 00 k
_ 132+1e—nucn(x)e;4x];) (Vloénk(!x)) F}Er—i—l)(gk) _ 132+1e—nan(x)eyxk¥0 (Vlﬂénk(!x)) f;gr)(ék)z

where k/n < ¢ < (k+r+1)/n. From (5), we deduce
0 k
_ no, (x
DL (f33) — K (Dl ) = el 3 L8 gt
k=0 '

o k
_ nlgne—nzxn(x)e;tx Z (mxﬂ(x)) /}<(k+1)/ne ytDrf( )

= K /n
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Using mean value theorem, we have

7 ca) rog. _ pr+l,—na,(x) pux - (mxn(x))k (r)
Dy’Cn(f/x) ’Cﬂ(Dyf/x) IBn e e Z k! f}l (gk)

k=0
00 k
_ noy, (x _
— puerngre 3o RO e,

k=0

where k/n < n; < (k+1)/n. Since erfy (x) = D} f(x), we deduce

7 ) rf. _ (pr+l _ —nay (x) pux = (n“ﬂ(x))k (r)
Dy’Cﬂ(f/x) ’Cn(Dyf/x) (IBn ﬁﬂ)e e Z k! f;t (ék)

k=0

B () ]i (rn (3))" 1460 ,) — e ()
(nay

(B = By)e g i (nan2)* g0)
= k!

+ st 32 PO iy () — e ()]

k=0

Thus, we have
DK (f; %) = Kn(Dpfi )| < (B = Bu)e™ | £ oo + Bue™ w(exp,, Diyf; (r +1) /).
O]

The following theorem provides an estimate of the difference between the operators K,
and S;,.

Theorem 3. Foranyn € N, x € R and f € C(R") N B(R"), the following inequality holds

af () = Suf ()] < (B =D fullo o (14 560 Yl fsh),
where
= [%(62?‘/” Sy 27”((;#/" ~1)+1].
Proof. Formulas (1) and (5) imply that
—na (x) ux - n“n Nk kt1)/n
K () = Suf () = (o () — e 3 (28 [
o " (k+1)/n k
e §5 (10N /k/ [0~ (3)]

k=0

An easy consequence of the mean value theorem, we obtain

A0 =R < (1 (t=3) Jothom < (1+ e = P)atfsh).

n
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Then, by substituting above inequality, we have
Cnf (%) = Suf(x)] < (Bn = 1)e!|| fulloo

0 k r(k+1)/n
+ (1 + We (@) gpx %/]{/ (! — e”k/”)zdt>w(fy;h).
k=0 ’

Simple computations shows that

2
21 in 1) 41]

(k+1)/n
ut _ uk/n Zdt _ 2uk/n 2;4/71 1) —
w2 e -3

/n

and )
(o)
efnan(x)eﬂx Z Mezﬂk/n _ eyx(e’*/”+2)_
= K

Taking into account the above relations, we get
FCnf (%) = Snf(x)] < (Bn = 1)e" || fulleo
0 k r(k+1)/n
N <1 e e 3 (ntntx)) JRCE e”k/”)zdt>w( fuih)

k=0 /n
< (Bn — Dl fulle

1 /n 2n
- yx(e?‘ +2) 2;4/n o o eteou/n .
+ <1+u2h2 [zy( -l 1)—|—1]>w(fy,h).
Setting
[ anin gy 2 12
h [Zy(e - 1)+1]
we have desired result. O

In this section, we give a relation between the exponential Kantorovich operators K, and
Szasz operators Sy,.

Theorem 4. For f € C)(R*) and x € RT, we have

Ko f (x (SaDY (%)) + Rup(x),

Z ]+1 'nJ
where

Ry (x) = e~ n(x) gt i (e ()" 1 {n/k(kﬂ 1/ DY f (2 x) < B S)rdt]

=0 k! 1’! /n eﬂétx

is an absolute convergent series which is the remainder of the rth order, u,x € R' and

§t,x € (i’, x).

Proof. Using (4), we can write

(L))" LG,

ehx 7
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For f € C()(R), we use the following version of the Taylor formula

A0 PNy 1Y gy

t | X
et i~ et exp,

g

_F1D0A® s 1D

I s _ r
].ZOJ! ehx rl eHGtx ( )"

where t,x € RT and ¢;x € (t,x). Taking x = %, and simple computations lead to

(k+1)/n r—14 D(])f(k) k+1 K (k+1)/n D f(gt ) s
K _ N _Zr ) nofy K X)),k
7zj£/n e M f(t)dt gggj! g n(/; (¢ TZ) at+ - M (= %)
_ =1 Dg)f(k/n) 1, n pen)/n D f(Ctx) (t B k)rdt
]:() (] + 1)! e‘ll% 1’lj . k/n e?“:tx n

for every n > 1.
Thus from (5), it follows that

/cnf<x>=a;<x>e—w<x>ewiLn@)"[rzl 1 DY) 1

= k! far G+ ot w

! Jk/n ehix

f2 (c+1)/n DY ﬂ@”<_§ym]

erte ) & (nay (x))k D F(k/n)

o
= a,(x) ];) (j+1)!nf = k! ehtk/n
0 k (k+1)/n D f(é' ) kN7
/ —nay (x) pux (nrxn(x)) l / tx -
+ an(x)e € k§) kl r! hn k/n g}‘@x (t 1’1) dt

e a(x) ()
]:

Also R, ,(x) is an absolutely convergent series. O

2 Convergence in variation

In this section we establish variation detracting property and convergence in variation of
Szasz operators S, and Szasz-Kantorovich operators K, in the space of functions of bounded
variation.

Let us start by recalling the variation detracting property and convergence in variation of a
sequence of operators.

Let I C R be a finite or infinite interval. In this section, V;[f] represents the total Jordan
variation of the real-valued function f defined on I and TV/[I] is the space of all functions of
bounded variation on I with the seminorm | f||rv := V|j[f], where f € AC[I], which is the
space of absolutely continuous functions. AC[I] is a closed subspace of TV[I|. Also, BV(I)
represents the class of all functions of bounded variation on I with the norm

Ifllgv(ry == Vilf] +1f(0), f € BV(I).
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In order to obtain the variation detracting property of a given linear operator L defined on
BV(I), the operator L has the property Vi[Lf] < V;[f], for each f € BV (I).

Let (L,) be a sequence of linear operator defined on BV (I). For a given f € BV(I), if the
following statement holds

lim Vi[L.f = f] =0,
then the sequence (L, ),>1 converges in variation to f.

In addition, if f € AC(I), the space of all absolutely continuous real-valued functions
defined on I, then f’ exists a.e. on I. Hence V}[f] can be calculated by

= [1F @)

in L1(I), the space of all real-valued Lebesque integrable functions defined on I.
If li_r>n Vil¢n — f] = 0 for a sequence (¢,),>1 in AC(I), then also f € AC(I) and
n—oo -

/ @i (t) — f'(t)]dt. (10)

As a result, for a given ¢, € AC(I) the convergence in variation of (¢,),>1 to f means the
convergences of (¢},) to f’ in the L1 (I)-norm. More details can be found in [7,13].
First, we show that the operator S, is bounded operator with respect to BV-norm.

Theorem 5. If f € TV|0, o), we have
f

H exp, HBV H exp, HBV'
Proof. By simple computations we can write
k

(e =m0 R () - () () 5

exp,, i—o L expy, exp,,

Then, we have

exp exp,
© k+1 k oy n(x))F
< B () () - (L) (e [ oo,
Since
n/oooe—na n(x )(n“n( )) Budx (kk":' 1) 1,
we have

Vo] < B 1(as,) () = () () < Vo 5]

k=0

Considering the above inequality, we have

el = Viow [ ] + 15001 < Vi [ -

| +1FO) < || -

exp,, HBV
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Theorem 6. If f € TV|0, %), then we have

Viows [ o] < Viow [ ] and [

exp,, exp,,

o]

exp,, HTV Hexpy TV

Proof. Considering the equality

By /k(k+1)/nfy(t) g /Olfy<k+u) du,

/n n

we can write

oon“”xk I —naxoo nocnxk
< nf) (x) = ag(x)e_n“"(x) ZMFk,n‘F”(“”(X))Ze n(x) Z[Pk+1,n_Fk,n]( (x)) )

exp,, = k! P k!

where a), (x) = 0. Then

/ ad no, (X k
(o) () = o ()27 e Bl

exp,, k!
00 k
_ nay, (x
=mmwwwzmﬂfaﬁ—%ﬁmm
k=0 ’
00 k
_ noy, (x
= Bre nan (x) Z[Fkﬂ,n _ Fk,n]%“;(x)-

k=0

Therefore
Vo o) = ) 1) 0]

:/0‘”

= no, (X))
ﬁ Y [Fevin —Fk,n]%ne nan(¥) g (x)| da

nk oo
< ey/n Z |Fir1n — Fk,n|ﬁ/0 ne m"(x)(“n(x))koc;(x) i
Since k
[ ne I(k+1
F/o ne " () (w, (x)) k! (x)dx = ( . ) _ L

then we have

Knf 1 >
V < E F —F
[0,0) [expy] ~ n(et/n —1) k:0| kertn = Fonl

and considering u < n(e*/" — 1), we can write

] Z|Fk+1n Fk,n|-

Voeo) [expy =

Since

Z’qutln Fkn‘</ Z)fﬂ k+1+u)_fy<

k+u

) ‘du < Viowo) [ez;y

} = | fllv,
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then we have

K

Vioes) [ex’;{j = Viow) {exj;}j

That is Ko f f
Hex—’;:)y v = H@HTV
This completes the proof. O

Theorem 7. If f € TV(R™), then we have

IS L], o

p, exp,liTv

Furthermore in addition, if (11) holds for f € C(R"), then f € AC(R™).

Proof. We have

(o) ) = ) £ (220 1, (50— (1)

exp,, 0
:nﬁne_”"‘” ké nocn /kiiﬂ)/nﬂll(t) dt = (e}f;)(Dyf)(x)
and
S =/°°»<ei';f;>’<x>—<¢>’<x>\dx
Al expy (D,f) () - (%)(x)\dx-
Since

Suf\', . [ Kn
<expy> (%) = <expy> (Duf)(x)
and KC,, f is continuously differentiable of order r on R™ from Lemma 4, considering Orlicz’s
results [20, Theorem 2.1.2], to unbounded interval by [13, p.315], and taking into account (10)
we have

VR+{ﬂ—L} :/()oo)<M>(x)—<f—/>(x)‘dx—>O, n— oo,

exp,  exp, exp,, exp,

in the norm of L1(IR™"), the Banach space of all real-valued Lebesgue integrable functions de-
fined on RT. Therefore, we obtain

L i

lim V]R+
exp 1 exp m

n—oo

Conversely, the condition f € AC(IR™) is also necessary for the convergence in variation, since
Suf € AC (RY) yields f € AC(R™). Because of AC(R™") is a closed subspace of BV(R") in
the seminorm VR [-]. This completes the proof. O
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3 Numerical results

In this section, we will give some graphical results supporting the related theorems using
the Mathematica programme.

0105 T T —— —— —— —— =

0.05 -

-0.05 -

S S S S S
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1. The plots of functions separately
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Figure 3. The plot of quantitative estimates for higher order y-derivatives

Example 1. Let

91 349 7 12
_ .5 _2ta o 3 /1 2 14 _ _ _
f(x) =x 30" T 150" +25x =% u=1 r=3, and n=100.
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In Figure 1, the graphs of the function f(x) and the graphs of the operators S, f and
Knf are given. In Figure 2, some absolute values of the differences |S,f(x) — f(x)|,
ICnf(x) — f(x)|, and |K, f(x) — Snf (x)| are compared as graphical. In Figure 3, the graphs of
the some absolute values of the ditferences higher order y-derivatives of the Szasz operators
and the Kantorovich operators acting on the same order y-derivative of the function f(x) are
given (i.e. |DySu(f;x) — Sp(D;,f;x)| and |D}Ku(f; x) — K (D], f;x)])-

Example 2. Let

f(x) (cos(2mtx) —sin(2mx)), w=1, r=2, and n=>50.

T 1287
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0.004
0.002
0.000
0002}
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 4. The plots of functions separately according to Example 2
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Figure 6. The plot of quantitative estimates for higher order y-derivatives according to Example 2
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In Figure 4, the graphs of the function f(x) and the graphs of the operators S, f and

Knf are given. In Figure 5, some absolute values of the differences |S,f(x) — f(x)|,
ICnf(x) — f(x)|, and |, f(x) — Suf(x)| are compared as graphical. Finally, in Figure 6, the
graphs of the some absolute values of the differences higher order y-derivatives of the Szasz
operators and the Kantorovich operators acting on the same order pi-derivative of the function
f(x) (i.e. |DjSu(f;x) — Su(Dyf; x)| and [DKCu(f;x) — Kn(Dyf; x)|).
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OTtpumaHoO OLiHKM pi3HMIIi orlepaTopis excrioneHwirHoro Ty Caca ta Caca-Kanroposuua. Ilo-
AibHI OLIHKYM HaBeAEHO i AASI Y-TIOXIAHMX BUITIOTO MOPSIAKY omnepaTopis Caca Ta omepaTopis Tury
Caca-KanToposnua, 1110 AifOTH Ha }-TIOXiAHI pYHKIIIM Toro X nopsiaky. Li ouiaky HaBeA€HO B KiAb-
KicHilt pOpMi 3 BUKOPWCTaHHSIM MIEPIIIOrO MOAYAS HellepepBHOCTi. OTpmMaHO 36iXHicTh 3a Bapia-
1Ii€fo OTlepaTOPiB y MpocTOpi PyHKIIIN 3 06MeXKeHOI0 Bapiali€lo BiAHOCHO BapialilfHoi HaIliBHOPMIL.
OrpumaHni pe3yAbTaTy BUSHAUAIOTh 3aTaAbHY CTPYKTYPY, IO OXOILAIOE IO OXOIAIOE BiAOMi pe3yAb-
TaTy y AlTepaTypi.

Kntouosi cnosa i ppasu: excrionentivEmit oneparop Caca, excrioHeHIitE1 oneparop Caca-Kan-
TOpOBMYa, 301KHICTb 3a Bapialliero.



