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Characterization of matrix transformation of complex
uncertain sequences via expected value operator

Das B.!, Debnath P.'™, Tripathy B.C.?

The aim of this paper is to study the concept of matrix transformation between complex un-
certain sequences in mean. The characterization of the matrix transformation has been made by
applying the concept of convergence of complex uncertain series. Moreover, in this context, some
well-known theorems of real sequence spaces have been established by considering complex uncer-
tain sequence via expected value operator.
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Introduction

To deal with indeterminacy B. Liu [12] defined the concept of uncertainty theory, which is
based on uncertain measure. The uncertain measure follows the axioms of normality, duality,
subadditivity and product. In the year 2007, the notion of uncertain sequences and their con-
vergences was introduced by B. Liu [12] and then the same was extended by C. You [20]. There-
after, to describe the complex uncertain quantities, the notions of complex uncertain variable
and complex uncertain distribution are presented by Z. Peng [16]. X. Chen et al. [1] explored
the work considering the sequence of complex uncertain variables due to Z. Peng [16]. They re-
ported (see [1]) five convergence concepts of sequence of complex uncertain variables, namely
convergence in almost surely, convergence in measure, convergence in mean, convergence in
distribution and convergence with respect to uniformly almost surely by establishing interre-
lationships among them. Since its initiation, the study of complex uncertain sequences got the
full attention of the researchers. These convergence concept of complex uncertain sequence has
also been generalised by D. Datta and B.C. Tripathy [10], B. Das et al. [2-9], S. Saha et al. [18]. In
this context, we focus to study matrix transformation of complex uncertain sequence by using
the notion of convergent complex uncertain series.

The study of sequence space through matrices are very much relevant in the current re-
search flow [17,19]. Interest in general matrix transformation was first stimulated to some
extent by establishing results on special type of matrices in summability theory, which were
obtained by E. Cesaro, E. Borel and others. However, it was O. Toeplitz, who first made a
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detailed study on matrix transformation on sequence spaces and then mathematicians made
progress enormously in this particular direction [11, 14, 15]. As part of the frame of reference,
we state the book [13].

Let A = (ay), n,k=1,2,3,...,1s an infinite matrix and x = {xx} € ¢ (co being the family
of all null sequences). Then

a1l ap e X1 a11xy +apxa+...
Ax = (an ax»n ... Xo | = | apx1+apxy+...

Thus A is said to be an operator, which maps the sequence x into Ax, where (Ax), =
oo
An(x) = Y ayxg, provided that each of the series converges.
k=1

This motivates us to define the convergence of complex uncertain series to study the matrix
transformation of such sequences. We also study the famous Silverman-Toeplitz theorem and
Kojima-Schur theorem via complex uncertain sequences.

1 Preliminaries

Before going to the main section we need some basic and preliminary ideas about the ex-
isting definitions and results, which will play a major role in this study:.

Definition 1 ([12]). Let L be c-algebra on a non-empty set I'. A set function M on T is called
an uncertain measure if it satisties the following three axioms.

Normality axiom. M{T'} = 1.
Duality axiom. M{A} + M{A°} =1 forany A € L.

Subadditivity axiom. For every countable sequence of {A;} € L, we have
m{Uajf < L M{A}
j=1 1=

The triplet (T, £, M) is called an uncertainty space and each element A in L is called an
event.

In order to obtain an uncertain measure of compound events, a product uncertain measure
is defined as follows.

Product axiom. Let (T, Ly, My) be uncertainty spaces fork = 1,2,3, ... . The product uncer-
tain measure M is an uncertain measure satisfying

(Fin) - o

where A; are arbitrarily chosen events from T forj =1,2,3,..., respectively.

Also, the monotonicity axiom of uncertain measure is given as follows.

Monotonicity axiom. For any two events A and A, with A1 C A, we have

MIALY < MIA,).
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Definition 2 ([16]). A complex uncertain variable is a measurable function { from an uncer-
tainty space (T', L, M) to the set of complex numbers, i.e. for any Borel set B of complex num-
bers, the set {¢ € B} = {y € T : {(y) € B} isan event.

Definition 3 ([12]). The expected value operator of an uncertain variable ( is defined by

Bl = [T Mgz rhar- [1 mig<riar

provided that at least one of the two integrals is finite.

Definition 4 ([1]). The complex uncertain sequence {{, } is said to be convergent almost surely
(a.s.) to { if there exists an event A with M{A} = 1 such that

lim |2, (v) = Z(7)[| = 0 forevery v € A.

Definition 5 ([1]). The complex uncertain sequence {{,} is said to be convergent in measure
to( if foranye > 0
Tim M{[[g0 — Q)| > €} =0.

Definition 6 ([1]). The complex uncertain sequence {{,} is said to be convergent in mean
to { if
lim E[[|¢, —Z]l] = 0.

Definition 7 ([1]). Let @1, $,, O3, ... be the complex uncertainty distributions of complex un-
certain variables (1, (>, (3, ..., respectively. Then the complex uncertain sequence {{,} is con-
vergent in distribution to { if

lim ®,(c) = ®(c)

n—oo

forall c € C, at which ®(c) is continuous.

Definition 8 ([1]). The complex uncertain sequence {{,} is said to be convergent uniformly
almost surely (u.a.s.) to { if there exists a sequence of events {E; }, M{E; } — 0, such that {, }
converges uniformly to { in I — E;_for any fixed k € N.

Definition 9 ([5]). Suppose that (T', £, M) be an uncertainty space. An infinite complex uncer-

tain series Y (x(7y) is said to be convergent in mean if the sequence of its partial sums {S, ()}
k=1

n
is convergent in mean to some finite limit S for all y € T, where S,,(y) = Y. (x(7y) for any event
k=1

v € I'. Thatis,
lim E[[|Su(7) = S(MI] =0.

If {y = Cn +iny, { = ¢ + iy are complex uncertain variables in an uncertainty space
(T, £, M), then (,,(7y), {(y) are complex numbers, where ¢, 7, ¢ and 1 are real uncertain vari-
ables. So, the norm ||{, — || is the usual norm of complex numbers. The following is due to
X. Chen et al. [1].

Remark 1 ([1]). If {, = Cun + iy, { = ¢ + iy are complex uncertain variables, where ¢, 11u, ¢
and 1 are real uncertain variables, then the norm ||, — (|| is given by

120 =2l = /@ — &% — (g — )2

Also, || — C|| is a real uncertain variable.
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Theorem 1 ([12]). If ¢ and n are independent uncertain variables with finite expected values,
then E[al + by] = aE[{] + bE[n], where a and b are scalars.

Throughout the article, the family of all convergent complex uncertain sequences in mean,
in measure, in distribution, in almost surely and with respect to uniformly almost surely is de-
noted by ¢(T'g), c(Tp), ¢(T'p), ¢(Tas), ¢(Tuas), respectively. Similarly, the collection of all null
sequences in mean, in measure, in distribution, in almost surely and with respect to uniformly
almost surely is denoted by co(T'g), co(Ta1), co(T'p), co(Tas) and co(Ty.a5), respectively.

2 Matrix transformation of complex uncertain sequences

ain a2
Consider an infinite matrix A = |ap; a»n ... | and a complex uncertain sequence
ann a2\ (Galy)
¢ = {ln}. We apply A to { as follows: AZ(y) = (an axn ... | | Z(y) |, wherey € T.
a1161(7y) +a1282(7) + ...
Then, by usual matrix multiplication, we have A{ = | a2101(7y) + a»l2(y) + ... | . Thus, we

can write (A({), = A,({) and it is given by

(@) = Y amle(7),
k=1

provided that the infinite series converges in mean for each n.

In this paper, we are dealing with expectation with respect to matrix maps. Since the terms
of the matrix in the transformation are considered to be weights, so the terms of the matrix, i.e.
a,x should be non-negative. Hence throughout the paper we consider the matrices A = (a,%)
of non-negative terms.

Also to prove the following Theorems 2, 4, 5, 6, 9, the linearity property of uncertain vari-
ables are used. To hold the linearity property the variables needs to be independent and have
finite expected values, due to B. Liu [12]. So for the above mentioned theorems, the complex
uncertain variables {3, (>, ... are assumed to be independent in nature and all the variables
has finite expected values.

Theorem 2. Let (T', £, M) be an uncertainty space and {(, } is a complex uncertain sequence.
Suppose a,x — 0 asn — oo uniformly for allk € IN and let M = sup}_ |a,x| < oo. Then one
n k

may call A a bounded linear operator on ¢y(I'g) into itself and || A|| = M.

Proof. Consider an uncertain space (I, £, M) and {Z.(v)} € co(T'g). We first show that
AC(y) € co(Tg), thatis A, (¢(y)) — 0asn — .

o0
This is true when the complex uncertain series Y. a,,lx(7y) is absolutely convergent in
k=1
mean for each n.
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Now, for any m > 1 we have

E[lAn(@()]] <E[zuankck i| - _zuankck Dl +E[ 2 et

k=m+1

< E| sup 1) zwnk@ LE

L k<m k=1

max [5:( >||M]

(since E is monotonic) = E| sup Hgk(’y)H] Z |a| + M max E[[|Zk(7)|l].

Take m and n so large that for any arbitrary small € > 0 we have

m
max {E[[Ge(n)] k> m+1]} <¢ and ) laul <,
k=1

since a,; — 0 as n — oo (k is fixed). Therefore, A({(y)) € co(T'g) and hence A defines an
operator from cy(I'g) into co(T'g).
Now, for any scalar A and complex uncertain sequences { = {{, }, 7 = {nn}, we have

(e 9]

A(AL() (@ Ak (7) + it (7))
=1

= Z Ak Cr (Y Z Ak (7)) = AA(C(7)) + A(n(y)), neN.
Therefore, A is linear. Again,

IA@)I = sup | S]] < 16 sup X lawe] = MIZ(v)]

for every ¢ € ¢o(I'g). Hence, ||A|| < M forall { € co(T'g) and so A is bounded.
For the reverse inequality, let M = sup ) |a,x| < oo. Then there exists a positive integer 1
n k

such that ) |a,x| > M — £ for all n > ng and since }_ |a,| is finite, there exists pg € IN such
k

k
that ) |a,| < 5 forall p > po. Forall y € T we define { = {{;} € co(Tg) by
k>p

_ [ osgnapy, 1<k<p;

ST

i.e. for each row element of the transformed matrix Ag. This implies

— sup {L4CNN .

Then ||{(y)|| = 1 and 1)l — = sup || An(Z(7))|| = [|An(Z(7))|| > M — € uniformly for all n,

O

Theorem 3. Let A be any bounded linear operator defined on co(I'r) into itself. Then A deter-
mines a matrix (a;,) such that (A{(7y)),, = ¥ aulx(y) for every v € co(I'r) and
k

IA]l = sup }_lan| < .
nok

Also, ay — 0 asn — oo (keeping k fixed).
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Proof. Let { € co(Tg). Then {(y) = ¥ Cx(v)ex, where {ex} is a basis in co(I'g), which is given
k

byer = (1,0,0,...), &2 = (0,1,0,...),... . Now, AZ(7) = é Ce(7) Aey = é L) (@),
where Aey is a sequence {a,l(,a%,...} € co(Tg), k = 1,2,3,.... Then, we obtain, (A{(y)), =
i atlk(y), n = 1,2,.... Since ¢, € co(I'g), then Aey € co(Tg) also for k = 1,2,3,... . Thus,
f;é can say that the sequence Aey converges to 0 in mean for each k. That implies a,; — 0 as
n — oo, keeping k fixed. Thus, nh_r>r010 Anl(y) = r}glgo%ankék('y) = 0, since nh_r>r010 aye = 0. We
are to prove that ||A|| = sip%\ank\. Now [[AxZ() ] < |AZ() ] < ||A|l||C]| for each n. Since

A is a bounded linear operator and { € c¢y(I'g), then A, is a bounded linear functional on
co(Te). Thus we have the sequence {A,} € cj(I'g) such that nlgrolo An(C(y)) = 0. Then, by
Banach-Steinhaus theorem || A, || < H for some constant H for all 7.
From the table of dual spaces in [13, page 110], || An|| = X |auk|- Then M = sup ¥ |a,x| < o0
and by the above theorem ¢ "
Al = M.
U

Definition 10. A complex uncertain sequence { = {{;} is said to be bounded in mean if
sup E[||Cx||] is finite. The collection of all bounded complex uncertain sequences in mean is
k

denoted by {«(T'E).

Theorem 4. The infinite matrix operator A is a bounded linear operator from (s (I'g) into itself
(we write this as A € ({(T'E), ¢(T'E))) if and only if

(o]
sup Y [l < co.
nok=1

Proof. Let { = {(x} be a complex uncertain sequence, which is bounded in mean. Then for any
given € > 0 there exists 19 € IN such that E[||(x(7)]|] < eforally € T and k > ny.

(o]
Let us consider an infinite bounded real matrix A = (a,) in such a way that sup Y |4,
0

is finite. Since A = (a,) is itself bounded uniformly for each n, therefore (AZ(y)), =
Y. auxCk(7y) exists for all v € T'. Then
k=1

A0 = E[| S antetn]] < EIEI] s0p 1 fel < o

uniformly for all n, since { € ¢w(I'g). Therefore, Al € ¢ (T'g). Hence, A defines a bounded
linear operator from /o (I'g) into £ (T'E).

Conversely, let A € (o(TE), ¢oo(TE)). That is A transforms a complex uncertain sequence
{ € le(TE) to another sequence A € £ (T'g). This implies

sup E[1(40),] = s0p E[| & aude(a)]] < .

Then, by an application of Banach-Steinhaus theorem, we have ||A|| =sup ¥ || < co. O
n =
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Theorem 5. A : co(T'g) — fo(I'E) is a bounded linear operator if sup Y. |au| < oo.
n k=1

Proof. Let { = {{x} be a complex uncertain null sequence. Then by the definition we have
that for any ¢ > 0 there exists np € IN such that E[||{x(7) — 0]|]] < € for all n > ny, that is
E[||Zu(7)|l] <eforally €T. Let

H = max{E[[|Zs(V)II], E[1Z2(V)I] - - E[[1Zn, (V)] €}

forall v € I. Thus, E[||x(7)|]] < H, whenever y € T. Therefore, { = {{u} € foo(I'g). Hence,
we have Al € ¢« (I'g), by Theorem 4. O

Theorem 6. A € (¢(I'g), Y« (T'E)) is a bounded linear operator if sup Y. |a,;| < 0.
e

Proof. Let sup Y |aux| < co. Since every convergent complex uncertain sequence in mean is
n =
bounded in mean, therefore
e C(FE) — (€ EOO(FE)
and so AJ € l«(T'g), by Theorem 4. Hence, A € (¢(T'g), loo(TE))- O
Theorem 7. If A € (c(T'g),c(T'g)), then also sup Y |aux| < oo.
n k=1
Proof. Let{ = {Cn} € c(TE) be a complex uncertain sequence, which convergent in mean and

(AZ),, = ¥ aulx(7v) exists. Then by the assumption A € ¢(I'g). Let it converges to some
k=1

finite limit. The existence of A{ for each n and { € c¢(T'g) proves the boundedness of Y |a,|
k=1
uniformly for all 7 in mean and hence the result follows.

Also, by Banach-Steinhaus theorem, ||A,|| = ¥ |a|. O

We now study the famous Silverman-Toeplitz theorem via expected value operator consid-
ering a complex uncertain sequence, which is convergent in mean.

Theorem 8. A bounded linear operator A, which transforms a complex uncertain sequence
{Cn} € ¢(Tg) into {Aln} € c(Tg), preserves the limit if and only if the following conditions
are satisfied:

(i) sup Y. |,k is finite;
n k=1
(ii) lim a,; = 0, while k is fixed;
n—o0
(iii) Y a, =1 forn — oo.

k=1

Proof. Let (T', £, M) be an uncertain space and A : ¢(T'r) — ¢(I'r) be a bounded linear opera-
tor, which preserves limit. Define the complex uncertain variables {, for uniform values of k
(k being a fixed natural at any instance) by

1, n=k
0, otherwise.

Cn(7) = {
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Let{(y) = Oforally € T. Then in each cases we get lim E [1Zn — C||] = 0. Hence, the complex
n—oo
uncertain sequence {Cn} is convergent in mean and it converges to zero.
Thus, 2 a,kCk () = 0 (by our hypothesis), which implies lgn a,x = 0 for fixed k. Thus,
n—oo

the Cond1t10n (ii) is proved.

For the necessity of (iii), let us consider the complex uncertain sequence {(;} such that
{x = 1forall k and let { = 1. Then E[||x — {|]] — 0 as k — oco. Thus the sequence {{;}
converges to { = 1 in mean. Therefore, the transformed complex uncertain sequence is also

converges to { = 1 in mean. Consequently, EH) Y auli(y) — 1‘” — 0 asn — oo. This
k=1

implies that nh_r>r010 kZ a,c = 1. Now, Z a,xCk () exists for each n and tends to {, whenever {{ }

converges to ¢ in mean. Then by Theorem 7, we can say that sup 2 |auk| < oo.

For sufficiency, let the three conditions hold true and the Complex uncertain sequence {{ }
converges in mean to {. Now,

E[|| & anten)]] < X5 auck (1) — 2l + E[[[e0) 3 o
k=1 k=1 k=1

Using condition (i) and the fact that {; — { in mean, we have the first term of the right hand
side of the above equation is zero. Again by condition (iii), the second term of the right hand

side tends to E[||(y)||] as n — oco. Therefore, we can write lim EH’ 2 A Cx (Y H] =0.

n—oo

Hence, the transformed complex uncertain sequence converges to g in mean. Hence, A €
(co(TE), co(TE)) and it keeps the limit preserved. O

Finally, we establish the Kojima-Schur theorem related to matrix transformation of se-
quences in uncertain environment.

Theorem 9. A : ¢(I'r) — ¢(T'g) is a bounded linear operator if and only if the following

conditions are satisfied:

[e ]
(i) sup ¥ |‘1nk| < 0o;
n k=1
(o]
(ii) foreach p € N there existsa, = lim ) a,.
n—00 ) =

Proof. Let (T, £, M) be an uncertain space and A € (c(Tg),c(Tg)). Suppose the complex
uncertain sequence {(,} € c(I'g) converges to  in mean. Then from Theorem 7 it follows

sup Z |a,x| < oo and thus (i) is proved. Consider the complex uncertain sequence {(,} in

such a way that
[0, n<p;
tnl7) = { 1, otherwise
for some finite p and {(y) = 1 for all v € T. Then r}gn E[|Is —¢||]] = 0and so {Cu} € c(Tk),
which converges to { = 1 in mean. Thus

n—oo

lim (AC('Y))H = Jgr;o Aly ('7) = nlgrgo Z AnkGn ('7) = nlgrgo Z Ak = Ap,
k=1 k=p
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since {,(y) = 0forn < p.
Conversely, let conditions (i) and (ii) holds true and {{,} € ¢(I'r) converges to { in mean.
Then,

Z ank@k(’)’) = Z ank{gk(’)/) } + C Z nk = Sl"n + C Z Anks
k=1 k=1

where Sp, = i a,x{Ck () — {() }. Now, by condition (i), the term (1) i . tends to a1 (7y).

k=1 k=1
Suppose
[ee)
by = hm a, = lim <Z Apj — Z anj) = ap — g1
n—oo p
j=k j=k+1

for each k. So, Y |bx| = 1 | lgn Ay <sup ¥ |au| < oo, by condition (i). Again,
k ko e n k=1

E[ Y (0 — b0lGe(7) - m)n] = 3 (e — BOEIZk(r) — 2]

k=1 k=1

Since {, ()} converges to { in mean, so Sr, tends to OZO; br(Zk(v) — C(7y))- Hence, we obtain
k=1
A € (¢(Tg),c(Tg)). O

3 Conclusion

In an uncertainty space, the convergence of a complex uncertain sequence and complex
uncertain series are defined via five concepts viz. convergence in mean, in measure, in distri-
bution, in almost surely and with respect to uniformly almost surely. In this article, we have
studied matrix transformation of complex uncertain sequences in mean via expected value
operator. These results can be proved by considering the other concepts on convergences too.
These results can be generalized for further studies in this direction.
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MeTor0 CTaTTi € BUBYMTU MOHSITTSI MATPUYHOTO MEePETBOPEHHS MiX KOMILAEKCHMMM HeBM3HA-
JeHMMM TIOCAIAOBHOCTSIMU B CepeAHBOMY. XapaKTepu3allilo MaTPUIHOTO IIepeTBOPEHHS 3pOOAE€HO
IIASIXOM 3aCTOCYBaHHS MOHSTTSI 301)KHOCTi KOMITAEKCHIX HEBM3HAUeHNX PsIAiB. biablie TOro, y IIbo-
My KOHTEKCTi Aesiki A06pe BiAOMi TeopeMM AASI TIPOCTOPIB AIICHMX ITOCAIAOBHOCTEN 6y AU BCTaHOB-
A€Hi IIASIXOM PO3rASIAY KOMIIA€KCHOI HeBM3HAUeHOI MMOCAIAOBHOCTI Uepe3 orepaTrop MaTeMaTUIHO-
TO CIIOAIBAHHS.

Kntouosi coea i hpasu: poCTip HeBUM3HAUEHOCTI, KOMIIAEKCHII HeBI3HAUEHII PsIA, KOMITAEKCHA
HeBM3HauYeHa IIOCAIAOBHICTb, MATPUUHE IePETBOPEHHSL.



