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Identities relating six members of the Fibonacci family of
sequences

Frontczak R.}, Goy T.2, Shattuck M.3

In this paper, we prove several identities each relating a sum of products of three terms coming
from different members of the Fibonacci family of sequences with a comparable sum whose terms
come from three other sequences. These identities are obtained as special cases of formulas relating
two linear combinations of products of three generalized Fibonacci or Lucas sequences. The latter
formulas are in turn obtained from a more general generating function result for the product of
three terms coming from second-order linearly recurrent sequences with arbitrary initial values.
We employ algebraic arguments to establish our results, making use of the Binet-like formulas of
the underlying sequences. Among the sequences for which the aforementioned identities are found
include the Fibonacci, Pell, Jacobsthal and Mersenne numbers, along with their associated Lucas
companion sequences.
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1 Introduction

Let U, = U, (p, q) denote the generalized Fibonacci sequence defined recursively by
Up=0 U =1, U, =pUy_1+qU,—p, n>2,
and V;, = V,,(p, q) the generalized Lucas sequence defined by
VWw=2 Vi=p Vi=pVy1+qVu_2, n=>2

Recall the special cases of U, (p,q) given by F, = U,(1,1), P, = Ux(2,1), Jn» = Ux(1,2),
B, = U, (6, —1) and M,, = U,(3, —2) corresponding respectively to the Fibonacci, Pell, Jacob-
sthal, balancing and Mersenne number sequences. The respective companion sequences are
givenby L, = V,,(1,1), Qu = Vu(2,1), ju = Vu(1,2), Cy = Vu(6,—1) and K, = V,(3,-2),
the first three of which are referred to as the Lucas, Pell-Lucas and Jacobsthal-Lucas numbers.
Note that C, is twice of what is referred to as the n-th Lucas-balancing number. As special
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cases of the results in the next section, we obtain several identities each involving exactly six
of the aforementioned sequences.

This paper is a continuation of our study of relations for the Fibonacci family of sequences.
The principal tool that will be used are generating functions of second-order sequences, which
have been discussed in detail recently by I. Mez6 [5]. In [3], we derived the ordinary generat-
ing function for products of two arbitrary second-order sequences. Some special cases of this
formula also appear in [1]. From the formula found in [3], several identities are derived involv-
ing linear combinations of convolutions of the generalized Fibonacci and Lucas sequences. As
a consequence, various identities are obtained as special cases which relate exactly four se-
quences amongst the Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal and Jacobsthal-Lucas num-
ber sequences.

In this paper, we proceed one step further and prove relations involving six members of
the Fibonacci sequence family. A related formula has been found by D.L. Russell [6] for the
sum of products of three different Fibonacci sequences. D.L. Russell proves his formula by
induction using an identity relating three members of the Fibonacci family. Here, we employ a
generating function approach in extending the results from [3] and our formulas relate certain
linear combinations of products of terms coming from three sequences.

The organization of this paper is as follows. In the next section, we first establish a general
generating function formula for products of three linearly recurrent second-order sequences
with constant coefficients where there is no restriction on the constants or initial values. We
then work out several cases of this formula where the terms come from the generalized Fi-
bonacci or Lucas sequences. Comparing the generating functions derived from these cases
leads to identities relating sums of products of three members of the Fibonacci family of se-
quences with a comparable sum involving three other sequences. See Theorems 2 and 3 below
and the examples that follow. Further related formulas can be obtained that involve sums of
products of three gibonacci numbers. In the third section, some possible generalizations of the
foregoing results are discussed.

2 Main results

Let a, b, p, q denote indeterminates or arbitrary (possibly complex) numbers with
p? +4q # 0. Let T, = Ty(a, b, p,q) be defined recursively by

To=a, T1=0b, T, = pTy1+49T,2, n=>2.

Note that T, reduces to U, whena = 0,b = 1 and to V;, whena = 2, b = p. Let T,gi) =
Tu(a;, b, pi,q;) for 1 < i < 3, where (a;,b;, p;, ;) is arbitrary for each i, with U,Si) = U,Si) (pi,qi)
and Vn(i) = Vn(i)(pl-, g;) corresponding to the cases of T,gi) when (a;,b;) is given by (0,1) and
(2, pi), respectively.

Let A; = |/p?+4q;. Suppose f(x) is a polynomial in x whose coefficients are rational

functions in the variables a;, b;, q;, p; and the quantities A; for 1 < i < 3. Then let f(x) be
the polynomial obtained by replacing each occurrence of Az in f(x) with —As (i.e., f(x) is the
conjugate of f(x) with respect to the radical quantity A3).

We will need the following factorization result in proofs of subsequent formulas.
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Lemma 1. We have M(x) = G(x)G(x), where
pi(paps + B8abs) 2pi9293 — 413 + 242) (P3 + 243) — papaqifadds ,

G(x)=1- 2 2
+ AN

N p1¢11¢12‘73(P22p3 2 3>x3 + (q19293)*x*
and 8

M(x) = 1+ ) mia,

i=1
with
mi = —pip2ps,

my = — (pip3gs + Piaap3 + mpaps + 2(piggs + aip3as + m42p3) + 4q19293),
my = —p1p2ps (p1a2qs + q1paqs + 19203 + 5019243),
= p19205 + 41p245 + 4193P5 + 6(919243)°
+ 401920310205 + 193493 + 0192P3) — 19293 (pP1p2p3)°,

ms = p1p2paqi92q3 (P24 + 419305 + 14295 + 5019293),

me = —(q19203)* (P1P305 + P192P3 + q1p3p3 +2(p1a20s + 019395 + d192p3) + 4019243),

mz = p1p2p3(q19243)°,

mg = (q1q293)".
Proof. This can be shown by expanding the product G(x)G(x) and computing the coefficient
of x' for each 0 < i < 8, making use of the definitions. We illustrate the cases i = 3 and i = 4,
with similar arguments applying to the others. When i = 3, the coefficient of x° in G(x)G(x)
is given by

Prpapaiats — B (p2pa + A23) (270295 — 41 (P + 242) (¥ + 205) + papadi Aaso)

— ﬂ(zﬂzm — MA3) (2919203 — q1(P5 + 292) (P53 + 293) — papaqiDaldy)

p1P2P3 (2919295 — 2p19295 + 91 (3 + 292) (P53 + 293) — 10343)

= p1;722p3 (2p10205 — 2919293 + 91 (13 + 402) (3 + 493) = (3 + 202) (13 + 203))),
which simplifies to the formula above for m3. When i = 4, the coefficient of x* in G(x)G(x) is
given by

ZAZ ’
2(qugags? - P02 Zzp 2858 | (Pagata — L 4+ 202) (3 + 200))° -

upon considering a difference of squares when accounting for the contribution coming from
the product of the x and the x> terms in G and G as well as from the two x? terms. This
expression may be rewritten as

2.2 .2
P2P34
243 1A%A2,

2(q10203)% + 292019205 (P3q3 + P30 + 4q0q3) — P2P3‘71(

p3p3 +4p3qs + 4p392 + 16424q3)
+ PI0395 — Pi719293(P3p3 + 2p305 + 2p302 + 44243)

ql (P2 + 4p3az + 493) (P53 + 4p3as + 443),

which simplifies to the formula for my. O
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For a fixed i, let

G) _ PitAi o _pi=Bi - 2bi—aipitaid

aipi — 2b; + a;A;
7’1 .

2 2 T T 2A, » Bi= A,

Note that T\ is given explicitly by the Binet-like formula T\ = a; (rl )"+ B (r2 )" for n > 0.

We have the following general formula for the generating function of the product of three
arbitrary T) sequences.

Theorem 1. We have

(1)) (3) n _ G(x)H(x) + G(x)H(x)
EOT” T, Ty x" = M) ) (1)

where G(x) and M(x) are given in Lemma 1 and

H(x) = a3 (a1 — rgz)rgg) (a1p1 — b1)x) (1 — plréz)rf)x —q (réz)rég‘)x)z)
+ Bapa(ar — P (@npr — b1)x) (1= P x — ga (%)),

Proof. First note that

LT TN = 1 (a ()" B r2) o2 () "+ Ba(rs”) ) aa () "+ Bar2) ")
- (1 — rglilgz)rf’)x " 1-— rglilgz)rg?’)x) habs (1 — r&lfé:éz)rg’)x i 1-— rglifléz)ré?’)x)
b3 (1 — r&lfé:gz)rg’)x i 1-— rglilgz)ré?’)x) P <1 — rglfcrlgz)rg?’)x i 1-— rél)ﬁrlgz)rf’)x)
SO et %
AT — A6 P oy (P )
+ By — 2 (@ + i) x Y S A iy + gt x
T B P R PR
L AT WL, . SO0
1-— p1r§2)r§3)x ( ) 1-— p1r£2)r£3)x —q1(r; ) (3) ) )
Y _(Z)gzz;)é )(a1p1 ?)b 1();; + ooz —2 —(;éz)(:)f) Py ?2)}91()3]; 5
1—piry7 1y x — lh(?’l r ) 1—piry 1y x —q1(ry 17 x)

where we have used the facts a1 + 1 = a3, rgl) + rgl) = p1, alrgl) + ,Blrgl) = a1p; — by, and
(1) (1) _
r Ty = —q1.

Observe that the sum of the first two expressions in (2) is given by

H(x)
<1 — plrgz)r?)x —q (rgz)rf)x)Z) <1 — plréz)rg)x —q (réz)rf)x)Z) '
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where H(x) is as defined above. Expanding the denominator in the last expression, we obtain

o D) (DA g (0 ()

D (R ) 1 G

From the definitions, we have

2.03) , 2.6 _ (p2+82)(p3 +83) + (p2 = B2)(p3 — D3)  paps + D23
rr +1’2 Ty = 1 = >

(rPrO)2 4 (12,92 (P2 82 (ps + 83)" + (p2 = 8o (ps — Bo)°
16
(P3+202+p22) (P3+2q3+p3da) + (p3+202— p22) (P3+243— p3A3)
4
(3 +292) (V3 + 243) + pap3dabs
: .

Since rgi)réi) = —q, for each i, we thus get for the denominator
L _ Prpaps+82Bs) | 2p102d3 — 41(p3 + 22) (p3 + 293) — p2pamBads
2 2

+ AHA
. Pl%qz%(Pzzm 2A3) N—

which coincides with G(x) as defined above. Hence, the sum of the first two expressions in (2)
equals H(x)/G(x). Since the last two expressions in (2) can be obtained from the first two by
replacing Az with —Ag3, their sum is given by H(x)/G(x). Note that in terms of the notation
above H(x) is given explicitly as

H(x) = a2 (a1 — 115 (@npy = b1)x) (1= g x = g1 (117x)?)

+ o (e = 157 (@apr = b)) (1= purrx = (7 7%)7).

By Lemma 1, we thus get

(W) (2)p(3) . _ H(x) | H(x) _ G(x)H(x) + G(x)H(x)
T, T, T, x" = 4+ =" = ,
nXZ:O ron G(x) " G(x) M)
as desired. O
In general, the formula for the numerator of },~ Tr(,l)Tr(,z) Tr(,?’)x” in (1) is somewhat com-

plicated. However, for several particular choices of initial values a; and b;, there are significant

simplifications. For example, when T,Si) = u,Si) for each i, we get the following result.

Corollary 1. We have

7 i

(1)77(2)73) n _ XiqSiX
Y uuPu e = == 3
= M(x) ®)

where M(x) is asin Lemma 1,51 = 1, s, = s¢ = 0 and
s3 = — (p19243 + 917393 + 91925 + 3019293),
S4 = —2p1P2P3919293,
s5 = 919293 (P19293 + 919593 + 719205 + 3q19293)
s7 = —(q19243)°.
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Proof. Note first that a; = —f; = Al,. when a; = 0 and b; = 1. Thus, in this case, H(x) reduces
to
AZXA3 <"§2)”§3) (1- P1r§2)7§3)x —q (réz)ré?’)x)z) + réz)ré?’) (1— plrgz)rg?’)x — (ng)rf’)x)z))
- AzxAg (A2 + 0 = 2p10205% — grgaas (77 + ) )
- AZxA3 <p2p3 Z L — 2p192q3% — qllh%(;?z};g + A2A3)x2> )

By Theorem 1, the numerator of },~¢ u,S”u,SZ) U,g3)x” equals G(x)H(x) + G(x)H(x), where
H(x) is as given. Note that the denominator is unchanged from Theorem 1 since no restrictions
have been imposed concerning the p; and g;. In computing the numerator, it is a simpler matter
to consider only the product G(x)H(x) and then double all terms in which A3 appears with
an even exponent (including zero or negative even powers) and to ignore all terms containing
an odd power of A;. We illustrate by finding the coefficients of x> and x° below. Note that

@(x)H (x) is given explicitly as

4A A ————(paps + Dol — 4p192q3% — 192q3(P2p3 + DoAz)x?)
X (2= p1(p2ps — BaB3)x + (2p1G2q3 — q1(p5 + 202) (P3 + 243) + pap3qiBaBa) X°

+ P1919293(P2p3 — DaB3) x> + 2(q19293)*x*).

For the x? term in G(x)H(x) + G(x)H(x), we thus get

1
> (P3P301 + 2p1a20s — 1(p3 +202) (P3 + 293) — 4pia205 — 219293),

which reduces to the formula above for s3. For x°, we have

1
5 (2(017203)° + 4pIq 3303 — P3p3aiaads — 719203(2p10205 — q1.(P3 + 242) (P3 + 293)))

— T8 (2910295 + 2030205 — 0PBPR + 01 (V3 + 202) (P + 243)),

which reduces to s5. The remaining s; can be found similarly; note that only terms in which
A3 appears with odd exponent occur in the expressions for the coefficients of x?> and x° in
G(x)H(x) and hence the coefficient for these powers in the numerator in (3) is zero. O

Taking particular values of the parameters p; and g; in Corollary 1 (for instance, letting
p1r=q1=1p2=2,q=1and p3 =1, q3 = 2 for the first formula) yields the following.

Example 1.

Y BBy x — 17x3 — 8x* + 34x° — 8x7
M T ] ox — 43x2 — 4223 + 173%% + 84x5 — 17246 + 167 + 162

n>0
ZFPBx x — 28x3 + 24x* — 28x° + 7
P 1—12x — 234x2 — 312x3 4 1339x* — 312x5 — 234x6 — 12x7 + x8’
Y [y My By — x + 148x% — 144x* — 592x° — 64x7
TUIEET T 1 — 18x — 263x2 + 252043 4 17304x4 — 10080x5 — 4208x6 + 1152x7 + 256x8°

n>0



12 Frontczak R., Goy T., Shattuck M.

(i)

We next consider the case when T,,’ = Vn(i) for all i in Theorem 1.
Corollary 2. We have
L vy SR,
n>0
where M(x) is as in Lemma 1 and
tv = —7p1p2ps,
ty = —6(pipaqs + pigap3 + (p3p5 + 2(Pia2ds + 419593 + G19203) + 4419243),
ty = —5p1paps (Pia295 + 17593 + 419203 + 50149293),
ty = 16419243 (P19245 + 417593 + 4192P3) + 24(q19243)°
— 4019293 (p1p2pa)* + 4(P19595 + 4iP305 + 4195P3),
ts = 3p1p2p3919293(P19295 + 919503 + G192 + 5919293),
te = —2(q19293)° (P1P3q3 + PI02P5 + q1p3p5 + 2(pi9203 + 19345 + 019203) + 4419243),
t7 = p1p2p3(919293)°.
Proof. First note a; = 2, b; = p; implies a; = B; = 1. Thus, in this case, we have that H(x)

reduces to

(2- Plrgz)rgg)x) (1- plréz)rée’)x —q1 (réz)rf)x)z)
+(2— Plréz)rf)x) (1— p1r§2)r§3)x -1 (rgz)rgg)x)z)

=43 (Y ) 12 (Paags — a1 () - (57Y)7)

+ A
= 4-3p S22t (29205 — 113+ 202) (3 + 205) — papsdatss) 32

+ ArA

Therefore, the numerator in (1) is given by G(x)H(x) + G(x)H(x), where G(x)H(x) equals

1
1 (8 — 3p1(paps + DaBs)x + 2(2p192q3 — q1(p3 + 292) (P53 + 243) — papaqiBolz)

+ p1919293(p2p3 + AzAa)x3> (2 — p1(paps — DaA3)x + (2p3q293

— 1P + 202) (P +205) + P2padi 8283) % + p1d1ada (ppa — Bag)x® + 2(10205)x* ).

Computing (and doubling) only the terms in this product where Az occurs with an even expo-
nent leads to the formulas above for the ¢;. O

From Corollary 2, we get results such as the following.

Example 2.
Y LyQujux” — 8 — 14x — 258x% — 210x3 + 692x* + 252x° — 344x° + 16x7
= nIn T T T 0x — 432 — 423 1 173x* + 8420 — 17226 + 167 + 1625
Y L,0uCox” — 8 — 84x — 1404x2 — 1560x> + 5356x* — 936x° — 468x° — 12x”
n<n-n -

=0 1 —12x — 234x2 — 312x3 4 1339x* — 312x5 — 234x6 — 12x7 + x8’

Y K" — 8 — 126x — 1578x2 + 12600x° + 69216x* — 30240x> — 8416x° + 11527
o Jnnn T TRy — 26342 + 2520 + 17304x% — 1008025 — 4208 + 115227 + 256x°"
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Letting T,gi) = U,Si) fori =1,2and T,§3) = Vn(3) gives the following formula.
Corollary 3. We have

7 i

(1) 7(2)1,3) . _ iz TiX

YU U vt = e
n>0 M(x)

where M(x) is as in Lemma 1 and
r=py,  r=2pipags, 13 = p3(pigags + q1p30s — 19205 — q149243),
ra=0, 15 = paquq43(P19293 + 17593 — 114923 — 919293),
e = —2p1p2qid3dy, 17 = p3(q19205)°

Proof. Note in this case thata; = —p; = A% fori = 1,2 withag = B3 = 1 and thus H(x) reduces
to
(1 25— P 1 0 P

= — _ 2).3)  (2).0)
X, (2).(3 2) (3 2) (3 2) (3 x(1 4 g19293%?) (rPr 23
A, (r§ )rg ) ré )ré ) fh‘h%(ré )ré ) _ rg )rg ))XZ) —= AZ1 1~ 1

_ x(1+919293%) ((p2+ A2) (p3+ AB3) — (p2 — B2) (p3 — B3)) _ x(1 + 19243%%) (P23 + p3dAa)

4N, 2N,

Applying (1), and considering G(x)H(x) as before, yields the desired formulas for the r;. [
Example 3.

Y Ey By x +8x2 + 7x° 4 14x° — 32x° + 8x7
o o — 43x2 — 4223 + 173x% + 84x5 — 172x6 + 1627 + 1638

n>0
6x — 2x2 — 438x3 + 876x° + 8x° — 48x7

EJuCux = ’
r;) nlnCn 1 — 6x — 237x2 — 354x3 + 4733x% — 708x5 — 948x6 — 48x7 + 168
T oMyt = x + 24x% + 8x3 — 32x° — 384x° — 64x7
b~ M 6x — 57x2 + 12023 + 824x* + 480x5 — 912x6 — 38417 + 25618

Finally, when T,Si) = Vn(i) fori = 1,2 and T,S?’) = LIY(,?’) in Theorem 1, one gets the following
result.

Corollary 4. We have

7 i

(1) ,(2);,3) n _ iz liX

E vV, 'V, Uy x" = =,
nZO n n n M(x)

where M(x) is as in Lemma 1 and

l1 = p1p2,

lo = 2p3(pig2 + G193 + 20192),

I3 = p1p2(Pia295 + 193295 + 3919293 + 5919243)

3 = p1p2(pi92g3 + G1p3q3 + 3719205 + 5919243),

Iy = 20102p3(P1P543 — 2019205 — 4419243),

Is = —p1p2019293(P19293 + 919303 + 3919295 + 5919293),
lo = 2p3(q19293)* (P92 + G193 + 20192),

l7 = —p1p2(q19293)°-
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Proof. Note that a; = p; = 1fori =1,2and a3 = —p3 = 3 so that H(x) is given by

! 2
As <<2 — %) (1= x - g (réz)ré?’)x) )
— 2= pr?r ) (1= prPr Y — g (r§2>r§3)x)2)>
1
= 5 (P = )52 (D + ) (Y - )

2) (3 2) (3
+ p1gaaags (7 = rPrY) )

x(p2lAs + p3A
- e ;Ag = (p1+ q1(p2p3 + D2d3)x — p1914243%7).

The proof is then completed in a similar manner as before

Example 4.
2x + 26x2 + 50x3 — 32x* — 100x° + 104x° — 16x7

Y QujnFux" = 2 3 4 5 6 7 8/
e 1—2x —43x* —42x> + 173x* + 84x°> — 172x° + 16x” + 16x
Y Quin My — 2x 4 78x% 4 32x% — 336x* + 128x° + 1248x5 + 128x7
o oI T G — 577 + 1207 + 824x* 1 48025 — 912x6 — 3847 + 25625
Y L,Cofur = 6x + 66x% 4 342x3 — 164x* + 684x> + 264x° + 48x7
P 1 — 6x — 23732 — 354x3 + 4733x% — 708x5 — 948x6 — 48x7 + 1638

n>0
(x)/M(x) denote the generating functions in Corol-

Let f(x) = a(x)/M(x) and g(x) =
laries 1 and 2, respectively. Then comparing coefficients of x" on both sides of the equality

b(x)f(x) = a(x)g(x) leads to the following general identity.
Theorem 2 (sequence triples Ur(,l)llr(,z) Ur(, ) and Vn( Jy2) ,1(3)). Forn > 7, we have
7 7

+ LU uPuPul =y svOvBv®, (4)

sulMu
i=1

where s; and t; are defined in Corollaries 1 and 2.
Taking particular values of the parameters in Theorem 2 leads to formulas such as the
following each of which relates six sequences from the Fibonacci family of sequences.

Example 5.
8FuPnJn — 14F,—1Py—1]n—1 — 258F,—2Py—2Jn—2 — 210F, 3Py —3Jn—3

+ 692F, 4Py 4fn—4+252F, 5Py 5]y—5 — 344F—6Py—6Jn—6 + 16F, 7Py —7]n—7 )
171 —3Qn-3jn—3 — 8Ly—4Qn—ajn—a

= Ly-1Qn-1jn-1—
- 8Ln77Qn77]'n77/

+ 34Ln75Qn75]'n75
8FnJuBn —42F,1Jn—1Bn—1 — 1422F, 2]y —2By—2 — 1770F, 3], 3By —3
+ 18932F,;_4Jn—4By—4 — 2124F, 5] 5By—5 — 1896F,—6Jn—6Bn—6 — 48F—7]n—7Bun—7
=Ly-1jn-1Cu-1—63Ly—3jn—3Cn—3+24Ly 4ju-4Cn 4
- 126Ln75].n75cn75 + 8Ln77]‘n77cn771
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8P, By M, — 252P, 1B, 1M, 1 +828P, 5B, 2M, o+ 11340P, 3B, 3M, 3

4 8708P, 4B, _4M,_4 — 13608P,_5B,_5My_5 +1104P, ¢By_¢My_¢ + 288P,s_7Bn_7 M7
= Qu-1Cy 1Ky 1 +67Q,-3C, 3Ky -3 — 1440, 4Cy 4Kjy 4

— 1340, 5Cy 5Ky -5 —8Q,7Cy 7Ky 7.

A similar comparison as before this time using Corollaries 3 and 4 leads to the following
further result.

Theorem 3 (sequence triples Ur(,l)llr(,z) VYE‘D’) and Vn(l)Vn(z) U,S?’)). Forn > 6, we have

n—i+l — n—i+1 n—i+1“n—i+17
=1

7 7
E 2V = Eor V2t

where r; and I; are defined in Corollaries 3 and 4.
From Theorem 3, one gets further identities relating six sequences such as the following.

Example 6.

2F; Pujn + 14F; 1Py 1ju—1 +46F, 2Py 2jy—2 — 4F; 3Py 3ju—3
— 92F, 4Py —4jn—4 + 56Fy 5Py _5ju—5 — 16F, 6Py —6ju—c

= LnQnJn +8Ly-1Qn-1Jn-1+7Ly—2Qn—2Jn—2+14Ly-4Qn-4Jn-1
- 32Ln—5Qn—5]n—5 + 8Ln—6Qn—6]n—6/

FnJnCn + 84F,; 1], -1Cy—1 + 203F; 2] —2Cpy—2 — 3288F, 3], —3C—3
+406F,; _4];—4Cy—4 +336F, 5], 5Cy 5+ 8F; 6Ju—6Cn—s

= 6LyjuBn — 2Ly 1jn—1Bn—1 —438Ly2jn—2By—2+876L; _4jy 4By 4
+8Ly5ju—5Bn—5—48Ly—6ju—6Bn—s,

PyaMuCy — 6Py 1My —1Cy—1 — 207Py oMy —2Cy—p — 400P,; _3M,—3Cy—3
+ 414P, 4 My 4Cy—y — 24P, 5My,5Cy—5 — 8Py—6Mp—6Cn—c

= QnKuBn —2Q, 1Ky 1By -1+ 690, 2Ky, 2B, 2
+138Q) 4Ky 4By —4 + 8Qn—5Ky—5By—5 + 8Qn—6Ky—6Bn—s-

We conclude this section with analogous results for a different generalization of the Fi-
bonacci numbers wherein the initial values are arbitrary instead of the coefficients of the re-
currence. Recall that the gibonacci sequence G, = Gy(a, b) is defined by

GO = l}l, Gl = b, Gn — anl + Gn_z, n Z 2.

See, for example, [2, Chapter 2] or [4, Chapter 7] and references therein. Then there is the
following explicit formula for ), G,gl) G,SZ) G,(f)x”, where G,(f) = Gp(a;, b;).

Corollary 5. We have
7

oyl
G(l)G(Z)G(g) n__ i=0 HiX ,
nX>:O o T T T 1322 — 8x3 + 204 + 80 — 1826 + 1 + 18
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where
Up = a142as,
Uy = —aya2a3 + bybybs,
Uy = al(—lzazﬂlg + apbs + bpaz + bzbg) + by (612613 + arbz + bzag),
uz = ay(—8axasz + axbs + bpaz + 3bybs) + by (azas + 3aybs + 3byasz — 6bybs),
Uy = a1(14a2a3 — 3aybz — 3braz + bzbg,) + bl(—3a2a3 ~+ apbs + braz — 2b2b3),
Us = aq (6(12(13 - a2b3 - b2a3 - 3b2b3) + bl(—azag, - 3a2b3 - 3b2(13 + 6b2b3),
ug = a1(—7axaz + 3abs + 3byaz — bybs) + by(3axas — axbs — boas),
Uy = (l}ll — bl)(az — bz)(&lg — bg)
Proof. Note that a; = % + W and B; = 3 — W when p; = g; = 1. In this case, we
have

H(x) = aa3 (m — <1 +2\/§>2(a1 — bl)x> (1 — (1 _Zﬁ)zx _ <1 —2\/5>4x2>
+ B2p3 (‘11 - <1 _2\@)2(‘11 — b1)x> (1 — (1 +2\/5)2x — <1 +2\/5>4x2> ‘

Note that the second expression in the above formula is seen to be the conjugate (with respect
to \/5) of the first. Furthermore,

(= (45 o) (1- (5205 (52 )

=a] — (3&1—3+\/gb1>x— (5_3\/5111—}—191) x2+3_\/5(a1—b1)x3

2 2 2
and
oty — 3aa3 — a2b3 — bzllg, + 2b2b3 . (—a2a3 + llzbg, + bzﬂg,)\/g
22 10 10 ‘
This implies
H(x) = (3apa3 — asbs — bpaz + 2byb3) (2a; — 3(2a7 — by)x — (5a1 + 2b1)x% 4 3(ay — by)x3)
10
n (—azag + arbz + bzag)(blx + 3a1x2 — (a1 — bl)x3)

2

By similar reasoning, we have
— 1
H(x) = 5(2112113 ~+ apbsz + braz — 2b2b3)(ﬂ1 + (2(11 — bl)x - b1x2 - (al - bl)x3).
Moreover, p; = q; = 1 for all i implies
G(x) =1—3x —6x% +3x° + «%, G(x) =1+2x —x* —2x° + 2,

where G(x) is as in Lemma 1. An explicit computation of the quotient on the right side of (1)
now completes the proof. O
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Comparing the formulas for ), - G,Sl)G,gz) G,(f)x” and )~ G,(l4) G,SS)G,(f)x” gives the fol-
lowing general result.

Theorem 4 (sequence triples G,Sl)G,gz) G,(lg) and G,(f) G,(IS) G,(f)). Forn > 7, we have

7 7
Fuicl 62,6 = L uci ol o,
i=0

—in—i n-—i
=0

where the u; are as in Corollary 5 and uj is obtained from u; by replacing (a;, b;) with
(ﬂj+3, bj+3) for1l S ] S 3.

3 Concluding remarks

Note that Theorem 1 and subsequent results are seen to apply even when the T,(lz) sequences
are not all distinct. Further, it is possible to derive formulas analogous to Theorems 2 and 3
above relating terms from the sequence T,Sl)T,SZ) T,S?’) to terms from Tr(,4) TY(,S) Tr(,6) using Theo-
rem 1 directly. However, in general, such formulas are going to be rather complicated and
involve multiple convolution sums (which we leave for the reader to explore) since the de-
nominators in (1) for the generating functions },~ T,S”T,SZ) T,§3)x” and ) >0 T,S4) T,SS) T,$6)x”
would not be the same in that case. This is due to the fact that the three parameter pairs
(pi,qi) for 1 < i < 3 need not be a permutation of the pairs (p;;3,4i+3), which allows for
the corresponding denominators M to be different. Indeed, when these two sets of param-
eter pairs can be obtained from another by such a permutation, the denominators are seen
to be the same in the two corresponding generating functions. Further, from Corollaries 1-
4, one may derive analogues of Theorems 2 and 3 in which terms from a specific sequence

appear on both sides of the resulting identity. For example, comparing },,~¢ u,Sl)u,Sz) Vn(g)x”

and } > Vrgl) VYE?’) Ur(,z)x” using Corollaries 3 and 4 leads to an analogue of Theorem 3 relating
uul? v and vVUP v

One may apply all of the results above, starting with the generating function formulas,
to polynomial analogues of the preceding numerical sequences. Indeed, Theorems 2 and 3
may be viewed as relating certain linear combinations of products of Fibonacci and Lucas
polynomials in the quantities p; and g; for i = 1,2,3. Recall that the Chebyshev polynomials
An = An(x) and B, = B,(x) of the first and second kind satisfy the second-order recurrence
Wy = 2XW,_1 — Wy—o for n > 2, with initial conditions Ag = 1, A; = xand By = 1, B; = 2x,
where x is an indeterminate. Note that 2A, and B,_; for n > 0 correspond respectively to
special cases of V;, and U}, assuming B_; = 0, and thus the theorems above may be applied
to the sequences 2A, and B,,_1. Furthermore, the preceding results may also be extended to
Fibonacci-type sequences with negative indices. To do so, consider U}, = U_, and V;, = V_,

for n > 0. Note that U}, and V;, both satisfy the general recurrence r, = —grn_l + %rn,z for
n > 2, but with respective initial values Uy = 0, Uj = % and Vj =2,V = —g. Thus, one may

apply the results above to the sequences gqU,, and V,.

Finally, it is possible to generalize the foregoing identities to subsequences of the original
sequences in which the indices are multiples of a given integer. Let k > 1 be fixed. Then for the
sequence Uy, = Uk (p,q), we have the recurrence U,y = Vil )5 — (—q)kll(n,z)k forn > 2,
which can be shown using the Binet formulas for U, and V,,. The same recurrence also holds
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for V. Therefore, the sequences U, /U and V for n > 0 may be viewed as generalized
Fibonacci and Lucas sequences per the definition given in the introduction where p and g are
replaced by V; and —(—q)¥, respectively. Thus, Theorem 2 may be generalized to

()()() (1) (2) (3) (1) (2) (3)
BU Uy U,y + AU U U U o U o U oy

(3) (1) (2) 3) (1)
Uy Byl Gy U0y + 55U G s U0 s U sy

(3)
=7k (n—7)k (6)

(1) (2) (3)
: V(nfB)kV(n73)kV(n73)k

(1) (2) 3) (1) (2) 3) (1) (2) (3)
53V ko Voak 755V sk Vs Vonsye T 57V o Vi Vo 7))

“1)k

(1)
+ 85U}, ),

(1)
+ UL o

~uPuPuP

where s’ and t; are obtained from s; and ¢t; respectively by replacing (p;, ;) with (Vk(i), —(—g)")
for 1 <i < 3. A comparable generalization may be given for Theorem 3. Note that (6) reduces
to (4) when k = 1.
Taking, for example, (p1,q1), (p2,92) and (p3,g3) tobe (1,1), (2,1) and (1,2) in (6) gives
8FukPuk Sk + 01 E (-1, Pn—1)kS (n—1)k + b2Fn—2)kPin—2)kS n—2)k + b3F(n—3)kPin—3)c) (n—-3)k

+ baF )k Pin—ayk) (n—ayk + U5E 5k Pn—s5)kS (n—5)k

+ beF(n—6)kPn—6)k) (n—6)k T V7E(n—7kPin—7)x ]( 7k )
= FePeJk (L(n-1)kQn-1)kf(n—1)k T 8L (n-3)kQ(n—-3)f(n-3)k T AL (n-2)kQ(n—a)f(n—4)k
+a5L(, 5k Q(n—5)k(n—5)k + 7L -7k Qn—7 k](n—7)k)f
where
a3 = 3(=2)" - j{ - 2(LF + Q). a5 = —(=2)* LiQuii,
a5 =3-4— (=2 — (-1 +Q), ar=(-8)
and

b1 = —7LQxjx,s

by = 6((—2)*LRQ; + (=2)* "% — (2" — (=MD (LF + QD) — 277),

by = —5LeQufi (2°(LF + Q) + j7 — 5(—2)%),

by = —(=2)F4(2ML2 + Q2) + 72) +6- 4K 4+ (—2)F (L Qujr)? + 45 TH(LE+ Q) + 441,
bs = —3(—2)* LiQujic (2°(LF + Q) + £ — 5(=2)F),

by = 2% ((—2)FLFQF + (—2)" "% — (27! — (1)) (L7 + QD) — 277),

by = —(—8)* Ly Qyji-

Note that (7) reduces to (5) when k = 1. Taking k = 2 in (7) yields the following identity
relating products of the respective half-sequences

4F20 PonJon — 315F2n—2Pon—2Jon—2 + 6081 Fp, 4 Poy—a]on—a — 41625F,—6Pan—6Jon—6
+ 103746 F2,—g Pon—8J2n—8 — 99900F2, 10 P2n—10J2n—10
+ 32432F5,—12Pon—12J2n—12 — 2880F2—14Pon—14Jon—14
= Lon—2Qon—2jon—2 — 193L2yn—6Q2n—6j2n—6 + 720L2, Q21 —8j2n—8
— 772L2y-10Q2n-10j2n—10 + 64L2y—14Q2n—14]2n—14-

The other identities above may be comparably generalized.
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Y w#ift poboTi MU BCTAaHOBMAM A€KiAbKa TOTOXHOCTEM, SIKi TIOB'SI3YIOTh CyMy AOGYTKiB TPBOX pi-
3HMX ITPeACTaBHMKIB 3araAbHOTO AiHIHOTO peKypPeHTHOrO CIiBBiAHOIIEHHS APYTOro TOPSIAKY 3 Cy-
MOIO, IIIO CKAAAAETHCS 3 UAEHIB TPhOX CYIIyTHIX ITOCAiAOBHOCTelA. L1i TOTOXXHOCTI OTpMMaHi HaMI SIK
oKpeMi BUITaAKM POPMYA AAST ABOX AiHIVHMX KOMOIHAII AOOYTKIB TPhOX y3araAbHEHMX ITOCAIAOB-
Hoctelt ®iboHauui abo Aroka. OcTaHHI POPMYAHM, ¥ CBOIO Uepry, BUILAMBAIOTD 3 OiABIIT 3araABHOTO
Pe3yABTaTy AASI TBipHOI (PYHKIII AOGYTKY TPhOX AOAAHKIB — IPEACTaBHMKIB AiHIHNMX peKypeH-
THMX TIOCAIAOBHOCTE APYTOro HOPSIAKY 3 AOBIABHMMM IOYAaTKOBUMM AaHMMHU. Cepea IIOCAIAOBHO-
cTell, AASL SIKMX BCTAHOBAEHI 3raAaHi TOTOXHOCTI, € TocAip0oBHOCTI DiboHauui, [Teans:, SIkobcTaas Ta
MepceHHa, a TaKOX IIOB’sI3aHi 3 HMMM CYITyTHI IIOCAIAOBHOCTI AfoKa.

Kntouosi cniosa i ¢ppasu: mocairoBHicTh opasama, mocaipoBHiCTh DiboHaUUi, TOCAIAOBHICTD Afo-
Ka, TocAiaoBHicTb [Teans, mocAiAOBHICTD SIKO6CTaAsI, TeHepaTpuca.



