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A study on conformal Ricci solitons and conformal Ricci
almost solitons within the framework of almost contact

geometry

Dey S.

The goal of this paper is to find some important Einstein manifolds using conformal Ricci soli-

tons and conformal Ricci almost solitons. We prove that a Kenmotsu metric as a conformal Ricci

soliton is Einstein if it is an η-Einstein or the potential vector field V is infinitesimal contact transfor-

mation or collinear with the Reeb vector field ξ. Next, we prove that a Kenmotsu metric as gradient

conformal Ricci almost soliton is Einstein if the Reeb vector field leaves the scalar curvature invari-

ant. Finally, we have embellished an example to illustrate the existence of conformal Ricci soliton

and gradient almost conformal Ricci soliton on Kenmotsu manifold.
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1 Introduction

In recent years, geometric flows, in particular, the Ricci flow have been an interesting

research topic in differential geometry. The concept of Ricci flow was first introduced by

R.S. Hamilton and developed to answer Thurston’s geometric conjecture. A Ricci soliton can

be considered as a fixed point of Hamilton’s Ricci flow (see details in [17]) and a natural gen-

eralization of the Einstein metric (i.e., the Ricci tensor Ric is a constant multiple of the pseudo-

Riemannian metric g), defined on a pseudo-Riemannian manifold (M, g) by

1

2
£V g + Ric = λg,

where £V denotes the Lie-derivative in the direction of V ∈ χ(M), Ric is the Ricci tensor of g

and λ is a constant. The Ricci soliton is said to be shrinking, steady, and expanding accordingly

if λ is negative, zero, and positive respectively. Otherwise, it will be called indefinite. A Ricci

soliton is trivial if V is either zero or Killing on M. First, S. Pigola et al. [22] assume the

soliton constant λ to be a smooth function on M and named as Ricci almost soliton. After that,

A. Barros et al. studied Ricci almost soliton detailed in [1,2]. Recently, J.T. Cho and M. Kimura

[4] generalized the notion of Ricci soliton to η-Ricci soliton, C. Călin and M. Crasmareanu [5]

studied this in Hopf hypersurfaces of complex space forms.
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In 2005, A.E. Fischer [11] has introduced conformal Ricci flow which is a mere generalisa-

tion of the classical Ricci flow equation that modifies the unit volume constraint to a scalar

curvature constraint. The conformal Ricci flow equation was given by

∂g

∂t
+ 2(S +

g

n
) = −pg,

r(g) = −1,

where r(g) is the scalar curvature of the manifold, p is a scalar non-dynamical field and n is

the dimension of the manifold. Corresponding to the conformal Ricci flow equation in 2015,

N. Basu and A. Bhattacharyya [3] introduced the notion of conformal Ricci soliton equation as

a generalization of Ricci soliton equation given by

1

2
£V g + Ric +

[

λ −
1

2

(

p +
2

2n + 1

)]

g = 0. (1)

If the potential vector field V is a gradient of a smooth function f on M then the manifold

is called a gradient conformal Ricci almost soliton. In this case the equation (1) can be exibited

as

Hess f + Ric +
[

λ −
1

2

(

p +
2

2n + 1

)]

g = 0, (2)

where Hess f denotes the Hessian of f . The function f is known as the potential function.

It is worthy to mention that R. Sharma [28] first initiated the study of Ricci solitons in con-

tact geometry. However, A. Ghosh [15] is the first to consider 3-dimensional Kenmotsu metric

as a Ricci soliton. After that, Kenmotsu manifold is studied on many context of Ricci soli-

ton by many authors like A. Ghosh [14], W. Wang [30] etc. In [29], authors have considered

∗-Ricci solitons and gradient almost ∗-Ricci solitons on Kenmotsu manifolds and obtained

some beautiful results. Many authors studied conformal Ricci solitons and their generaliza-

tions in the framework of almost contact and paracontact geometries, e.g., Kenmotsu mani-

fold [3,7,24], Sasakian manifold [6,23], f -Kenmotsu manifold [18,21], para-Kähler manifold [7]

and (κ, µ)-paracontact metric manifolds [27]. Ricci solitons and their generalizations have been

enormously studied by many authors within the framework of contact and paracontact metric

manifolds (see in details [6, 8–10, 12, 13, 19, 20, 25, 26]).

This paper is organized as follows. After collecting some basic definitions and formulas on

Kenmotsu manifold in Section 2, we prove in Section 3 that a Kenmotsu metric as a conformal

Ricci soliton is Einstein if it is an η-Einstein or the potential vector field V is infinitesimal con-

tact transformation or V is collinear with the Reeb vector field ξ. We also have constructed an

example of 5-dimensional Kenmotsu manifold admitting conformal Ricci soliton. In Section 4,

we consider conformal Ricci almost solitons on Kenmotsu manifold and find some η-Einstein

and Einstein manifolds using conformal Ricci almost solitons. Next, we construct an example

of almost conformal Ricci soliton on Kenmotsu manifold to prove our findings.

2 Notes on almost contact metric manifolds

In this section, we will present some preliminaries which will be used during the pa-

per. A smooth manifold M2n+1 of dimension (2n + 1) is said to be contact if it has a global

1-form η such that η ∧ (dη)n 6= 0 everywhere on M. The 1-form η is known as a contact form.
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Corresponding to this 1-form one can find a unit vector field ξ, called the Reeb vector field,

such that dη(ξ, .) = 0 and η(ξ) = 1. Polarization of dη on the contact subbundle D (defined by

η = 0), yields a Riemannian metric g and a (1, 1) tensor field ϕ, that satisfy η(X) = g(X, ξ)

ϕ2 = −I + η ⊗ ξ, (3)

and g(ϕX, ϕY) = g(X, Y) − η(X)η(Y) for all vector fields X, Y on M. The metric g is called

associated metric of η and (ϕ, ξ, η, g) is a contact metric structure. It is well known on an

almost contact metric manifold that ϕ(ξ) = 0, ηoϕ = 0. An almost contact metric structure is

said to be contact metric if it satisfies dη(X, Y) = g(X, ϕY) for all vector fields X, Y on M. If ξ is

Killing, then M is said to be K-contact manifold and a normal almost contact metric manifold

is said to be Sasakian. An almost contact metric manifold is said to be Kenmotsu manifold if

(∇X ϕ)Y = g(ϕX, Y)ξ − η(Y)ϕX (4)

for any X, Y ∈ χ(M), and

∇Xξ = X − η(X)ξ, (5)

R(X, Y)ξ = η(X)Y − η(Y)X, (6)

R(X, ξ)Y = g(X, Y)ξ − η(Y)X, (7)

Qξ = −2nξ (8)

for all X, Y ∈ χ(M), where ∇, R and Q denote respectively, the Riemannian connection,

the curvature tensor and the Ricci operator of g associated with the Ricci tensor given by

Ric(X, Y) = g(QX, Y) for all X, Y ∈ χ(M). Now, we recall the following lemma on Kenmotsu

manifold.

Lemma 1 ( [29]). On Kenmotsu manifold M2n+1(ϕ, ξ, η, g) the following formulas hold for any

X, Y ∈ χ(M)

(∇XQ)ξ = −QX − 2nX, (9)

(∇ξ Q)X = −2QX − 4nX. (10)

3 On conformal Ricci soliton

In this section, we study the conformal Ricci solitons on Kenmotsu manifold and find some

important conditions so that a Kenmotsu metric as a conformal Ricci soliton is Einstein.

First, we recall a defination. A contact metric manifold M2n+1 is said to be η-Einstein, if the

Ricci tensor Ric can be written as

Ric(X, Y) = αg(X, Y) + βη(X)η(Y), (11)

where α, β are smooth functions on M. For an η-Einstein K-contact manifold [32] and para-

Sasakian manifold [33] of dimension > 3, it is well known that the functions α, β are con-

stants, but for an η-Einstein para-Kenmotsu manifold this is not true. So, we continue α, β as

functions. In [15], A. Ghosh studied a 3-dimensional Kenmotsu metric as a Ricci soliton and

for higher dimension in [16]. Before formulate our main results first we derive the following

lemma.
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Lemma 2. Let M2n+1(ϕ, ξ, η, g) be a Kenmotsu manifold. If g represents a conformal Ricci

soliton with potential vector field V then we have

(£V R)(X, ξ)ξ = 0 (12)

for any X ∈ χ(M).

Proof. Taking the covariant derivative of (1) along an arbitrary vector field Z on M and using

(5) we get

(∇Z£V g)(X, Y) = −2(∇ZRic)(X, Y) (13)

for any X, Y ∈ χ(M). Next, recalling the following commutation formula (see [31, p.23]) we

obtain

(£V∇Zg −∇Z£V g −∇[V,Z]g)(X, Y) = −g((£V∇)(Z, X), Y) − g((£V∇)(Z, Y), X) (14)

for all X, Y, Z ∈ χ(M). In view of the parallel Riemannian metric g, it follows from (8) that

(∇Z£V g)(X, Y) = g((£V∇)(Z, X), Y) + g((£V∇)(Z, Y), X) for all X, Y, Z ∈ χ(M). Plugging it

into (13) we obtain

g((£V∇)(Z, X), Y) + g((£V∇)(Z, Y), X) = −2(∇ZRic)(X, Y) (15)

for any X, Y, Z ∈ χ(M). Interchanging cyclicly the roles of X, Y, Z in (15) we can get

g((£V∇)(X, Y), Z) = (∇ZRic)(X, Y) − (∇X Ric)(Y, Z) − (∇YRic)(Z, X) (16)

for all Y, Z ∈ χ(M). Now, substituting ξ for Y in (16) and using (10), the formula (9) yields

(£V∇)(X, ξ) = 2QX + 4nX (17)

for all X ∈ χ(M). Next, using (5), (17) in the covariant derivative of (17) along Y, we obtain

(∇Y£V∇)(X, ξ) = (£V∇)(X, Y) − 2(∇YQ)X + 2η(Y)(QX + 2nX)

for any X ∈ χ(M). Making use of this in the following commutation formula (see [31, p.23])

(£V R)(X, Y)Z = (∇X£V∇)(Y, Z) − (∇Y£V∇)(X, Z), we can derive

(£V R)(X, Y)ξ=2{(∇Y Q)X−(∇X Q)Y}+2{η(X)QY−η(Y)QX}+4n{η(X)Y−η(Y)X} (18)

for all vector fields X, Y ∈ χ(M). Substituting Y by ξ in (18) and using (8), (9) and (10), we get

the required result.

Theorem 1. Let M2n+1(ϕ, ξ, η, g), n > 1, be an η-Einstein Kenmotsu manifold. If g represents

a conformal Ricci soliton with potential vector field V, then g is Einstein with constant scalar

curvature r = −2n(2n + 1).

Proof. First, tracing the equation (11) gives r = (2n + 1)α + β and putting X = Y = ξ in (11)

and using (8) we get α + β = −2n. Therefore, by computation, (11) transforms into

Ric(X, Y) =
(

1 +
r

2n

)

g(X, Y) −
{

(2n + 1) +
r

2n

}

η(X)η(Y) (19)
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for all X, Y on M. This gives

(∇YQ)X =
(Yr)

2n

{

X − η(X)ξ
}

+
{

(2n + 1) +
r

2n

}{

g(X, Y))ξ + η(X)(Y − 2η(Y)ξ)
}

for all X, Y ∈ χ(M). By virtue of this, (18) provides

(£V R)(X, Y)ξ =
1

n

{

(Xr)(Y − η(Y)ξ) − (Yr)(X − η(X)ξ)
}

for all X, Y ∈ χ(M). Setting Y = ξ in the above formula and using the Lemma 2, we get

(ξr)ϕ2X = 0 for any X ∈ χ(M). Using this in the trace of (10), we get r = −2n(2n + 1). It

follows from (19) that M is Einstein. Hence the proof.

Now, taking the Lie-derivative of g(ξ, ξ) = 1 along the potential vector field V and applying

(1) one can obtain

η(£Vξ) = λ − 2n −
1

2

(

p +
2

2n + 1

)

. (20)

Further, from (5) we get R(X, ξ)ξ = −X + η(X)ξ and the Lie derivative of this along V yields

(£V R)(X, ξ)ξ + R(X, £V ξ)ξ + R(X, ξ)£V ξ = {(£V η)X}ξ + η(X)£V ξ (21)

for any X ∈ χ(M). If g represents a conformal Ricci soliton with potential vector field V then

the Lemma 2 holds, i.e. (£V R)(X, ξ)ξ = 0. Plugging it into (21) and using (6) provides

(£V g)(X, ξ) + 2η(£V ξ)X = 0 (22)

for any X ∈ χ(M). Again, applying (1) and (20) in (22) yields (2n − λ)ϕ2X = 0 for any

X ∈ χ(M). Next, using (3) and then tracing yields 2n
(

2n − λ + 1
2

(

p + 2
2n+1

))

= 0. This

implies

λ = 2n +
1

2

(

p +
2

2n + 1

)

. (23)

So, from the previous identity we can say that conformal Ricci soliton is expanding if p ≥ 0.

Theorem 2. Let M2n+1(ϕ, ξ, η, g) be a Kenmotsu manifold. If g represents a conformal Ricci

soliton with non-zero potential vector field V, that is collinear with ξ, then g is Einstein with

constant scalar curvature r = −2n(2n + 1).

Proof. Since the potential vector field V is collinear with ξ, i.e. V = νξ for some smooth

function ν on M. Making use of (5) in the covariant derivative of V = νξ along X yields

∇XV = (Xν)ξ + ν
{

(X − η(X)ξ)
}

for any X ∈ χ(M). By virtue of this, the soliton equation (1) reduces to

2Ric(X, Y) + (Xν)η(Y) + (Yν)η(X) + 2
(

λ −
1

2

(

p +
2

2n + 1

)

+ ν
)

g(X, Y) − 2νη(X)η(Y) = 0

(24)

for all X, Y ∈ χ(M). Setting X = Y = ξ in (24) and using (8), (23) we get ξν = 0. It follows

from (24) that Xν = 0. Putting it into (24) provides

Ric(X, Y) = −
(

ν + λ −
1

2

(

p +
2

2n + 1

))

g(X, Y) + νη(X)η(Y) (25)

for all X, Y ∈ χ(M). This shows that M is η-Einstein and therefore from Theorem 1 we con-

clude that M is Einstein. Thus, from (24) we have ν = 0 and so ν + λ = 2n + 1
2(p + 2

2n+1) (it

follows from (23)). Hence we have from (25) that Ric = −2ng and therefore r = −2n(2n + 1),

as required.
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Now, we discuss an example of Kenmotsu manifold that admits a conformal Ricci soliton.

Example 1. Let M5 = {(x, y, z, u, v) ∈ R
5} be a 5-dimensional manifold, where (x, y, z, u, v) be

the standard coordinates in R
5. Now, consider an orthonormal basis {e1, e2, e3, e4, e5} of vector

fields on M, where e1 = e−v ∂
∂x , e2 = e−v ∂

∂y , e3 = e−v ∂
∂z , e4 = e−v ∂

∂u , e5 =
∂

∂v . Define (1, 1) tensor

field ϕ as follows:

ϕ(e1) = e3, ϕ(e2) = e4, ϕ(e3) = −e1, ϕ(e4) = −e2, ϕ(e5) = 0.

The Riemannian metric is given by

(gij) =















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1















and η(X) = g(X, e5) for any X ∈ χ(M5).

Then η(e5) = 1, ϕ2X = −X + η(X)ξ, and g(ϕX, ϕY) = g(X, Y) − η(X)η(Y) for all X, Y ∈

χ(M5). Thus, for ξ = e5, (ϕ, ξ, η, g) is an almost contact structure. The non-zero components

of the Levi-Civita connection ∇ (using Koszul’s formula) are

∇e1e1 = ∇e2e2 = ∇e3e3 = ∇e4e4 = −e5, ∇e1e5 = e1, ∇e2e5 = e2, ∇e3e5 = e3, ∇e4e5 = e4. (26)

By virtue of this we can verify (4) and therefore M5(ϕ, ξ, η, g) is a Kenmotsu manifold.

Using the well knownn expression of curvatute tensor R(X, Y) = [∇X ,∇Y]−∇[X,Y], we now

compute the following non-zero components

R(e1, e2)e2 = −e1, R(e1, e3)e3 = −e1, R(e1, e4)e4 = −e1, R(e1, e5)e5 = −e1,

R(e1, e2)e1 = e2, R(e1, e3)e1 = e3, R(e1, e4)e1 = e4, R(e1, e5)e1 = e5,

R(e2, e3)e2 = e3, R(e2, e4)e2 = e4, R(e2, e5)e2 = −e5, R(e2, e3)e3 = −e2,

R(e2, e4)e4 = −e2, R(e2, e5)e5 = −e2, R(e3, e4)e3 = e4, R(e3, e5)e3 = e5,

R(e3, e4)e4 = −e3, R(e4, e5)e4 = e5, R(e5, e3)e5 = e3, R(e5, e4)e5 = e4.

Using this, we compute the components of the Ricci tensor as Ric(ei, ei) = −4 for i = 1, 2, 3, 4, 5,

and therefore

Ric(X, Y) = −4g(X, Y) (27)

for all X, Y ∈ χ(M5). Let us consider the potential vector field V = x ∂
∂x + y ∂

∂y + z ∂
∂z + u ∂

∂u +
∂

∂v .

Then with the help of (26) we can show that

(£V g)(X, Y) = 4{g(X, Y) − η(X)η(Y)} (28)

for all X, Y ∈ χ(M5). So, combining (27) and (28), we observe that soliton equation (1) holds

for λ = 21
5 + p

2 , i.e. the metric g is a conformal Ricci soliton with this potential vector field V

and the constant λ = 21
5 + p

2 , which also satisfies the λ = 2n + 1
2(p + 2

2n+1), here n = 2.
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4 On conformal Ricci almost soliton

In this section, we consider conformal Ricci almost soliton on Kenmotsu manifold. It fol-

lows from (1) that conformal Ricci almost soliton is the generalization of Ricci almost soliton

because it involve a smooth function λ. So, first we study gradiant conformal Ricci almost

soliton on Kenmotsu manifold in order to extend the result for gradiant Ricci almost soliton

by A. Ghosh [14]. Thus, equations (1) and (2) hold for smooth function λ. Now, we prove the

following result for later use.

Lemma 3. If X f = (ξ f )η(X) for any vector field X and a smooth function f on a contact metric

manifold M, then f is constant on M.

Proof. From the hypothesis we have d f = ξ( f )η. Operating it by d and applying Poincare

lemma, namely d2 = 0, we obtain f dη + d f ∧ η = 0. Now if we take wedge product with η

and using η ∧ η = 0 and dη ∧ η is non-vanishing everywhere on M, we find ξ f = 0 and so we

get d f = 0. Hence f is constant on M.

Theorem 3. Let M2n+1(ϕ, ξ, η, g) be a Kenmotsu manifold. If M admits a gradient conformal

Ricci almost soliton and the Reeb vector field ξ leaves the scalar curvature r invariant, then it

is Einstein with constant scalar curvature −2n(2n + 1).

Proof. The equation (2) can be exhibited as

∇XD f + QX +
{

λ −
1

2

(

p +
2

2n + 1

)}

X = 0

for any X ∈ χ(M). Using this in R(X, Y) = [∇X,∇Y]−∇[X,Y], we can easily obtain the curva-

ture tensor expression in the follwing form

R(X, Y)D f = (∇YQ)X − (∇XQ)Y + (Yλ)X − (Xλ)Y (29)

for all X, Y ∈ χ(M). Taking contraction of (29) over X with respect to an orthonormal basis

{ei : i = 1, 2, . . . , 2n + 1}, we obtain

Ric(Y, D f ) = −
2n+1

∑
i=1

g((∇ei
Q)Y, ei) + (Yr) + 2n(Yλ)

for any Y ∈ χ(M). Now, contracting Bianchi’s second identity we have

2n+1

∑
i=1

g((∇ei
Q)Y, ei) =

1

2
(Yr).

Plugging it into the previous equation gives

Ric(Y, D f ) =
1

2
(Yr) + 2n(Yλ) (30)

for any Y ∈ χ(M).

Substituting Y by D f in (7) and contracting we get Ric(ξ, D f ) = −2n(ξ f ). Using this in

(30) yields

(ξr) + 4n{ξ(λ + f )} = 0. (31)
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Now, substituting ξ for Y in (29) and using Lemma 1 provides

R(X, ξ)D f = −QX − 2nX + ξ(λ)X − X(λ)ξ (32)

for any X ∈ χ(M). Next, taking inner product of (32) with ξ and using (7) we obtain the equa-

tion g(R(X, ξ)D f , ξ) = ξ(λ)η(X) − X(λ) for any X ∈ χ(M). By virtue of (7), the preceeding

equation reduces to X( f + λ) = ξ( f + λ)η(X) for any X ∈ χ(M). We can conclude from

Lemma 3 that λ + f = c is a constant on M. Contracting (10) provides

ξr = −2{r + 2n(2n + 1)}. (33)

As λ + f is constant, so from (31) and (33) we get { r
2n + (2n + 1)} = 0, which implies

r = −2n(2n + 1). Further, using (8) in (32), we obtain

X( f + λ)ξ = −QX + {ξ( f + λ)− 2n}X

for any X ∈ χ(M). By virtue of this, the preceeding equation transforms into QX = −2nX for

any X on ∈ χ(M). This shows that M is Einstein. So, we complete the proof.

Next, considering a Kenmotsu metric as a conformal Ricci almost soliton with the potential

vector field V, that is pointwise collinear with the Reeb vector field ξ, we extend the Theorem 3

from gradient conformal Ricci almost soliton to conformal Ricci almost soliton and prove the

following assertion.

Theorem 4. Let M2n+1(ϕ, ξ, η, g) be a Kenmotsu manifold. If M admits a conformal Ricci al-

most soliton with non-zero potential vector field V, that is collinear with ξ, then g is

η-Einstein. Moreover, if the Reeb vector field ξ leaves the scalar curvature r invariant, then

g is Einstein with constant scalar curvature −2n(2n + 1).

Proof. By hypothesis we have that V = σξ for some smooth function σ on M. It follows that

(£V g)(X, Y) = (Xσ)η(Y) + (Yσ)η(X) + 2σ{g(X, Y) − η(X)η(Y)}

for all X, Y ∈ χ(M). By virtue of this, the soliton equation (1) transforms into

2Ric(X, Y) + (Xσ)η(Y) + (Yσ)η(X)

+ 2
(

σ + λ −
1

2

(

p +
2

2n + 1

))

g(X, Y) = 2ση(X)η(Y)
(34)

for all X, Y ∈ χ(M).

Now, putting X = Y = ξ in (34) and using (14) yields ξσ = 2n − λ + 1
2(p + 2

2n+1). Thus, the

equation (34) gives Xσ =
(

2n − λ + 1
2

(

p + 2
2n+1

)

− σ
)

η(X). Making use of this in (34) entails

that

Ric(X, Y) =−
(

σ + λ −
1

2

(

p +
2

2n + 1

))

g(X, Y)

−
(

2n − λ +
1

2

(

p +
2

2n + 1

)

− σ
)

η(X)η(Y)
(35)

for all X, Y ∈ χ(M). Hence M is η-Einstein. Moreover, if the Reeb vector field ξ leaves the

scalar curvature r invariant, i.e. ξr = 0, then tracing (12) yields (ξr) = −2{r + 2n(2n + 1)}

and therefore r = −2n(2n + 1). Using this in the trace of (35) gives λ + σ = 2n + 1
2(p + 2

2n+1).

Thus, from (35) we have QX = −2nX and therefore M is Einstein.
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If we consider V = σξ for some constant σ instead of a function, then (34) holds and

therefore inserting X = Y = ξ into (34) and using (7) gives ξσ = 2n − λ. Using this in (34)

yields λ + σ = 2n + 1
2(p + 2

2n+1), where we have used that σ is a constant. Thus, from (35) we

can conclude the following result.

Corollary 1. Let M2n+1(ϕ, ξ, η, g) be a Kenmotsu manifold. If M admits a non-trivial confor-

mal Ricci almost soliton with V = σξ for some constant σ, then it is Einstein with constant

scalar curvature r = −2n(2n + 1).

Now, we discuss an example of Kenmotsu manifold that admits a gradient conformal Ricci

soliton.

Example 2. Let M5 = {(x, y, z, u, v) ∈ R
5} be a 5-dimensional manifold, where (x, y, z, u, v)

are the standard coordinates in R
5. Now, consider a orthonormal basis {e1, e2, e3, e4, e5} of

vector fields on M, where e1 = v ∂
∂x , e2 = v ∂

∂y , e3 = v ∂
∂z , e4 = v ∂

∂u , e5 = −v ∂
∂v . Define (1, 1)

tensor field ϕ as follows:

ϕ(e1) = e2, ϕ(e2) = −e1, ϕ(e3) = e4, ϕ(e4) = −e3, ϕ(e5) = 0.

The Riemannian metric is given by

(gij) =















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1















and η(X) = g(X, e5) for any X ∈ χ(M5).

Then η(e5) = 1, ϕ2X = −X + η(X)ξ, and g(ϕX, ϕY) = g(X, Y) − η(X)η(Y) for all X, Y ∈

χ(M5). Thus, for ξ = e5, (ϕ, ξ, η, g) is an almost contact structure. The non-zero components

of the Levi-Civita connection ∇ (using Koszul’s formula) are

∇e1e1 = ∇e2e2 = ∇e3e3 = ∇e4e4 = −e5, ∇e1e5 = e1, ∇e2e5 = e2, ∇e3e5 = e3, ∇e4e5 = e4. (36)

By virtue of this we can verify (4) and therefore M5(ϕ, ξ, η, g) is a Kenmotsu manifold.

Using the well knownn expression of curvatute tensor R(X, Y) = [∇X ,∇Y]−∇[X,Y], we now

compute the following non-zero components

R(e1, e2)e2 = −e1, R(e1, e3)e3 = −e1, R(e1, e4)e4 = −e1, R(e1, e5)e5 = −e1,

R(e1, e2)e1 = e2, R(e1, e3)e1 = e3, R(e1, e4)e1 = e4, R(e1, e5)e1 = e5,

R(e2, e3)e2 = e3, R(e2, e4)e2 = e4, R(e2, e5)e2 = e5, R(e2, e3)e3 = −e2,

R(e2, e4)e4 = −e2, R(e2, e5)e5 = −e2, R(e3, e4)e3 = e4, R(e3, e5)e3 = e5,

R(e3, e4)e4 = −e3, R(e4, e5)e4 = e5, R(e5, e3)e5 = e3, R(e5, e4)e5 = e4.

Using this, we compute the components of the Ricci tensor as Ric(ei, ei) = −4 for i = 1, 2, 3, 4, 5

and therefore

Ric(X, Y) = −4g(X, Y) (37)

for all X, Y ∈ χ(M5).
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Let f : M → R be a smooth function defined by f (x, y, z, u, v) = x2 + y2 + z2 + u2 + v2

2 .

The gradient D f of f is given by

D f = 2x
∂

∂x
+ 2y

∂

∂y
+ 2z

∂

∂z
+ 2u

∂

∂u
+ v

∂

∂v
.

Then with the help of (36) we can show that

(£D f g)(X, Y) = 2{g(X, Y) − η(X)η(Y)} (38)

for all X, Y ∈ χ(M5). So, combining (37) and (38), we observe that soliton equation (1) holds

for λ = 17
5 + p

2 , i.e. the metric g is a gradient conformal Ricci almost soliton with this potential

vector field V = D f , λ = 17
5 + p

2 .

5 Geometrical and physical motivations

The notion of conformal Ricci solitons can be charecterized as a kinematic solution of con-

formal Ricci flow, whose profile develop a characterization of spaces of constant sectional cur-

vature along with the locally symmetric spaces. Also, geometric phenomenon of conformal

Ricci solitons can evolve an aqueduct between a sectional curvature inheritance symmetry of

space time and class of Ricci solitons. The mathematical notion of a conformal Ricci soliton

should not be confused with the notion of soliton solutions, which arise in several areas of

methematical or theoretical physics and its applications. Conformal Ricci soliton is important

as it can help in understanding the concepts of energy or entropy in general realtivity. This

property is the same as that of heat equation due to which an isolated system loses the heat for

a thermal equilibrium. It deals a geometric and physical applications with relativistic viscous

fluid spacetime admitting heat flux and stress, dark and dust fluid general relativistic space-

time, radiation era in general relativistic spacetime. Also there is further scope of research

in this direction of various types of complex manifolds like Kaehler manifolds, para-Kaehler

manifolds, Hopf manifolds etc.
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Дей С. Дослiдження конформних солiтонiв Рiччi та конформних майже солiтонiв Рiччi в рамках

майже контактної геометрiї // Карпатськi матем. публ. — 2023. — Т.15, №1. — C. 31–42.

Метою цiєї статтi є побудова деяких важливих многовидiв Айнштайна за допомогою кон-

формних солiтонiв Рiччi та конформних майже солiтонiв Рiччi. Ми доводимо, що метрика

Кенмоцу як конформний солiтон Рiччi є айнштайнiвською, якщо вона є η-айнштайнiвською,

або потенцiйне векторне поле V є iнфiнiтезимальним контактним перетворенням або колi-

неарним з векторним полем Рiба ξ. Також ми доводимо, що метрика Кенмоцу як градiєн-

тний конформний майже солiтон Рiччi є айнштайнiвською, якщо векторне поле Рiба залишає

незмiнною скалярну кривизну. Насамкiнець, ми побудували приклад, щоб проiлюструвати

iснування конформного солiтону Рiччi та градiєнтного майже конформного солiтону Рiччi

на многовидi Кенмоцу.

Ключовi слова i фрази: конформний солiтон Рiччi, многовид Кенмоцу, многовид Айнштай-

на, iнфiнiтезимальне контактне перетворення.


