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A study on conformal Ricci solitons and conformal Ricci

almost solitons within the framework of almost contact
geometry

Dey S.

The goal of this paper is to find some important Einstein manifolds using conformal Ricci soli-
tons and conformal Ricci almost solitons. We prove that a Kenmotsu metric as a conformal Ricci
soliton is Einstein if it is an #-Einstein or the potential vector field V is infinitesimal contact transfor-
mation or collinear with the Reeb vector field ¢. Next, we prove that a Kenmotsu metric as gradient
conformal Ricci almost soliton is Einstein if the Reeb vector field leaves the scalar curvature invari-
ant. Finally, we have embellished an example to illustrate the existence of conformal Ricci soliton
and gradient almost conformal Ricci soliton on Kenmotsu manifold.
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tesimal contact transformation.
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1 Introduction

In recent years, geometric flows, in particular, the Ricci flow have been an interesting
research topic in differential geometry. The concept of Ricci flow was first introduced by
R.S. Hamilton and developed to answer Thurston’s geometric conjecture. A Ricci soliton can
be considered as a fixed point of Hamilton’s Ricci flow (see details in [17]) and a natural gen-
eralization of the Einstein metric (i.e., the Ricci tensor Ric is a constant multiple of the pseudo-
Riemannian metric g), defined on a pseudo-Riemannian manifold (M, g) by

%ﬁvg + Ric = Ag,

where £y denotes the Lie-derivative in the direction of V € x(M), Ric is the Ricci tensor of g
and A is a constant. The Ricci soliton is said to be shrinking, steady, and expanding accordingly
if A is negative, zero, and positive respectively. Otherwise, it will be called indefinite. A Ricci
soliton is trivial if V is either zero or Killing on M. First, S. Pigola et al. [22] assume the
soliton constant A to be a smooth function on M and named as Ricci almost soliton. After that,
A. Barros et al. studied Ricci almost soliton detailed in [1,2]. Recently, ].T. Cho and M. Kimura
[4] generalized the notion of Ricci soliton to #-Ricci soliton, C. Calin and M. Crasmareanu [5]
studied this in Hopf hypersurfaces of complex space forms.
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In 2005, A.E. Fischer [11] has introduced conformal Ricci flow which is a mere generalisa-
tion of the classical Ricci flow equation that modifies the unit volume constraint to a scalar
curvature constraint. The conformal Ricci flow equation was given by

9g

= +2(S+

Sy— _
L) =P

r(g) =-1,

where r(g) is the scalar curvature of the manifold, p is a scalar non-dynamical field and # is
the dimension of the manifold. Corresponding to the conformal Ricci flow equation in 2015,
N. Basu and A. Bhattacharyya [3] introduced the notion of conformal Ricci soliton equation as
a generalization of Ricci soliton equation given by

)]g:@. (1)

If the potential vector field V is a gradient of a smooth function f on M then the manifold
is called a gradient conformal Ricci almost soliton. In this case the equation (1) can be exibited
as

1 , 1
SLvg+ Ric + [A—§<p+2n+1

Hessf+Ric+{A—%(p%—znilﬂg:& 2)

where Hess f denotes the Hessian of f. The function f is known as the potential function.

It is worthy to mention that R. Sharma [28] first initiated the study of Ricci solitons in con-
tact geometry. However, A. Ghosh [15] is the first to consider 3-dimensional Kenmotsu metric
as a Ricci soliton. After that, Kenmotsu manifold is studied on many context of Ricci soli-
ton by many authors like A. Ghosh [14], W. Wang [30] etc. In [29], authors have considered
*-Ricci solitons and gradient almost *-Ricci solitons on Kenmotsu manifolds and obtained
some beautiful results. Many authors studied conformal Ricci solitons and their generaliza-
tions in the framework of almost contact and paracontact geometries, e.g., Kenmotsu mani-
fold [3,7,24], Sasakian manifold [6,23], f-Kenmotsu manifold [18,21], para-Kdhler manifold [7]
and («x, p)-paracontact metric manifolds [27]. Ricci solitons and their generalizations have been
enormously studied by many authors within the framework of contact and paracontact metric
manifolds (see in details [6,8-10,12,13, 19,20, 25, 26]).

This paper is organized as follows. After collecting some basic definitions and formulas on
Kenmotsu manifold in Section 2, we prove in Section 3 that a Kenmotsu metric as a conformal
Ricci soliton is Einstein if it is an #-Einstein or the potential vector field V is infinitesimal con-
tact transformation or V is collinear with the Reeb vector field ¢. We also have constructed an
example of 5-dimensional Kenmotsu manifold admitting conformal Ricci soliton. In Section 4,
we consider conformal Ricci almost solitons on Kenmotsu manifold and find some #-Einstein
and Einstein manifolds using conformal Ricci almost solitons. Next, we construct an example
of almost conformal Ricci soliton on Kenmotsu manifold to prove our findings.

2 Notes on almost contact metric manifolds

In this section, we will present some preliminaries which will be used during the pa-
per. A smooth manifold M?'*! of dimension (21 + 1) is said to be contact if it has a global
1-form 7 such that # A (dy)" # 0 everywhere on M. The 1-form 7 is known as a contact form.
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Corresponding to this 1-form one can find a unit vector field ¢, called the Reeb vector field,
such that dy(¢,.) = 0 and (&) = 1. Polarization of dy on the contact subbundle D (defined by
n = 0), yields a Riemannian metric g and a (1, 1) tensor field ¢, that satisfy #(X) = g(X, ¢)

p*=—-I1+1®¢, (3)

and g(¢X, ¢Y) = g(X,Y) —n(X)n(Y) for all vector fields X, Y on M. The metric g is called
associated metric of # and (¢,¢,7,g) is a contact metric structure. It is well known on an
almost contact metric manifold that ¢(&) = 0, 7o = 0. An almost contact metric structure is
said to be contact metric if it satisfies dn (X, Y) = ¢(X, ¢Y) for all vector fields X, Y on M. If { is
Killing, then M is said to be K-contact manifold and a normal almost contact metric manifold
is said to be Sasakian. An almost contact metric manifold is said to be Kenmotsu manifold if

(Vx@)Y =g(¢X,Y)E —5(Y)pX (4)
forany X, Y € x(M), and
Vx¢ =X —n(X)¢, (5)
R(X,Y)¢ =n(X)Y —n(Y)X, (6)
R(X,§)Y =g(X,Y)¢ —n(Y)X, ?)
Q¢ = —2ng (8)

for all X, Y € x(M), where V, R and Q denote respectively, the Riemannian connection,
the curvature tensor and the Ricci operator of ¢ associated with the Ricci tensor given by
Ric(X,Y) = g(QX,Y) forall X, Y € x(M). Now, we recall the following lemma on Kenmotsu
manifold.

Lemma 1 ([29]). On Kenmotsu manifold M***1(¢, &, 1, ¢) the following formulas hold for any
X, Y € x(M)

(VxQ)¢ = —QX —2nX, 9)
(VeQ)X = —2QX — 4nX. (10)

3 On conformal Ricci soliton

In this section, we study the conformal Ricci solitons on Kenmotsu manifold and find some
important conditions so that a Kenmotsu metric as a conformal Ricci soliton is Einstein.

First, we recall a defination. A contact metric manifold M?"+1 is said to be n-Einstein, if the
Ricci tensor Ric can be written as

Rie(X,Y) = ag(X,Y) + pn(X)n(Y), (11)

where «, § are smooth functions on M. For an 7-Einstein K-contact manifold [32] and para-
Sasakian manifold [33] of dimension > 3, it is well known that the functions «, B are con-
stants, but for an #-Einstein para-Kenmotsu manifold this is not true. So, we continue «, 8 as
functions. In [15], A. Ghosh studied a 3-dimensional Kenmotsu metric as a Ricci soliton and
for higher dimension in [16]. Before formulate our main results first we derive the following
lemma.
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Lemma 2. Let M*"T1(¢,&,7,¢) be a Kenmotsu manifold. If ¢ represents a conformal Ricci
soliton with potential vector field V then we have

(EvR)(X, )¢ =0 (12)
for any X € x(M).

Proof. Taking the covariant derivative of (1) along an arbitrary vector field Z on M and using
(5) we get

(Vz£vg)(X,Y) = =2(VzRic)(X,Y) (13)

for any X, Y € x(M). Next, recalling the following commutation formula (see [31, p.23]) we
obtain

(EvVz8 = VzEvg — Vv 78)(X,Y) = —g((£vV)(Z, X),Y) — g((EvV)(Z,Y), X) (14)

forall X, Y, Z € x(M). In view of the parallel Riemannian metric g, it follows from (8) that
(VzEvg)(X,Y) = g((EvV)(Z,X),Y) +g((EvV)(Z,Y),X) forall X, Y, Z € x(M). Plugging it
into (13) we obtain

S(EVV)(Z,X),Y) +g((EvV)(Z,Y), X) = ~2(VzRic) (X, ) (15)
forany X, Y, Z € x(M). Interchanging cyclicly the roles of X, Y, Z in (15) we can get
g((£vV)(X,Y),Z) = (VzRic)(X,Y) — (VxRic)(Y, Z) — (VyRic)(Z,X) (16)
forall Y, Z € x(M). Now, substituting ¢ for Y in (16) and using (10), the formula (9) yields
(EvV)(X,¢) =20X +4nX (17)
for all X € x(M). Next, using (5), (17) in the covariant derivative of (17) along Y, we obtain
(Vy£EvV)(X,8) = (£vV)(X,Y) = 2(VyQ)X 4 27(Y)(QX + 2nX)

for any X € x(M). Making use of this in the following commutation formula (see [31, p.23])
(va) (X, Y)Z = (Vxﬁvv)(Y, Z) - (Vy£vV) (X, Z), we can derive

(EvR)(X, Y)E=2{(VyQ)X—(VxQ)Y}+2{n(X)QY =y (Y)QX}+4n{n(X)Y —n(Y)X} (18)

for all vector fields X, Y € x(M). Substituting Y by ¢ in (18) and using (8), (9) and (10), we get
the required result. O

Theorem 1. Let M?**1(¢,&,1,¢), n > 1, be an y-Einstein Kenmotsu manifold. If ¢ represents
a conformal Ricci soliton with potential vector field V, then g is Einstein with constant scalar
curvaturer = —2n(2n +1).

Proof. First, tracing the equation (11) gives ¥ = (2n + 1)a +  and putting X = Y = ¢ in (11)
and using (8) we get a + B = —2n. Therefore, by computation, (11) transforms into

Rie(X,Y) = (1+ é)g(X, v)-{en+1)+ é}iy(X)q(Y) (19)
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for all X, Y on M. This gives

(vr@x = D x pog) +{@n+ 1)+ 2 s )z +pxe -2}

forall X, Y € x(M). By virtue of this, (18) provides

(EvR)(X, V)E = - { (XN)(Y ~ (1)) — (Y)(X —1(X)0)}

for all X, Y € x(M). Setting Y = ¢ in the above formula and using the Lemma 2, we get
(&r)¢*X = 0 for any X € x(M). Using this in the trace of (10), we get r = —2n(2n +1). It
follows from (19) that M is Einstein. Hence the proof. 0

Now, taking the Lie-derivative of g(, ¢) = 1 along the potential vector field V and applying
(1) one can obtain

nevd) =A-2m— 3 (p+52). 20)
Further, from (5) we get R(X, ¢)¢ = —X + 17(X)¢ and the Lie derivative of this along V yields
(EvR)(X, )¢ + R(X,£vE)¢ + R(X, §)EvE = {(£v) X} + n(X)£vE (21)

for any X € x(M). If g represents a conformal Ricci soliton with potential vector field V then
the Lemma 2 holds, i.e. (£vR)(X, ¢)¢ = 0. Plugging it into (21) and using (6) provides

(Evg)(X, &) +25(£vE)X =0 (22)
for any X € x(M). Again, applying (1) and (20) in (22) yields (2n — A)9?X = 0 for any
X € x(M). Next, using (3) and then tracing yields 2n(2n — A 4+ 3(p + 5%7)) = 0. This
implies

A:2n+%<p+2n2+1). (23)

So, from the previous identity we can say that conformal Ricci soliton is expanding if p > 0.

Theorem 2. Let M?"*1(¢,&,1,¢) be a Kenmotsu manifold. If g represents a conformal Ricci
soliton with non-zero potential vector field V, that is collinear with ¢, then g is Einstein with
constant scalar curvaturer = —2n(2n +1).

Proof. Since the potential vector field V is collinear with ¢, i.e. V = v for some smooth
function v on M. Making use of (5) in the covariant derivative of V = v¢ along X yields

VxV = (Xv)i +v{(X—n(X))}
for any X € x(M). By virtue of this, the soliton equation (1) reduces to
2Ric(X, Y) + (Xu)(Y) + () (X) +2(A — 2 (p+ sz) £1)5(X,¥) —20m(X)n(¥) =0
(24)
forall X, Y € x(M). Setting X = Y = ¢ in (24) and using (8), (23) we get v = 0. It follows
from (24) that Xv = 0. Putting it into (24) provides

Rie(X,Y) = —(v+A - %(p + 2n2+ 1))g(x, Y) +vp(X)y(Y) (25)

forall X, Y € x(M). This shows that M is -Einstein and therefore from Theorem 1 we con-
clude that M is Einstein. Thus, from (24) we have v = 0 and so v + A = 2n + %(p + ﬁ) (it
follows from (23)). Hence we have from (25) that Ric = —2ng and therefore r = —2n(2n + 1),
as required. O
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Now, we discuss an example of Kenmotsu manifold that admits a conformal Ricci soliton.

Example 1. Let M® = {(x,v,z,u,v) € R®} be a 5-dimensional manifold, where (x,vy,z,u,v) be
the standard coordinates in R®. Now, consider an orthonormal basis {e, e,, €3, e4, 5} of vector

. _ ,—v0 _ ,—vd _ ,—v0d _ ,—v0d _ 9 .
fields on M, wheree; = e "1, ep = ¢ ”@, e3 =e "5, e4 = e ’F e5 = 5. Define (1,1) tensor
field ¢ as follows:

pe1) =e3, gle2) =es, g(es) = —e1, ¢(es) = —ea, @(es) = 0.

The Riemannian metric is given by

10000
01000
g)=|00100
00010
00001

and 7(X) = g(X, es) forany X € x(M>).

Then y1(es) = 1, *X = —X +n(X)&, and g(¢X, 9Y) = ¢(X,Y) —(X)y(Y) forall X, Y €
x(M?). Thus, for ¢ = es, (¢, 1,8) is an almost contact structure. The non-zero components
of the Levi-Civita connection V (using Koszul’s formula) are

VE’lel = VEZEZ = v83e3 = v64e4 = —é5, veleS = €1, v6265 = €y, v8365 = €3, VE465 = &4. (26)

By virtue of this we can verify (4) and therefore M> (¢,¢,1,8) is a Kenmotsu manifold.
Using the well knownn expression of curvatute tensor R(X,Y) = [Vx, Vy] — V|x y|, we now
compute the following non-zero components

R(ell 62)62 = —eq, R(61,€3)€3 = —€q, R(61,€4)€4 = —€q, R(31,€5)€5 —eq,
R(ey, ex)er = ey, R(ey, e3)er = e3, R(e1, eq)er = ey, R(ey, e5)er = es,
R(ep, e3)er = e3, R(ez, eq)er = ey, R(ey,e5)ep = —es,  R(ep, e3)e3 = —ey,
R(ey,es)es = —ep,  Rlepe5)es = —ea,  R(es,eq)ez = ey, R(es, e5)e3 = es,
R(es,eq)es = —e3,  R(es, e5)eq = es, R(es, e3)es = e3, R(es, eq)es = ey.
Using this, we compute the components of the Ricci tensor as Ric(e;, e;) = —4 fori = 1,2,3,4,5,
and therefore
Ric(X,Y) = —4g9(X,Y) (27)

forall X,Y € x(M?). Let us consider the potential vector field V = x2 + y% +zd +ul + 2.
Then with the help of (26) we can show that

(Evg)(X,Y) = 4{g(X,Y) = n(X)n(Y)} (28)

forall X, Y € x(M®). So, combining (27) and (28), we observe that soliton equation (1) holds
for A = 2 + &, i.e. the metric g is a conformal Ricci soliton with this potential vector field V
and the constant A = & + §, which also satisfies the A = 2n + 3(p + ﬁ), heren = 2.
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4 On conformal Ricci almost soliton

In this section, we consider conformal Ricci almost soliton on Kenmotsu manifold. It fol-
lows from (1) that conformal Ricci almost soliton is the generalization of Ricci almost soliton
because it involve a smooth function A. So, first we study gradiant conformal Ricci almost
soliton on Kenmotsu manifold in order to extend the result for gradiant Ricci almost soliton
by A. Ghosh [14]. Thus, equations (1) and (2) hold for smooth function A. Now, we prove the
following result for later use.

Lemma 3. If Xf = ({f)n(X) for any vector field X and a smooth function f on a contact metric
manifold M, then f is constant on M.

Proof. From the hypothesis we have df = ¢(f)y. Operating it by d and applying Poincare
lemma, namely d> = 0, we obtain fdy +df An = 0. Now if we take wedge product with 7
and using 7 A 7 = 0 and dy A 7 is non-vanishing everywhere on M, we find {f = 0 and so we
getdf = 0. Hence f is constant on M. O

Theorem 3. Let M?"1(¢,&,1,¢) be a Kenmotsu manifold. If M admits a gradient conformal
Ricci almost soliton and the Reeb vector field ¢ leaves the scalar curvature r invariant, then it
is Einstein with constant scalar curvature —2n(2n +1).

Proof. The equation (2) can be exhibited as

1

VXDf+QX+{A—§<p+2n2+1>}X:O

for any X € x(M). Using this in R(X,Y) = [Vx, Vy] — V|x y], we can easily obtain the curva-
ture tensor expression in the follwing form

R(X,Y)Df = (VyQ)X — (VxQ)Y + (YA)X — (XA)Y (29)

for all X, Y € x(M). Taking contraction of (29) over X with respect to an orthonormal basis
{e;:1=1,2,...,2n+ 1}, we obtain
2n+1
Ric(Y,Df) = — 2 g((Ve,Q)Y, e;) + (Yr) +2n(YA)
for any Y € x(M). Now, contracting Bianchi’s second identity we have
2n+1 1
Y 8((V.,Q)Y,e) = 5(Y7).

Plugging it into the previous equation gives

Ric(Y,Df) = =(Yr) + 2n(YA) (30)

NI —

forany Y € x(M).
Substituting Y by Df in (7) and contracting we get Ric(¢,Df) = —2n(¢f). Using this in
(30) yields

(Gr) +4n{Z(A+ f)} =0. (31)
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Now, substituting ¢ for Y in (29) and using Lemma 1 provides
R(X,&)Df = —QX — 21X + E(A)X — X(\)¢ (32)

for any X € x(M). Next, taking inner product of (32) with ¢ and using (7) we obtain the equa-
tion g(R(X,¢)Df,¢) = ¢(A)n(X) — X(A) for any X € x(M). By virtue of (7), the preceeding
equation reduces to X(f +A) = &(f + A)y(X) for any X € x(M). We can conclude from
Lemma 3 that A + f = cis a constant on M. Contracting (10) provides

&r=—-2{r+2n(2n+1)}. (33)

As A + f is constant, so from (31) and (33) we get {5, + (2n + 1)} = 0, which implies
r = —2n(2n + 1). Further, using (8) in (32), we obtain

X(f+2A)8=-QX+{l(f+A) —2n}X

for any X € x(M). By virtue of this, the preceeding equation transforms into QX = —2nX for
any X on € x(M). This shows that M is Einstein. So, we complete the proof. O

Next, considering a Kenmotsu metric as a conformal Ricci almost soliton with the potential
vector field V, that is pointwise collinear with the Reeb vector field ¢, we extend the Theorem 3
from gradient conformal Ricci almost soliton to conformal Ricci almost soliton and prove the
following assertion.

Theorem 4. Let M?"*1(¢,&,1,8) be a Kenmotsu manifold. If M admits a conformal Ricci al-
most soliton with non-zero potential vector field V, that is collinear with ¢, then g is
n-Einstein. Moreover, if the Reeb vector field ¢ leaves the scalar curvature r invariant, then
¢ is Einstein with constant scalar curvature —2n(2n + 1).

Proof. By hypothesis we have that V = ¢¢ for some smooth function ¢ on M. It follows that

(Evg) (X, Y) = (Xo)n(Y) + (Yo)y(X) + 20{g(X,Y) —n(X)n(Y)}
forall X, Y € x(M). By virtue of this, the soliton equation (1) transforms into

2Ric(X,Y) + (Xo)n(Y) + (Yo)n(X)

2 (34)

+2<0’+)\ - %(;H— m))g(x,Y) = 201(X)5(Y)

forall X, Y € x(M).

Now, putting X =Y = ¢ in (34) and using (14) yields ¢o = 2n — A+ 3 (p + 5 +1) Thus, the
equation (34) gives Xo = (2n — A + 3 (p + 5 +1) o)n(X). Making use of this in (34) entails
that

2n2+ 1)>g(X,Y)

<2n — A+ L <p+ 2n2+1> U)n(X);y(Y)

for all X, Y € x(M). Hence M is y-Einstein. Moreover, if the Reeb vector field ¢ leaves the
scalar curvature r invariant, i.e. {r = 0, then tracing (12) yields (¢r) = —2{r +2n(2n +1)}
and therefore r = —2n(2n + 1). Using this in the trace of (35) gives A + 0 = 2n + 1(p + ﬁ)
Thus, from (35) we have QX = —2nX and therefore M is Einstein. O

1
Ric(X,Y)=—(c+A—=(p+
(7425 o
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If we consider V' = ¢¢ for some constant ¢ instead of a function, then (34) holds and
therefore inserting X = Y = ¢ into (34) and using (7) gives ¢o = 2n — A. Using this in (34)
yields A + 0 = 2n + %( p+ ﬁ), where we have used that ¢ is a constant. Thus, from (35) we
can conclude the following result.

Corollary 1. Let M*"*1(¢,,1,¢) be a Kenmotsu manifold. If M admits a non-trivial confor-
mal Ricci almost soliton with V = ¢¢ for some constant o, then it is Einstein with constant
scalar curvaturer = —2n(2n +1).

Now, we discuss an example of Kenmotsu manifold that admits a gradient conformal Ricci
soliton.

Example 2. Let M®> = {(x,y,z,u,v) € R®} be a 5-dimensional manifold, where (x,vy,z,u,v)
are the standard coordinates in R°. Now, consider a orthonormal basis {el,ez, es, ey, 65} of
vector fields on M, where ¢; = v%, ey = Bay e3 = va%, ey = v%, e5 = —va Define (1,1)
tensor field ¢ as follows:

pler) = ea, glea) = —er, ples) = e, ples) = —e3, ¢(es) = 0.

The Riemannian metric is given by

10000
01000
(gj)=100 100
0001O0
0 00O01

and n(X) = g(X, es) forany X € x(M°).

Thenn(es) = 1, *X = —X +7(X)¢&, and g(¢X, pY) = ¢(X,Y) —y(X)n(Y) forall X, Y €
x(M®). Thus, for & = es, (¢,&, 1,g) is an almost contact structure. The non-zero components
of the Levi-Civita connection V (using Koszul’s formula) are

VE’lel = VEZEZ = v83e3 = v64e4 = —é5, veleS = €1, v6265 = €y, v8365 = €3, VE465 = €4. (36)

By virtue of this we can verify (4) and therefore M> (¢,¢,1,8) is a Kenmotsu manifold.
Using the well knownn expression of curvatute tensor R(X,Y) = [Vx, Vy|] — Vx y|, we now
compute the following non-zero components

R(ep,e2)en = —ey,  R(er,ez)es = —e1,  R(ey,es)ey = —e,  R(ep,es)es = —ey,
R(ey, e2)er = ey, R(ey, e3)er = e3, R(er,eq)er = ey, R(ey, e5)e; = es,
R(ez, e3)ex = e3, R(ep, eq)er = ey, R(ep, es5)ex = es, R(ep, e3)e3 = —ea,
R(ez,es)es = —e2,  R(ez,es)es = —ez,  Res,eq)es = ey, R(e3, e5)e3 = es,
R(es, eq)es = —e3,  Rfey,es)eq = es, R(es, e3)es = e3, R(es, e4)es = eq.
Using this, we compute the components of the Ricci tensor as Ric(e;, e;) = —4 fori = 1,2,3,4,5
and therefore
Ric(X,Y) = —4¢(X,Y) (37)

forall X,Y € x(M>).
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Let f : M — R be a smooth function defined by f(x,y,z,u,v) = x> +y> + 2%+ u? + %2
The gradient Df of f is given by

0 0 0 0 0

Then with the help of (36) we can show that

(£pfg)(X,Y) = 2{g(X,Y) —n(X)n(Y)} (38)

forall X, Y € x(M®). So, combining (37) and (38), we observe that soliton equation (1) holds
for A = ¥ + £ ie. the metric g is a gradient conformal Ricci almost soliton with this potential
vector field V.= Df, A = ¥ 4+ L.

5 Geometrical and physical motivations

The notion of conformal Ricci solitons can be charecterized as a kinematic solution of con-
formal Ricci flow, whose profile develop a characterization of spaces of constant sectional cur-
vature along with the locally symmetric spaces. Also, geometric phenomenon of conformal
Ricci solitons can evolve an aqueduct between a sectional curvature inheritance symmetry of
space time and class of Ricci solitons. The mathematical notion of a conformal Ricci soliton
should not be confused with the notion of soliton solutions, which arise in several areas of
methematical or theoretical physics and its applications. Conformal Ricci soliton is important
as it can help in understanding the concepts of energy or entropy in general realtivity. This
property is the same as that of heat equation due to which an isolated system loses the heat for
a thermal equilibrium. It deals a geometric and physical applications with relativistic viscous
fluid spacetime admitting heat flux and stress, dark and dust fluid general relativistic space-
time, radiation era in general relativistic spacetime. Also there is further scope of research
in this direction of various types of complex manifolds like Kaehler manifolds, para-Kaehler
manifolds, Hopf manifolds etc.
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Aeit C. AocnidorcenHs KoHPopmHux conimonie Piuui ma koHgpopmHux maiisce conimonie Piuui 8 pamxax
matioce Konmaxmnoi ecomempii // Kapmarcbki Matem. my6a. — 2023. — T.15, Nel. — C. 31-42.

Mertoio 1i€i cTaTTi € MO6YAOBa AESKMX BaXKAMBIX MHOTOBMAIB AJHINITal{Ha 32 AOTIOMOTOIO KOH-
dopmHMX coriToHiB Pivui Ta KoHdOpMHMX MaliXe COAiTOHIB Piuui. My A0BOAMMO, IO MeTpMKa
Kenmorry six xoHOpMHIMI cOAITOH Piudi € alfHIITalHiBCbKOIO, SIKIIIO BOHA € #-aliHILITaliHiBChKOIO,
abo TOTeHIIilTHe BeKTOpHe ToAe V € iH(iHiTe3sMMaABHMM KOHTAaKTHUM II€PETBOPEHHSIM ab0 KOAi-
HeapHNM 3 BeKTOpHMM moAeM Piba ¢. Takox Mu A0BoauMO, 1m0 MeTpmka KeHMolly sk rpaaien-
THMUI KOHOPMHNI Mavike cOAITOH Piudi € aifHIITalHiBCbKOIO, SIKIIIO BEKTOpHe moAe Piba 3aAniiae
He3MIiHHOIO cKaAspHy KpuBu3Hy. HacaMkinens, My mobyAyBaAu IpUKAad, 06 MpOiAIOCTPYBaTH
icHyBaHHSI KOH(POPMHOTO COAiTOHY Piudi Ta TpaaieHTHOrO Maiike KOH(pOPMHOTO coAiToHy Piuui
Ha MHOroBuai Kenmory.

Kntouosi cnosa i ¢ppasu: KoHOpMHMIL COAiTOH Piuui, MHOroBMA KeHMoIly, MHOrOBMA, AVHIIITa-
Ha, iH(piHiTe3MMaAbHe KOHTaKTHe IIepeTBOPEHHS.



