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A solution of the fractional differential equations in the
setting of b-metric space

Afshari H.!, Karapinar E.>>4

In this paper, we study the existence of solutions for the following differential equations by using
a fixed point theorems

Dfw(¢) & Dlw(g) = h(g,w(g)), ¢€], 0<v<pu<l,
w(0) = wy,

where D¥, DV is the Caputo derivative of order y, v, respectivelyand i : | x R — R is continuous.
The results are well demonstrated with the aid of exciting examples.

Key words and phrases: complete b-metric space, Caputo derivative, a-ip-Geraghty contractive
type mapping.
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Introduction

In 2012, E. Karapinar and B. Samet introduced generalized a-1p-contractive type mappings
to combine several fixed point theorems that were focused on “fixed point results via cyclic-
contraction” and “fixed point theorems over partially ordered set”. Several authors developed
this trend (see, e.g. [2,11,12,24,27,30]). Among all, in [6,7], the authors considered generalized
a-Pp-Geraghty contractive mappings in the context of complete b-metric spaces.

In the last few years, fractional calculus concepts were frequently applied to other disci-
plines, especially dealing with physical phenomena. In most of the available literature, frac-
tional integral equations play an essential role in the qualitative analysis of the solutions for
fractional differential equations (see, e.g. [18,26]). Very recently, H. Afshari, S. Kalantari and
E. Karapinar [7] investigated the existence of solutions for some fractional differential equa-
tions in metric and b-metric spaces. Indeed, this trend in distinct abstract spaces has been
investigated by a number of authors (see, e.g. [1,3-5,8-10,13-17,19-23]).

Based on a fixed point theorem, we study the following equations

Diw(g) £ Diw(g) = h(g,w(c)), ¢€[01], 0O<v<pu<l,
w(0) = wo,
where D¥, DV are the Caputo derivatives of order y, v, respectively.

YAK 515.12
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Throughout the article, ] denotes the closed unit interval, i.e. [0, 1].

Definition 1 ( [25,29]). Assume thath : [0,00) — R is continuous. The Caputo derivative of
order y is defined by

¢
‘DFh(g) = )\(%_,M)/O (c—8)" F WM (9)dd, n—1<pu<n, neN.

Definition 2 ( [25,29]). The Riemann-Lioville derivative of order y for a continuous function h
is defined by
1 d\m [¢ h(9)
D'h(g) = — | — / ey, -1 , :
(¢) )\(n—y)<dg) 0 (e gy n <u<mn neN
Let ¥ be set of all increasing and continuous functions ¢ : [0,00) — [0,00) satisfying

P(cw) < cp(w) < cw for all ¢ > 1. Also A is the family of all nondecreasing functions
A :[0,00) — [0,1/s?) for some s > 1.

Definition 3 ([7]). Let (X, d) be a b-metric space. A self-mapping f : X — X is called a gen-
eralized a-ip-Geraghty contraction type mapping whenever there exists & : X x X — [0, 00)
with

a(z, p(s*d(fz, f1)) < A(P(d(z,1)p(d(z 1)),
forallz,t € X, where A € Aand ¢ € Y.
Definition 4 ([31]). Let f : X — X and « : X x X — [0, c0) be given, where X is nonempty. We
say that a mapping f is a-admissible if

a(z,t) >1 = «(fz ft) >1,

forallz,t € X.

Theorem 1 ([7]). Let (X,d) be a complete b-metric space and f : X — X be a generalized
a-p-Geraghty contraction such that

(i) f is a-admissible;
(ii) there exists uy € X with a(ug, fug) > 1;

(iii) if {u,} C X, uy, — winX and a(uy, 1) > 1, then a(u,,u) > 1 for all n.

Then f has a tixed point.

1 Main result

Throughout the paper, X = C(J,R) will denote the set of continuous functions and
d: X x X — [0,00) given by
d(w,2) = [[(w —2)*[leo = SUI?(W((;) —2(¢))%,
ce
then the pair (X, d) is a complete b-metric space with s = 2, but (X, d) is not metric space.
We consider the problem

Diw(g) — Diw(g) = h(gw(g)), ¢€], 0<v<pu<l,
w(0) = wy,

1)

where D¥, DV are the Caputo derivatives of order y, v, respectively, and h : Rt xR — Ris
continuous.
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Lemma 1 ( [32]). Leth : Rt x R — R be a continuous function. If w(-) € C(J) and it is a
solution of the following integral equation

1 G o 1 /s -
wl(e) = wo+ypy (6= 0 w(®) ~wo)dd + 3 [o— 01 (e, w(@)as,

then w(¢) is a solution of the fractional integral equation (1).
Theorem 2. Suppose that:

(i) there exists ¢ : R> — R such that

e w) = le,2)| < =2l (oA = vy Al —2[12) - 1),

foranyg € J;

(ii) there exists wy € C(]) such that ¢(wy(¢g), Awo(g)) > 0 for all ¢ € ], where the operator
A : C(J) — C(]) is defined by

A0(e) = w0+ 5o [ 6= 9 (w(6) —wo)do

g L= 0 o, oo

(iii) forallg € Jandw,z € C(]), p(w(c),z(¢)) > 0 implies p(Aw(g), Az(g)) > 0;
(iv) if {w,} C C(J), wy, — w inC(]), and ¢(wy, w,+1) > 0, then ¢(w,, w) > 0 for all n.
Then the problem (1) has at least one solution.

Proof. By Lemma 1 w € C(]) is a solution of (1) if it is a solution of the following

1 ¢ o 1 /s _
wl(e) =+ yr—yy [ (6= O A w®) —wo)dd + 3o [~ ) (8, w(@)a.

Then, the problem (1) is equivalent to finding a fixed point of A. Let w,z € C(J) be with
p(w(c),z(g)) > 0forallg € J. Using (i), we get

Aw(e) — A2(0) = |10y [ = 0 (@) — 2(9)) do

+ 5 (6= 000, (@)) — e, z(9))) o]
< e 9 () — 2(8)] - (8, w(B)) — h(8, 2(8))]) dB]|
<[y 6= 0 (0) — 2(0)] + I, w(@) ~ (e, 2(0) )
1 e o
S)W/O(Q—ﬁ)y !

x [[ro(8) =20 + (@) = 2(8) (oA = vy Al = 212) - 1) | s
< |5 [ (6= 07~ @) — =) B0 =) A —2[R)) o]

< gle(®) — z@NEA(w 212,
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Therefore for w,z € C(J), ¢ € ] with ¢(w(¢),z(g)) > 0, we have

I(Aw — Az)?|leo < %Ilw(ﬂ) —z(®)[ZA(w — z]1%)-

Define a : C(J) x C(J) — [0, 0) by
w(a,2) = {1, 9(w(c),2(c)) =0 forall ¢eJ,
0, otherwise.
So,
a(w,2)8d(Aw, Az) < 8d(Aw, Az) < A(d(w,z)d(w,z), A€ A.
From (iii),
a(w,z) 21 = Pw(c)z(g) 20 = ¢(Aw) Alz) 20 = a(A(w) Az)) 21,

for all w,z € C(]J). Thus, A is a-admissible. From (ii), it follows that there exists wy € C(])
with a(wp, Awg) > 1. By (iv) and Theorem 1, we find out w* with w* = Aw*, that is a solution
of the problem. O

By taking A(t) = s/(4s+1) (it is clear that A € A) in Theorem 2, we instantly obtain the
following result.

Corollary 1. Suppose that:
(i) there exists ¢ : R> — R such that

p—v [w — 2|5
_ < Ty — _ _
(e ) ~ i, ) < &= = 2| (A v>\/4”w_z|,go+1 1),

foranyg¢ € Jandw,z € R;

(ii) there exists wy € C(]) such that ¢(wy(¢g), Awo(g)) > 0 for all ¢ € ], where the operator
A : C(J) = C(]) is defined by

A0(e) = 1o [ (6= 0 (@) do -+ 1o [ (6 — 0y (o, (o)) do,

(iii) forallg € J andw,z € C(]), p(w(¢),z(¢)) > 0 implies p(Aw(g), Az(g)) > 0;
(iv) if {w,} C C(J), wn — w in C(]J) and ¢(wn, wy+1) > 0, then ¢(wy,, w) > 0 for all n.
Then the problem (1) has at least one solution.

We study now the nonlinear fractional differential equation

{D?w(g) +Dlw(g) =h(gw(c)), ¢€], 0<v<pu<l, 2

w(0) =w(l) =0,

where 1 : | X R — R is a continuous function. Recall that the Green function associated with
(2) is given by G(t) = tH1E,_,(—t'7V).
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Theorem 3. Suppose that:
(i) there exist ¢ : R> — R and ¢ € ¥ such that

[h(g, w) —h(g,2) 2f\/lli (@ = 2)?[leo) AP ([[ (@ = 2)?[[e0)),

foranyg¢ € Jandw,z € R;

(ii) there exists wy € C(]) such that
1
#(w0(c), | Gle, (@, wo(¢))d0) >0 forall e J

(iii) forallg € Jandw,z € C(]), p(w(¢),z(g)) > 0 implies

4)(/01@( 9)h dﬁ/ (¢, 9 19))d19>

(iv) if {w,} C C(J), wy, — w in C(]), and ¢(wy, w,+1) > 0, then ¢(w,, w) > 0 for all n.
Then the problem (2) has at least one solution.

Proof. Tt is well known that w € C(J) is a solution of (2) if and only if it is a solution of the
integral equation

w(c) = /Ogc(g _ (S, w(9))dd forall ce .
Define the operator F : C(J) — C(]) by
Fuw(g) = /OgG(g —O)h(d,w(d))d® forall ¢e].

Thus, for finding a solution of the problem (2), it is sufficient to find a fixed point of F. Now,
let w,z € C(J) be such that ¢(w(g),y(t)) > 0 for all ¢ € J. Using (i), we get

| Aw(c) > < [ [ 6le— o) (6, 0(9)) ~ h(8,2(9))] 48]
2
< [ [ 6te= 0315 ol =Rl = 22l)) do)
S% (1w = 2)*[le0) AW ([l (w — 2)*[|e0)).
The rest of the proof is similar to Theorem 2. O

In Theorem 3, with setting A(s) = s/(4s+ 1) (it is clear that A € A) we can deduce the
following conclusion.

Corollary 2. Suppose that:
(i) there exist¢ : R> — R and ¢ € ¥ such that

Pl (w — 2)*l)

[h(g, w) —h(g,2)| < 2\[\/41’0 CEDE Sk

3)

foranyg¢ € Jandw,z € R;
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(ii) there exists wy € C(J) such that
1
#(w0(<), | Gle, (@, wo(®))d0) =0 forall ceJ;

(iii) forallg € Jandw,z € C(]), p(w(¢),z(g)) > 0 implies

4)(/01@( 9)h dﬁ/ (¢, 9 19))d19>

(iv) if {w,} C C(J), wy, — w in C(]), and ¢(wy, w,+1) > 0, then ¢(w,, w) > 0 for all n.
Then the problem (2) has at least one solution.

Remark 1. In Corollary 2 instead of inequality (3), we can use the following inequality

p__p(l(w —Z) )
2v2 /A4f(w — 2)2e0 + 1’

[h(g, w) —h(g,2)| <

because by considering {(¢) < g, we get

popllw—2Ple) _ n p(lw—z2Pl)
&) e 2)| < 5 P T = 28 Ve =) T

Example 1. Let X = C(]) be endowed with

d(w,z) = [|(w - 2)*[|e0 = sup(w(s) — z(¢))*
cel

Let (g) = 4v/2¢(1 +4g), ¢p(w,z) = wz and w,(g) = gn*/(n* + n?). We consider the follow-
ing prob]em

{D}/Zw(g) +Detw(g) = Cw(e), 0<¢<1, )

w(0) = w(l) =0,
here h(c,w(c)) = ¢?>w(g) and we have
(g, w(c)) —h(c,z(6))I* = ¢*lw(c) —z(c)* < [|(w —2)*[lee

= ll(w —2)? 324[[(w - 2?0 +1 _ _ p(ll(w — 2)*]|c0)?
T324)(w — 2o +1  32(4l|(w —2)[|eo + 1)’

hence

(| (w —Z> ) o p([(w —Z) )
4/2(4](w — 2)?[|eo + 1) 2f¢4|\ w—2)2o+1

So, the condition (i) of Corollary 2 by Remark 1 is satisfied.
Ifwy(g) = ¢, then

|h(g,w(g)) —h(g,z(g))| <

plan(c), [ Gle (e, wn(8))49) 20,
forallg € J. Also, p(w(¢),z(g)) = w(c)z(g) > 0 implies that

o( [ 6o omic o) ds, [

It is clear that condition (iii) in Corollary 2 holds. Hence, from Corollary 2 the problem (4) has
at least one solution.

1@((,—,19);1(19,2(19))6119) >0
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If we put A(s) = s? +1/(4s> +8) (it is clear that A € A) in Theorem 3, we may state the
following result.

Corollary 3. Suppose that:
(i) there exist¢ : R> — R and ¢ € ¥ such that
2 2 2
bew) — (e < [P =2l (@@ = 22]<)? + 1)
e = el = zﬁ\/ 1y(w —2PT=)R +8

foranyg¢ € Jandw,z € R;

(5)

(ii) there exists wy € C(]) such that
1
#(w0(c), | Gl (@, wo(¢))d0) =0 forall e J

(iii) forallg € Jandw,z € C(]), p(w(¢),z(g)) > 0 implies

4)(/01@( 9)h dﬁ/ (¢, 9 19))d19>

(iv) if {w,} C C(J), wy, — w in C(]), and ¢(wy, w,+1) > 0 then ¢(wy,, w) > 0 for all n.
Then the problem (2) has at least one solution.

Remark 2. In Corollary 3 instead of inequality (5), we can use the following inequality

p(ll(w —2) H ) (@ ([(w —2)*l))* +1)
|h(c, w) —h(g,z 2[\/ w2218 ,

because by considering {(¢) < ¢, we get

(e, w) — hic,z)| < \/ ([l (@ — 2)?]|eo) (|| —z>2||oo>>2+1>
' Sl 4( |

(@ = 2)?[|e0)* +

\/ Pl (@ = 2)[leo) (W ([l (w — 2)*]|0))* +1)
=22 (@ (ll(w —2)[l0))* +8 '

Example 2. Let X = C(]) be endowed with the following norm

d(w,z) = |[(w - 2)*||e0 = sup(w(5) — 2(¢))?,
ce]

also () = ¢, ¢p(w,z) = wz and wy,(g) = ¢/(n*+1). We consider the following periodic
boundary value problem

{DE/ZW(Q) + D *w(c) = f(w(g), 0<¢<1,

w(0) =w(1l) =0, ©

where f satisfies the condition

w -z
|w—z2+2)’

(@)~ fw) < g5
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forallw,z € C(J). We have

o L ((e) = z(e))*leo (Ul (w(c) —2(6))?[leo)* +1)
- 32 4([l(w(g) — 2(¢))?[leo)* +8

< U@ —2)?leo) (¢ (Il (0 — 2)%[|0))* +1)

-8 4 ([[(w - 2)?[|))* + 8

Hence, we have

i 9l = 2)%leo) (@Il (w — 2)*[l))* + 1)
[h(g,w(g)) = h(g,z(g))] < 23 2 ([(w—2)2[=))2 +8 :

So, the condition (i) of Corollary 3 by Remark 2 is clearly true.
Ifwy(g) = g, then

(wolc), [ Gl 0)h(8,00(8))48) > 0,
forallg € J. Also, p(w(¢),z(g)) = w(c)z(g) > 0 implies that

o( [ Gle 06, 0(8))ds, [ Gle, 0Mh(o,2(8)) d6) > 0.

The condition (iii) in Corollary 3 is clearly true. Hence, by Corollary 3, we deduce that (6) has
at least one solution.

In what follows, we consider the following fractional boundary value problem

{Dgzh(g,y(g)), 0<0<1, 1<v<2, )

y(0) =0, Dy 'y(1) =0.

The fractional boundary value problem (7) is equivalent to a Fredholm integral equation of the
second kind

1
v(e) = | Glo,c)h(sv(s)) de,
where I : [0;1] X R — R is continuous and
/T (), 0<o0<¢<1,
G(Q, ) = ¢ (1/—)1 v—1 °
((e—¢)"" —¢")/I(v), 0<g<eo=<1
The function G (g, ) has the following properties (see [28]):

(@) G(o,6) <0,(0,6) €] xJ;
v—1

(v)’

Np)

(ii) max [G(e,¢)| = |G(¢,¢)| =

0<t<1

c€(0,1);

—

(iii)
mx/1|G( )171|<L/1 vlge— 1 8)
021 Jo | Nee) Al = T(v) Jo ¢ g_1“(1/+1)'
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Theorem 4. Suppose that:

(i) there exist¢ : R> — R and ¢ € ¥ such that

Ih(e,w) —h(g,2)| < ”“w (@ — 22/l A (@ — 2)?]|),

foranyg¢ € Jandw,z € R;

(ii) there exists wy € C(]) such that
1
#(w0(c), | Gle, On(e,w0(#))d8) 20 forall ¢ J
(iii) forallg € Jandw,z € C(]), p(w(¢),z(g)) > 0 implies
1
¢</0 G(c, 9)h(8, w(8)) 8, / (6, 8)n(9,2(9))d8) > 0;

(iv) if {w,} C C(J), wpn — w in C(]), and ¢(wy, wy+1) > 0, then ¢(w,, w) > 0 for all n.
Then the problem (7) has at least one solution.

Proof. By employing (8) and in accordance with 3, we obtain

1 2
4w(6) — A2(0) < [ | Gl 0)lh(s, w(s)) = (s, 2(6))]|do)
< [/Olc 3 ”“ W (@ — 2Pl )A @ — 22])) o]

The rest of proof is similar to that of Theorem 3. O

Conclusion

In this paper, we discuss some more general form of the fractional differential equation.
compare to the related literatures the presented results here are more general. For example,
the equation in [10], is in the form of a nonlinear fractional differential equation of order «,
3 < a < 4. On the other hand, the equation introduced here is a nonlinear fractional differen-
tial equation of orders y and v, 0 < v < p, where these numbers are arbitrary.

Most of results in the mentioned papers in the reference section can be considered only by
setting 4 = 0 or v = 0. Only in the presented case one can obtain an equation of order y or
v. In the other words, most articles can be considered as a spacial case of the presented equa-
tion. In addition, the conditions and hypotheses presented in the theorems of this article are
more general than the previous articles. For instance, in [10, Theorem 2.3], it was considered
A(t) = A/(1+4A). Here, in this present article, we consider the most general form: we con-
sider A as an arbitrary function belonging to A.

Besides all differences, as we mentioned above, the integral equation equivalent to the dif-
ferential equation in [10] has a Green function whose upper and lower boundaries are given,
while here the integral equation is equivalent to the differential equation in [10, Theorem 2.3]
has no Green function.
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Y #ilt poboTi MM BMBUAEMO iCHyBaHHSI pO3B’sI3KiB HaCTYITHMX AMdpepeHITiaAbHIX PiBHSHD 3a AO-
TIOMOTI'OI0 TEOPeM IIPO HEPYXOMY TOUKY

Diw(g) + Diw(g) = h(g,w(¢)), ¢€J, 0<v<p<l,
w(0) = wy,

ae D¥, DV — moxiana KarmyTo mopsiaxy p, v BianioiaHo i Biaobpaxerss 1 : | x R — R HenepepsHe.

PesyabTaTyi A06pe miaKpinAeHi HikaBuMIM IPUKAAAAMIL

Kntouosi croea i ppasu: moBHWMIT b-MeTpuaHMIL TpocTip, moxiaHa KaryTo, a-1p-BiaobpakeHHS cKo-
PpOYyBaABHOTO THITy AXKepari.



