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Classification of the extreme points of Ls(2l3
∞) by computation

Kim Sung Guen

Let l3
∞ = R3 be endowed with the supremum norm. In [Comment. Math. 2017, 57 (1), 1–7],

S.G. Kim classified the extreme points of the unit ball of Ls(2l3
∞) only using Mathematica 8, where

Ls(2l3
∞) is the space of symmetric bilinear forms on l3

∞. It seems to be interesting and meaningful to
classify the extreme points of the unit ball of Ls(2l3

∞) without using Mathematica 8. The aim of this
paper is to make such classification by mathematical calculations.
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1 Introduction

Throughout the paper, we let n, m ∈ N, n, m ≥ 2. We write BE for the closed unit ball of
a real Banach space E. The dual space of E is denoted by E∗. An element x ∈ BE is called an
extreme point of BE if y, z ∈ BE with x = 1

2(y + z) implies x = y = z. An element x ∈ BE

is called an exposed point of BE if there is f ∈ E∗ so that f (x) = 1 = ‖ f‖ and f (y) < 1 for
every y ∈ BE \ {x}. It is easy to see that every exposed point of BE is an extreme point. An
element x ∈ BE is called a smooth point of BE if there is unique f ∈ E∗ so that f (x) = 1 = ‖ f‖.
We denote by ext BE, exp BE and sm BE the set of extreme points, the set of exposed points
and the set of smooth points of BE, respectively. A mapping P : E → R is a continu-
ous n-homogeneous polynomial if there exists a continuous n-linear form T on the product
E × · · · × E such that P(x) = T(x, · · · , x) for every x ∈ E. We denote by P(nE) the Banach
space of all continuous n-homogeneous polynomials from E into R endowed with the norm
‖P‖ = sup‖x‖=1 |P(x)|. We denote by L(nE) the Banach space of all continuous n-linear forms
on E endowed with the norm ‖T‖ = sup‖xk‖=1 |T(x1, · · · , xn)|. Let Ls(nE) denote the closed
subspace of all continuous symmetric n-linear forms on E. Notice that L(nE) is identified with
the dual of n-fold projective tensor product ˆ⊗

π,nE. With this identification, the action of a
continuous n-linear form T as a bounded linear functional on ˆ⊗

π,nE is given by

〈 k

∑
i=1

x(1),i ⊗ · · · ⊗ x(n),i, T
〉

=
k

∑
i=1

T
(

x(1),i, · · · , x(n),i
)

.

Notice also that Ls(nE) is identified with the dual of n-fold symmetric projective tensor prod-
uct ˆ⊗

s,π,nE. With this identification, the action of a continuous symmetric n-linear form T as
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a bounded linear functional on ˆ⊗
s,π,nE is given by

〈 k

∑
i=1

1

n!

(

∑
σ

xσ(1),i ⊗ · · · ⊗ xσ(n),i
)

, T
〉

=
k

∑
i=1

T
(

x(1),i, · · · , x(n),i
)

,

where σ goes over all permutations on {1, . . . , n}.
Since the geometries of the unit balls of P(nE) and Ls(nE) are closely related with the

geometry of the unit ball of E, it is interesting and significant to investigate the geometries
of P(nE) and Ls(nE). For more details about applications and significance of the theory of
polynomials and (symmetric) multilinear mappings on Banach spaces, we refer the reader
to [8].

Let us introduce the history of classification problems of the extreme points, the exposed
points and the smooth points of the unit ball of continuous n-homogeneous polynomials on a
Banach space.

We let ln
p = R

n for every 1 ≤ p ≤ ∞ equipped with the lp-norm. Y.S. Choi et al. [3–5]
initiated and classified ext BP(2l2

p)
for p = 1, 2. Y.S. Choi and S.G. Kim [6] classified sm BP(2l1)

.

B.C. Grecu [12] classified ext BP(2l2
p)

for 1 < p < 2 or 2 < p < ∞. In the paper [45], S.G. Kim

et al. showed that if E is a separable real Hilbert space with dim(E) ≥ 2, then, ext BP(2E) =

exp BP(2E). In [16], S.G. Kim classified exp BP(2l2
p)

for 1 ≤ p ≤ ∞, and in [18, 20], he charac-

terized ext BP(2d∗(1,w)2) and sm BP(2d∗(1,w)2), where d∗(1, w)2 = R
2 with the octagonal norm

‖(x, y)‖w = max
{

|x|, |y|, |x|+|y|
1+w

}

for 0 < w < 1. In [25], S.G. Kim classified exp BP(2d∗(1,w)2)

and showed that exp BP(2d∗(1,w)2) 6= ext BP(2d∗(1,w)2). In [30, 33, 44], he classified ext BP(2R2
h( 1

2 )
),

exp BP(2R2
h( 1

2 )
) and sm BP(2R2

h( 1
2 )
), where R

2
h( 1

2 )
= R

2 with the hexagonal norm ‖(x, y)‖h( 1
2 )

=

max
{

|y|, |x| + 1
2 |y|

}

.

Parallel to the classification problems of ext BP(nE), exp BP(nE) and sm BP(nE), it seems to be
natural and interesting to study the classification problems of the extreme points, the exposed
points and the smooth points of the unit ball of continuous (symmetric) multilinear forms on
a Banach space since (symmetric) multilinear forms on a Banach space is closely related with
homogeneous polynomials in their definitions.

In [17, 19, 21, 22, 24, 28, 29, 32, 34, 36, 37, 39], S.G. Kim classified ext BLs(2l2
∞), ext BLs(2d∗(1,w)2),

ext BL(2d∗(1,w)2), exp BLs(2d∗(1,w)2), ext BL(2d∗(1,w)2), ext BL(2ln
∞), ext BLs(2ln

∞), ext BL(nl2
∞), sm BLs(nl2

∞)

for every n ≥ 2 and studied ext BL(2l∞). He showed that exp BLs(2ln
∞) = ext BLs(2ln

∞),
exp BLs(nl2

∞) = ext BLs(nl2
∞), exp BL(2ln

∞) = ext BL(2ln
∞), exp BL(nl2

∞) = ext BL(nl2
∞), | ext BL(nl2

∞)| =

2(2
n), | ext BLs(nl2

∞)| = 2n+1 for every n ≥ 2. In [2], M. Cavalcante et al. characterized ext BL(nlm
∞).

In [40], S.G. Kim classified sm BL(nlm
∞) and sm BLs(nlm

∞) for every n, m ≥ 2. In [38], S.G. Kim char-
acterized ext BLs(nlm

∞), ext BL(nlm
∞) and showed that exp BLs(mlm

∞) = ext BLs(nlm
∞), exp BL(mlm

∞) =

ext BL(nlm
∞) for every n, m ≥ 2. In [41], S.G. Kim classified extreme points and exposed points

of the unit ball of the space of bilinear symmetric forms on the real Banach space of bilinear
symmetric forms on l2

∞. It is shown that for this case, the set of extreme points is equal to the set
of exposed points. In [42], S.G. Kim characterized ext BL(nRm

‖·‖
) and ext BLs(nRm

‖·‖
), where R

m
‖·‖

is R
m with a norm ‖ · ‖ such that | ext BRm

‖·‖
| = 2m for m ≥ 2. In [43], S.G. Kim characterized

ext BL(nl1)
for n ≥ 2.

We refer the reader to [1, 6, 7, 9–11, 13–15, 23, 26, 27, 31, 35–38, 46–53] and references therein
for some recent work about extremal properties of homogeneous polynomials and multilinear
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forms on Banach spaces. For the applications of extreme point theory in optimization and
optimal control theory, we refer the reader to [54, 55].

The aim of this paper is to classify the extreme points of the unit ball of Ls(2l3
∞) by mathe-

matical calculations.

2 Results

In [28], S.G. Kim classified ext BLs(2l3
∞) only using Mathematica 8. Using the classification

it was also shown that every extreme point of the unit ball of Ls(2l3
∞) is exposed. It seems to

be interesting and meaningful to classify ext BLs(2l3
∞) without using Mathematica 8. We will

classify ext BLs(2l3
∞) by mathematical calculations.

Let l3
∞ = R

3 with the supremum norm. If T ∈ Ls(2l3
∞) and (x1, y1, z1), (x2, y2, z2) ∈ l3

∞,
then

T((x1, y1, z1), (x2, y2, z2)) = ax1x2 + by1y2 + cz1z2 + d12(x1y2 + x2y1)

+ d13(x1z2 + x2z1) + d23(y1z2 + y2z1)

for some a, b, c, d12, d13, d23 ∈ R. For simplicity, we denote T = (a, b, c, 2d12, 2d13, 2d23).

Theorem 1 ([28]). Let T = (a, b, c, 2d12, 2d13, 2d23) ∈ Ls(2l3
∞). Then,

‖T‖ = max{2|d12|+ |a + b − c|, 2|d13|+ |a − b + c|, 2|d23|+ | − a + b + c|,

2|d12 + d13|+ |a + b + c + 2d23|, 2|d12 − d13|+ |a + b + c − 2d23|}.

Note that if ‖T‖ = 1, then |a| ≤ 1, |b| ≤ 1, |c| ≤ 1 and 2|dij| ≤ 1 for 1 ≤ i < j ≤ 3. For
T = (a, b, c, 2d12, 2d13, 2d23) ∈ Ls(2l3

∞), we let

T1 := (a, b, c, 2d12,−2d13,−2d23), S1 := (b, a, c, 2d12, 2d23, 2d13),

T2 := (a, b, c,−2d12,−2d13, 2d23), S2 := (c, a, b, 2d13, 2d23, 2d12),

T3 := (a, c, b, 2d13, 2d12, 2d23), S3 := (c, b, a, 2d23, 2d13, 2d12).

Then, Tk, Sk ∈ Ls(2l3
∞) with ‖Tk‖ = ‖Sk‖ = ‖T‖ for k = 1, 2, 3.

Notice that if T = (a, b, c, 2d12, 2d13, 2d23) ∈ Ls(2l3
∞), we may assume that a ≥ |b| ≥ |c| and

d12d13 ≥ 0. (1)

Theorem 2. Let T = (a, b, c, 2d12, 2d13, 2d23) ∈ Ls(2l3
∞). Then, the following are equivalent:

(a) T ∈ ext BLs(2l3
∞);

(b) Tk, Sk ∈ ext BLs(2l3
∞) for some k = 1, 2, 3.

Proof. It is obvious.

Theorem 3. Let x, aj, bj, c, d ∈ R for 1 ≤ j ≤ 6 and T(x) = (a1x + b1, . . . , a6x + b6) ∈ Ls(2l3
∞).

Suppose that ‖T(x)‖ ≤ 1 for all c < x < d. If x0 ∈ R be such that c < x0 < d and ‖T(x0)‖ = 1,
then T(x0) /∈ ext BLs(2l3

∞).

Proof. Let δ > 0 be such that c < x0 − δ < x0 + δ < d. Define Tj ∈ Ls(2l3
∞) by

T1 = (a1(x0 + δ) + b1, . . . , a6(x0 + δ) + b6) and T2 = (a1(x0 − δ) + b1, . . . , a6(x0 − δ) + b6).

By the hypothesis, ‖Ti‖ ≤ 1 for i = 1, 2. Since Ti 6= T(x0) for i = 1, 2 and T(x0) =
1
2(T1 + T2),

T(x0) /∈ ext BLs(2l3
∞).
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Lemma 1. Let x, y, z ∈ R. Then,
(a) 1 = |x + y| = |x − y| if and only if (|x| = 1, y = 0) or (x = 0, |y| = 1);
(b) if |1 + z| ≤ 1, |1 − z| ≤ 1, then z = 0.

Proof. (a) Necessity. Suppose the contrary. Then, x 6= 0 and y 6= 0. Without loss of generality
we may assume that 0 < y ≤ x < 1. It follows that 1 = x + y = x − y, which shows that x = 1,
a contradiction. Sufficiency is obvious.

(b) Since 2 = |(1+ z)+ (1− z)| ≤ |1+ z|+ |1− z| ≤ 2 and |1± z| ≤ 1, |1− z| = |1+ z| = 1.
By (a), z = 0.

Lemma 2. Let a, b ∈ R be such that |a|+ |b| = 1. Then, the following are equivalent:
(i) (|a| = 1, b = 0) or (a = 0, |b| = 1);
(ii) if ǫ, δ ∈ R satisfies |a + ǫ|+ |b + δ| ≤ 1 and |a − ǫ|+ |b − δ| ≤ 1, then ǫ = δ = 0.

Proof. By symmetry, we may assume that |a| ≥ |b|.
(i) ⇒ (ii) Suppose that |a| = 1, b = 0 and let ǫ, δ ∈ R be such that |a + ǫ|+ |b + δ| ≤ 1

and |a − ǫ| + |b − δ| ≤ 1. Then, |a + ǫ| + |δ| ≤ 1 and |a − ǫ| + |δ| ≤ 1, which shows that
1 ≥ |a|+ |ǫ|+ |δ| = 1 + |ǫ|+ |δ|. Therefore, ǫ = δ = 0.

(ii) ⇒ (i) Suppose the contrary. Then 0 < |b| ≤ |a| < 1. Let t > 0 be such that t|a| < |b|.
Let ǫ := t|a|sign(a) and δ := −t|a|sign(b). Notice that ǫ 6= 0 and δ 6= 0. It follows that

|a + ǫ|+ |b + δ| = (|a| + t|a|) + (|b| − t|a|) = |a|+ |b| = 1

and
|a − ǫ|+ |b − δ| = (|a| − t|a|) + (|b|+ t|a|) = |a|+ |b| = 1.

This is a contradiction.

Proposition 1. Let T = (a, b, c, 2d12, 2d13, 2d23) ∈ Ls(2l3
∞) be such that ‖T‖ = 1. If |a| = 1 or

|b| = 1 or |c| = 1, then T = ±(1, 0, 0, 0, 0, 0) or ±(0, 1, 0, 0, 0, 0) or ±(0, 0, 1, 0, 0, 0), respectively.

Proof. By (1) we may assume that a ≥ |b| ≥ |c|. Hence, |a| = 1. Without loss of generality we
may assume that a = 1. By Theorem 1, we have

1 ≥ |a + b − c| = |1 + b − c|, 1 ≥ |a − b + c| = |1 − b + c|.

By Lemma 1 (b), b = c. By Theorem 1, we have

1 ≥ 2|d12|+ |a + b − c| = 1 + 2|d12|, 1 ≥ 2|d13|+ |a − b + c| = 1 + 2|d13|,

which shows that d12 = d13 = 0. By Theorem 1, we have

1 ≥ 2|d12 + d13|+ |a + b + c + 2d23| = |1 + 2b + 2d23|, (2)

1 ≥ 2|d12 − d13|+ |a + b + c − 2d23| = |1 + 2b − 2d23|,

which implies that |1 + 2b| ≤ 1. By Theorem 1, |1 − 2b| ≤ 2|d23| + |1 − 2b| ≤ 1. By
Lemma 1 (b), b = c = 0. By (2), d23 = 0. Therefore, T = ±(1, 0, 0, 0, 0, 0). We complete the
proof.

Proposition 2. Let T = (a, b, c, 2d12, 2d13, 2d23) ∈ Ls(2l3
∞) be such that ‖T‖ = 1 and

d12 = d13 = d23 = 0. If at least three among |a + b + c|, |a + b − c|, |a − b + c|, | − a + b + c|

equal to 1, then T ∈ { ±(1, 0, 0, 0, 0, 0),±(0, 1, 0, 0, 0, 0),±(0, 0, 1, 0, 0, 0)}.
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Proof. By (1) we may assume that a ≥ |b| ≥ |c|. By symmetry it suffices to show the theorem
when |a+ b − c| = |a− b + c| = | − a+ b + c| = 1. By Theorem 1, |a+ b + c| ≤ 1 since ‖T‖ = 1.
Since |a ± (b − c)| = 1, by Lemma 1, |a| = 1, b = c. By Proposition 1, T = ±(1, 0, 0, 0, 0, 0).

Proposition 3. Let T = (a, b, c, 2d12, 2d13, 2d23) ∈ Ls(2l3
∞) be such that ‖T‖ = 1 and

d12 = d13 = d23 = 0. Then, T ∈ ext BLs(2l3
∞) if and only if

T ∈ { ±(1, 0, 0, 0, 0, 0),±(0, 1, 0, 0, 0, 0),±(0, 0, 1, 0, 0, 0)}.

Proof. Necessity. By Theorem 1,

|a + b + c| ≤ 1, |a + b − c| ≤ 1, |a − b + c| ≤ 1, | − a + b + c| ≤ 1.

Claim. At least three among |a + b + c|, |a + b − c|, |a − b + c|, | − a + b + c| equal to 1.
Otherwise. We have two cases.

Case 1. |a + b + c| = 1, |a + b − c| = 1, |a − b + c| < 1, | − a + b + c| < 1.

By Lemma 1, 1 = |a + b| = a + b, c = 0. Obviously, |a − b| < 1 and T = (a, 1 − a, 0, 0, 0, 0)
for 0 < a < 1. By Theorem 3, T is not extreme. This is a contradiction.

Case 2. | − a + b + c| = 1, |a − b + c| = 1, |a + b + c| < 1, |a + b − c| < 1.

By analogous arguments as Case 1, T = (a, a − 1, 0, 0, 0, 0) for 0 < a < 1. By Theorem 3, T

is not extreme. This is a contradiction.
Therefore, the claim holds. By Proposition 2, necessity follows. Sufficiency is obvious.

Proposition 4. Let T = (a, b, c, 2d12, 2d13, 2d23) ∈ Ls(2l3
∞) be such that ‖T‖ = 1 and at least

one among 2|d12|, 2|d13|, 2|d23| equals to 1. Then, T ∈ ext BLs(2l3
∞) if and only if

T ∈
{

±
(1

2
,−

1

2
, 0, 1, 0, 0

)

,±
(1

2
,−

1

2
, 0,−1, 0, 0

)

,±
(1

2
, 0,−

1

2
, 0, 1, 0

)

,

±
(1

2
, 0,−

1

2
, 0,−1, 0

)

,±
(

0,
1

2
,−

1

2
, 0, 0, 1

)

,±
(

0,
1

2
,−

1

2
, 0, 0,−1

)}

.

Proof. By (1) we may assume that a ≥ |b| ≥ |c|.
Necessity. By Theorem 2, it suffices to show the assertion for the case 2|d12| = 1. By Theorem

1, 0 = a + b − c = a + b + c = d13 = d23, which shows that 0 = c = a + b, −1
2 ≤ a ≤ 1

2 and
T = (a,−a, 0,±1, 0, 0) for −1

2 ≤ a ≤ 1
2 . Since T is extreme, by Theorem 3, a = ±1

2 and hence,
T = ±(1

2 ,−1
2 , 0,±1, 0, 0).

Sufficiency. By Theorem 2, it suffices to show that T = (1
2 ,−1

2 , 0, 1, 0, 0) ∈ ext BLs(2l3
∞).

Let Rj ∈ Ls(2l3
∞) be such that

R1 =
(1

2
+ ǫ1,−

1

2
+ ǫ2, ǫ3, 1 + δ12, δ13, δ23

)

and

R2 =
(1

2
− ǫ1,−

1

2
− ǫ2,−ǫ3, 1 − δ12,−δ13,−δ23

)

with ‖R1‖ = ‖R2‖ = 1 for some ǫi, δij ∈ R for i, j = 1, 2, 3 with i < j. By Theorem 1, it follows
that

0 = δ12 = δ13 = δ23, 0 = ǫ1 + ǫ2 + ǫ3, 0 = −ǫ1 + ǫ2 + ǫ3, 0 = ǫ1 − ǫ2 + ǫ3,

which show that ǫi = δij = 0 for i, j = 1, 2, 3 with i < j. Hence, R1 = R2 = T and hence
T ∈ ext BLs(2l3

∞).
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Proposition 5. Let T = (a, b, c, 2d12, 2d13, 2d23) ∈ Ls(2l3
∞) be such that ‖T‖ = 1 and 2|d12| =

2|d13| = 2|d23| =
1
2 . Then T ∈ ext BLs(2l3

∞) if and only if

T ∈
{

±
(1

2
, 0, 0,−

1

2
,

1

2
,

1

2

)

,±
(1

2
, 0, 0,

1

2
,−

1

2
,

1

2

)

,±
(1

2
, 0, 0,

1

2
,

1

2
,−

1

2

)

,

±
(

0,
1

2
, 0,−

1

2
,

1

2
,

1

2

)

,±
(

0,
1

2
, 0,

1

2
,−

1

2
,

1

2

)

,±
(

0,
1

2
, 0,

1

2
,

1

2
,−

1

2

)

,

±
(

0, 0,
1

2
,−

1

2
,

1

2
,

1

2

)

,±
(

0, 0,
1

2
,

1

2
,−

1

2
,

1

2

)

,±
(

0, 0,
1

2
,

1

2
,

1

2
,−

1

2

)

,

±
(

−
1

2
, 0, 0,

1

2
,

1

2
,

1

2

)

,±
(

0,−
1

2
, 0,

1

2
,

1

2
,

1

2

)

,±
(

0, 0,−
1

2
,

1

2
,

1

2
,

1

2

)}

.

Proof. By (1) we may assume that a ≥ |b| ≥ |c| and d12d13 ≥ 0.
Necessity. By Theorem 2, it suffices to show the assertion for the case 2d12 = 2d13 = 1

2 . By
Theorem 1, we have

a+ b+ c = 2d23, |a+ b− c| ≤
1

2
, |a− b+ c| ≤

1

2
, | − a+ b+ c| ≤

1

2
, |a+ b+ c+ 2d23| ≤ 1.

Hence, |a + b + c + 2d23| = 1.
Claim. At least two among |a + b − c|, |a − b + c|, | − a + b + c| equal to 1

2 .
Otherwise. Then,

(

|a + b − c| =
1

2
, |a − b + c| <

1

2
, | − a + b + c| <

1

2

)

,
(

|a + b − c| <
1

2
, |a − b + c| =

1

2
, | − a + b + c| <

1

2

)

,
(

|a + b − c| <
1

2
, |a − b + c| <

1

2
, | − a + b + c| =

1

2

)

or
(

|a + b − c| <
1

2
, |a − b + c| <

1

2
, | − a + b + c| <

1

2

)

.

Suppose that |a + b − c| = 1
2 , |a − b + c| < 1

2 and | − a + b + c| < 1
2 . Let Rj ∈ Ls(2l3

∞) be such
that

R1 =
(

a, b +
1

N
, c +

1

N
, 2d12, 2d13, 2d23

)

and R2 =
(

a, b −
1

N
, c −

1

N
, 2d12, 2d13, 2d23

)

,

where | − a + b + c|+ 2
N <

1
2 . Then, ‖R1‖ = ‖R2‖ = 1 and T = 1

2(R1 + R2) and, hence, T is
not extreme. This is a contradiction. Similarly, if T satisfies the other cases, we may reach to a
contradiction. Therefore, we have shown the claim.

Hence, (|a + b − c| = |a − b + c| = 1
2), (|a + b − c| = | − a + b + c| = 1

2) or (|a − b + c| =

| − a + b + c| = 1
2).

By symmetry, we may assume that |a + b − c| = |a − b + c| = 1
2 . Since |2a ± 2(b − c)| = 1,

by Lemma 1, |a| = 1
2 , b = c. Since |2a − 4b| ≤ 1, |2a + 4b| = 1, by Lemma 1, b = c = 0,

a = −2d23 = 1
2 and T =

(

1
2 , 0, 0, 1

2 , 1
2 ,−1

2

)

.

Sufficiency. By Theorem 2, it suffices to show that T =
(

1
2 , 0, 0, 1

2 , 1
2 ,−1

2

)

∈ ext BLs(2l3
∞).

Let Rj ∈ Ls(2l3
∞) be such that

R1 =
(1

2
+ ǫ1, ǫ2, ǫ3,

1

2
+ δ12,

1

2
+ δ13,−

1

2
+ δ23

)
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and

R2 =
(1

2
− ǫ1,−ǫ2,−ǫ3,

1

2
− δ12,

1

2
− δ13,−

1

2
− δ23

)

with ‖R1‖ = ‖R2‖ = 1 for some ǫi, δij ∈ R, i, j = 1, 2, 3 with i < j.
By Theorem 1, it follows that

0 = δ12 − δ13 = δ12 + δ13,

0 = ǫ1 + ǫ2 + ǫ3 − δ23,

0 = ǫ1 + ǫ2 + ǫ3 + δ23,

0 = −ǫ1 + ǫ2 + ǫ3,

0 = ǫ1 − ǫ2 + ǫ3,

which show that ǫi = δij = 0 for i, j = 1, 2, 3 with i < j. Hence, R1 = R2 = T and, hence,
T ∈ ext BLs(2l3

∞).

We are in position to show the main result.

Theorem 4.

ext BLs(2l3
∞) =

{

± (1, 0, 0, 0, 0, 0),±(0, 1, 0, 0, 0, 0),±(0, 0, 1, 0, 0, 0),

±
(1

2
,−

1

2
, 0, 1, 0, 0

)

,±
(1

2
,−

1

2
, 0,−1, 0, 0

)

,±
(1

2
, 0,−

1

2
, 0, 1, 0

)

,

±
(1

2
, 0,−

1

2
, 0,−1, 0

)

,±
(

0,
1

2
,−

1

2
, 0, 0, 1

)

,±
(

0,
1

2
,−

1

2
, 0, 0,−1

)

,

±
(1

2
, 0, 0,−

1

2
,

1

2
,

1

2

)

,±
(1

2
, 0, 0,

1

2
,−

1

2
,

1

2

)

,±
(1

2
, 0, 0,

1

2
,

1

2
,−

1

2

)

,

±
(

0,
1

2
, 0,−

1

2
,

1

2
,

1

2

)

,±
(

0,
1

2
, 0,

1

2
,−

1

2
,

1

2

)

,±
(

0,
1

2
, 0,

1

2
,

1

2
,−

1

2

)

,

±
(

0, 0,
1

2
,−

1

2
,

1

2
,

1

2

)

,±
(

0, 0,
1

2
,

1

2
,−

1

2
,

1

2

)

,±
(

0, 0,
1

2
,

1

2
,

1

2
,−

1

2

)

,

±
(

−
1

2
, 0, 0,

1

2
,

1

2
,

1

2

)

,±
(

0,−
1

2
, 0,

1

2
,

1

2
,

1

2

)

,±
(

0, 0,−
1

2
,

1

2
,

1

2
,

1

2

)}

.

Proof. By Theorem 2 and Propositions 1–5, the 42 bilinear forms in the list of Theorem 4 are
extreme.

Let T = (a, b, c, 2d12, 2d13, 2d23) ∈ ext BLs(2l3
∞). By (1) we may assume that a ≥ |b| ≥ |c| and

d12d13 ≥ 0. We will show that T is contained in the list of Theorem 4.
Let W1 := 2d12, Z1 := a + b − c, W2 := 2d13, Z2 := a − b + c, W3 := 2d23, Z3 := −a + b + c,

W4 := 2(d12 + d13), Z4 := a + b + c + 2d23, W5 := 2(d12 − d13), Z5 := a + b + c − 2d23,
Bj := |Wj |+ |Zj| for j = 1, . . . , 5.

Remark 1. Notice that if S = (a
′
, b

′
, c

′
, 2d

′

12, 2d
′

13, 2d
′

23) ∈ Ls(2l3
∞) is an element in the list of

Theorem 4, then B
′

j = 1 for all j = 1, . . . , 5, where

B
′

1 := |2d
′

12|+ |a
′
+ b

′
− c

′
|,

B
′

2 := |2d
′

13|+ |a
′
− b

′
+ c

′
|,

B
′

3 := |2d
′

23|+ | − a
′
+ b

′
+ c

′
|,

B
′

4 := 2|d
′

12 + d
′

13|+ |a
′
+ b

′
+ c

′
+ 2d

′

23|,

B
′

5 := 2|d
′

12 − d
′

13|+ |a
′
+ b

′
+ c

′
− 2d

′

23|.
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Claim. Bj = 1 for all j = 1, . . . , 5.
Otherwise. Suppose that only two among B1, . . . , B5 equal to 1. We will reach to a contra-

diction. Ten cases may occur:

(B1 = B2 = 1, B3 < 1, B4 < 1, B5 < 1), (B1 = B3 = 1, B2 < 1, B4 < 1, B5 < 1),

(B1 = B4 = 1, B2 < 1, B3 < 1, B5 < 1), (B1 = B5 = 1, B2 < 1, B3 < 1, B4 < 1),

(B2 = B3 = 1, B1 < 1, B4 < 1, B5 < 1), (B2 = B4 = 1, B1 < 1, B3 < 1, B5 < 1),

(B2 = B5 = 1, B1 < 1, B3 < 1, B3 < 1), (B3 = B4 = 1, B1 < 1, B2 < 1, B5 < 1),

(B3 = B5 = 1, B1 < 1, B2 < 1, B4 < 1) or (B4 = B5 = 1, B1 < 1, B2 < 1, B3 < 1).

By symmetry it is enough to consider the five cases:

(B1 = B2 = 1, B3 < 1, B4 < 1, B5 < 1), (B1 = B3 = 1, B2 < 1, B4 < 1, B5 < 1),

(B1 = B4 = 1, B2 < 1, B3 < 1, B5 < 1), (B3 = B4 = 1, B1 < 1, B2 < 1, B5 < 1) or

(B4 = B5 = 1, B1 < 1, B2 < 1, B3 < 1).

Suppose that B1 = B2 and the others are less than 1. Let N ∈ N such that Bj +
1
N < 1 for

j = 3, 4, 5. Let Tj ∈ Ls(2l3
∞) be such that

T1 =
(

a, b, c, 2d12, 2d13, 2d23 +
1

N

)

and T2 =
(

a, b, c, 2d12, 2d13, 2d23 −
1

N

)

.

By Theorem 1, T1 6= T2, ‖Tj‖ = 1 and T = 1
2(T1 + T2). Hence T is not extreme. This is a

contradiction.
Suppose that B1 = B3 and the others are less than 1. Let N ∈ N such that Bj +

2
N < 1 for

j = 2, 4, 5. Let Tj ∈ Ls(2l3
∞) be such that

T1 =
(

a +
1

N
, b, c +

1

N
, 2d12, 2d13, 2d23

)

and T2 =
(

a −
1

N
, b, c −

1

N
, 2d12, 2d13, 2d23

)

.

By Theorem 1, T1 6= T2, ‖Tj‖ = 1 and T = 1
2(T1 + T2). Hence T is not extreme. This is a

contradiction.
Suppose that B1 = B4 and the others are less than 1. Let N ∈ N such that Bj +

2
N < 1 for

j = 2, 3, 5. Let Tj ∈ Ls(2l3
∞) be such that

T1 =
(

a+
1

N
, b, c+

1

N
, 2d12, 2d13, 2d23 −

1

N

)

and T2 =
(

a−
1

N
, b, c−

1

N
, 2d12, 2d13, 2d23 +

1

N

)

.

By Theorem 1, T1 6= T2, ‖Tj‖ = 1 and T = 1
2(T1 + T2). Hence T is not extreme. This is a

contradiction.
Suppose that B3 = B4 and the others are less than 1. Let N ∈ N such that Bj +

3
N < 1 for

j = 1, 2, 5. Let Tj ∈ Ls(2l3
∞) be such that

T1 =
(

a, b +
1

N
, c −

1

N
, 2d12 +

1

N
, 2d13 −

1

N
, 2d23

)

and

T2 =
(

a, b −
1

N
, c +

1

N
, 2d12 −

1

N
, 2d13 −

1

N
, 2d23

)

.
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By Theorem 1, T1 6= T2, ‖Tj‖ = 1 and T = 1
2(T1 + T2). Hence T is not extreme. This is a

contradiction.
Suppose that B4 = B5 and the others are less than 1. Let N ∈ N such that Bj +

2
N < 1 for

j = 1, 2, 3. Let Tj ∈ Ls(2l3
∞) be such that

T1 =
(

a +
1

N
, b, c −

1

N
, 2d12, 2d13, 2d23

)

and T2 =
(

a +
1

N
, b, c −

1

N
, 2d12, 2d13, 2d23

)

.

By Theorem 1, T1 6= T2, ‖Tj‖ = 1 and T = 1
2(T1 + T2). Hence T is not extreme. This is a

contradiction.
Suppose that only three among B1, . . . , B5 equal to 1. We will reach to a contradiction. Ten

cases may occur:

(B1 = B2 = B3 = 1, B4 < 1, B5 < 1), (B1 = B2 = B4 = 1, B3 < 1, B5 < 1),

(B1 = B2 = B5 = 1, B3 < 1, B4 < 1), (B1 = B3 = B4 = 1, B2 < 1, B5 < 1),

(B1 = B3 = B5 = 1, B2 < 1, B4 < 1), (B2 = B3 = B4 = 1, B1 < 1, B5 < 1),

(B2 = B3 = B5 = 1, B1 < 1, B4 < 1), (B1 = B4 = B5 = 1, B2 < 1, B3 < 1),

(B2 = B4 = B5 = 1, B1 < 1, B3 < 1) or (B3 = B4 = B5 = 1, B1 < 1, B2 < 1).

By symmetry it is enough to consider five cases:

(B1 = B2 = B3 = 1, B4 < 1, B5 < 1), (B1 = B2 = B4 = 1, B3 < 1, B5 < 1),

(B1 = B3 = B4 = 1, B2 < 1, B5 < 1), (B1 = B4 = B5 = 1, B2 < 1, B4 < 1) or

(B3 = B4 = B5 = 1, B2 < 1, B3 < 1).

Suppose that B1 = B2 = B3 = 1 and B4 < 1, B5 < 1.
Since T is extreme, by Lemmas 1–2, we have

[

(2d12 = 0, |a + b − c| = 1) or (2|d12| = 1, |a + b − c| = 0)
]

,
[

(2d13 = 0, |a − b + c| = 1) or (2|d13| = 1, |a − b + c| = 0)
]

and
[

(2d23 = 0, | − a + b + c| = 1) or (2|d23| = 1, | − a + b + c| = 0)
]

.

If at least one among 2|d12|, 2|d13|, 2|d23| equals to 1, then, by Proposition 4, T is contained in
the list of Theorem 4. By Remark 1, 1 > B4 = 1, a contradiction. If 2d12 = 2d13 = 2d23 = 0,
then, by Proposition 3, T is contained in the list of Theorem 4. By Remark 1, 1 > B4 = 1, a
contradiction.

Suppose that B1 = B2 = B4 = 1 and B3 < 1, B5 < 1.
Since T is extreme, by Lemmas 1–2, we have
[

(2d12 = 0, |a + b − c| = 1) or (2|d12| = 1, |a + b − c| = 0)
]

,
[

(2d13 = 0, |a − b + c| = 1) or (2|d13| = 1, |a − b + c| = 0)
]

and
[

(2(d12 + d13) = 0, |a + b + c + 2d23| = 1) or (2|d12 + d13| = 1, |a + b + c + 2d23| = 0)
]

.

We claim that 2|d12| = 1 or 2|d13| = 1. Otherwise. Then, 2d12 = 2d13 = 0. Then,

|a + b − c| = |a − b + c| = 1.
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By Lemma 1, a = 1, |b − c| = 0. By Proposition 1, T = (1, 0, 0, 0, 0, 0). Hence, 1 > B3 = 1, a
contradiction.

Suppose that B1 = B3 = B4 = 1 and B2 < 1, B5 < 1.
Since T is extreme, by Lemmas 1–2, we have
[

(2d12 = 0, |a + b − c| = 1) or (2|d12| = 1, |a + b − c| = 0)
]

,
[

(2d23 = 0, | − a + b + c| = 1) or (2|d23| = 1, | − a + b + c| = 0)
]

, and
[

(2(d12 + d13) = 0, |a + b + c + 2d23| = 1) or (2|d12 + d13| = 1, |a + b + c + 2d23| = 0)
]

.

If 2|d12| = 1 or 2|d23| = 1, by Proposition 4, T is contained in the list of Theorem 4. By
Remark 1, 1 > B2 = 1, a contradiction.

Suppose that 2|d12| = 2|d23| = 0. Then,

(2d13 = 0, |a + b + c| = 1) or (2|d13| = 1, |a + b + c| = 0).

By Propositions 3–4, T is contained in the list of Theorem 4. By Remark 1, 1 > B2 = 1, a
contradiction.

Suppose that B1 = B4 = B5 = 1 and B2 < 1, B3 < 1.
Since T is extreme, by Lemmas 1–2, we have

[

(2d12 = 0, |a + b − c| = 1) or (2|d12| = 1, |a + b − c| = 0)
]

,
[

(2(d12 + d13) = 0, |a + b + c + 2d23| = 1) or (2|d12 + d13| = 1, |a + b + c + 2d23| = 0)
]

, and
[

(2(d12 − d13) = 0, |a + b + c − 2d23| = 1) or (2|d12 − d13| = 1, |a + b + c − 2d23| = 0)
]

.

If 2|d12| = 1, by Proposition 4, T is contained in the list of Theorem 4. By Remark 1, 1 > B2 = 1,
a contradiction. Suppose that 2|d12| = 0. Then,

[

(2d13 = 0, |a + b + c + 2d23| = 1) or (2|d13 | = 1, |a + b + c + 2d23| = 0)
]

and
[

(2d13 = 0, |a + b + c − 2d23| = 1) or (2|d13 | = 1, |a + b + c − 2d23| = 0)
]

.

If 2|d13| = 1, by Proposition 4, T is contained in the list of Theorem 4. By Remark 1, 1 > B2 = 1,
a contradiction. Suppose that 2|d13| = 0. Then, |(a + b + c)± 2d23| = 1. By Lemma 1,

(a + b + c = 0, 2|d23| = 1) or (|a + b + c| = 1, 2|d23| = 0).

If 2|d23| = 1, by Proposition 4, T is contained in the list of Theorem 4. By Remark 1, 1 > B2 = 1,
a contradiction. If 2|d23| = 0, then d12 = d13 = d23 = 0. By Proposition 3, T is contained in the
list of Theorem 4. By Remark 1, 1 > B2 = 1, a contradiction.

Suppose that B3 = B4 = B5 = 1 and B1 < 1, B2 < 1.
Since T is extreme, by Lemmas 1–2, we have

[

(2d23 = 0, | − a + b + c| = 1) or (2|d23 | = 1, | − a + b + c| = 0)
]

,
[

(2(d12 + d13) = 0, |a + b + c + 2d23| = 1) or (2|d12 + d13| = 1, |a + b + c + 2d23| = 0)
]

and
[

(2(d12 − d13) = 0, |a + b + c − 2d23| = 1) or (2|d12 − d13| = 1, |a + b + c − 2d23| = 0)
]

.
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If 2|d23| = 1, by Proposition 4, T is contained in the list of Theorem 4. By Remark 1, 1 > B1 = 1,
a contradiction.

Let 2|d23| = 0. Suppose that 2(d12 + d13) = 0, |a + b + c + 2d23| = 1. If 2(d12 − d13) = 0,
|a + b + c − 2d23| = 1, then

d12 = d13 and [(a + b + c = 0, 2|d23| = 1) or (|a + b + c| = 1, 2d23 = 0)].

By Propositions 3–4, T is contained in the list of Theorem 4. By Remark 1, 1 > B1 = 1, a
contradiction.

Suppose that 2|d12 + d13| = 1, |a + b + c + 2d23| = 0. Then, |2d12 ± 2d13| = 1. By Lemma 2,

(|2d12| = 1, |2d13| = 0) or (|2d12| = 0, |2d13| = 1).

By Proposition 4, T is contained in the list of Theorem 4. By Remark 1, 1 > B1 = 1, a contra-
diction.

Suppose that only four among B1, . . . , B5 equal to 1. We will reach to a contradiction.
Five cases may occur:

(B1 = B2 = B3 = B4 = 1, B5 < 1), (B1 = B2 = B3 = B5 = 1, B4 < 1),

(B1 = B2 = B4 = B5 = 1, B3 < 1), (B1 = B3 = B4 = B5 = 1, B2 < 1) or

(B2 = B3 = B4 = B5 = 1, B1 < 1).

By symmetry it is enough to consider three cases:

(B1 = B2 = B3 = B4 = 1, B5 < 1), (B1 = B2 = B4 = B5 = 1, B3 < 1) or

(B2 = B3 = B4 = B5 = 1, B1 < 1).

Suppose that B1 = B2 = B3 = B4 = 1, B5 < 1.
Since T is extreme, by Lemmas 1–2, we have

{[

(2d12 = 0, |a + b − c| = 1) or (2|d12| = 1, |a + b − c| = 0)
]

, and
[

(2d13 = 0, |a − b + c| = 1) or (2|d13| = 1, |a − b + c| = 0)
]}

,
{[

(2d12 = 0, |a + b − c| = 1) or (2|d12| = 1, |a + b − c| = 0)
]

and
[

(2d23 = 0, | − a + b + c| = 1) or (2|d23| = 1, | − a + b + c| = 0)
]}

,
{[

(2d12 = 0, |a + b − c| = 1) or (2|d12| = 1, |a + b − c| = 0)
]

and
[

(2(d12 + d13) = 0, |a + b + c + 2d23| = 1) or (2|d12 + d13| = 1, |a + b + c + 2d23| = 0)
]}

,
{[

(2d13 = 0, |a − b + c| = 1) or (2|d13| = 1, |a − b + c| = 0)
]

and
[

(2d23 = 0, | − a + b + c| = 1) or (2|d23| = 1, | − a + b + c| = 0)
]}

,
{[

(2d13 = 0, |a − b + c| = 1) or (2|d13| = 1, |a − b + c| = 0)
]

and
[

(2(d12 + d13) = 0, |a + b + c + 2d23| = 1) or (2|d12 + d13| = 1, |a + b + c + 2d23| = 0)
]}

or
{[

(2d23 = 0, | − a + b + c| = 1) or (2|d23| = 1, | − a + b + c| = 0)
]

and
[

(2(d12 + d13) = 0, |a + b + c + 2d23| = 1) or (2|d12 + d13| = 1, |a + b + c + 2d23| = 0)
]}

.
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By symmetry it is enough to consider four subcases:
{[

(2d12 = 0, |a + b − c| = 1) or (2|d12 | = 1, |a + b − c| = 0)
]

and
[

(2d13 = 0, |a − b + c| = 1) or (2|d13 | = 1, |a − b + c| = 0)
]}

,
{[

(2d12 = 0, |a + b − c| = 1) or (2|d12 | = 1, |a + b − c| = 0)
]

and
[

(2d23 = 0, | − a + b + c| = 1) or (2|d23| = 1, | − a + b + c| = 0)
]}

,
{[

(2(d12 + d13) = 0, |a + b + c + 2d23| = 1) or (2|d12 + d13| = 1, |a + b + c + 2d23| = 0)
]

and
[

(2(d12 + d13) = 0, |a + b + c + 2d23| = 1) or (2|d12 + d13| = 1, |a + b + c + 2d23| = 0)
]}

or
{[

(2d23 = 0, | − a + b + c| = 1) or (2|d23| = 1, | − a + b + c| = 0)
]

and
[

(2(d12 + d13) = 0, |a + b + c + 2d23| = 1) or (2|d12 + d13| = 1, |a + b + c + 2d23| = 0)
]}

.

Suppose that
[

(2d12 = 0, |a + b − c| = 1) or (2|d12 | = 1, |a + b − c| = 0)
]

and
[

(2d13 = 0, |a − b + c| = 1) or (2|d13 | = 1, |a − b + c| = 0)
]

.

If 2|d12| = 1 or 2|d13| = 1, by Proposition 4, T is contained in the list of Theorem 4. By
Remark 1, 1 > B5 = 1, a contradiction.

Let d12 = d13 = 0, |a + b − c| = |a − b + c| = 1. By Lemma 1, a = 1, b = c. By Proposition 1,
T is contained in the list of Theorem 4. By Remark 1, 1 > B5 = 1, a contradiction.

Suppose that
[

(2d13 = 0, |a − b + c| = 1) or (2|d13| = 1, |a − b + c| = 0)
]

and
[

(2(d12 − d13) = 0, |a + b + c − 2d23| = 1) or (2|d12 − d13| = 1, |a + b + c − 2d23| = 0)
]

.

If 2|d13| = 1, by Proposition 4, T is contained in the list of Theorem 4. By Remark 1, 1 > B5 = 1,
a contradiction.

Let 2d13 = d12 − d13 = 0. Then, d12 = d13 = 0, |a + b − c| = |a − b + c| = 1. By Lemma 1,
a = 1, b = c. By Proposition 1, T is contained in the list of Theorem 4. By Remark 1, 1 > B5 = 1,
a contradiction.

Suppose that
[

(2(d12 + d13) = 0, |a + b + c + 2d23| = 1) or (2|d12 + d13| = 1, |a + b + c + 2d23| = 0)
]

and
[

(2(d12 − d13) = 0, |a + b + c − 2d23| = 1) or (2|d12 − d13| = 1, |a + b + c − 2d23| = 0)
]

.

Let 2(d12 + d13) = 2(d12 − d13) = 0. Since |(a + b + c)± 2d23| = 1, by Lemma 1,

(|a + b + c| = 1, d23 = 0) or (|a + b + c| = 0, 2|d23| = 1).

If |a + b + c| = 1, d23 = 0, then d12 = d13 = d23 = 0. By Proposition 3, T is contained in the list
of Theorem 4. By Remark 1, 1 > B5 = 1, a contradiction.
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If |a + b + c| = 0, 2|d23| = 1, by Proposition 4, T is contained in the list of Theorem 4. By
Remark 1, 1 > B5 = 1, a contradiction.

If 2|d12 + d13| = 2|d12 − d13| = 1, by Lemma 1,

(|2d12| = 1, d23 = 0) or (d12 = 0, 2|d23| = 1).

By Proposition 4, T is contained in the list of Theorem 4. By Remark 1, 1 > B5 = 1, a contra-
diction.

Let (2(d12 + d13) = 0, 2|d12 − d13| = 1) or (2(d12 + d13) = 1, 2|d12 − d13| = 0). Suppose that
(2(d12 + d13) = 0, |a + b + c + 2d23| = 1) or (2|d12 + d13| = 0, |a + b + c + 2d23| = 1). Then,
4|d12| = 4|d13| = 4|d232| = 1. By Proposition 5, T is contained in the list of Theorem 4. By
Remark 1, 1 > B5 = 1, a contradiction.

If (2(d12 + d13) = 1, |a + b + c + 2d23| = 0) or (2|d12 + d13| = 1, |a + b + c + 2d23| = 0),
then 4|d12| = 4|d13| = 4|d232| = 1. By Proposition 5, T is contained in the list of Theorem 4. By
Remark 1, 1 > B5 = 1, a contradiction.

Suppose that B1 = B2 = B4 = B5 = 1, B3 < 1.
Suppose that

(2d12 = 0, |a + b − c| = 1) and (2d13 = 0, |a − b + c| = 1).

By Lemma 1, a = 1, b = c. By Proposition 1, T is contained in the list of Theorem 4. By
Remark 1, 1 > B3 = 1, a contradiction.

Suppose that

(2d12 = 0, |a + b − c| = 1) and (2(d12 + d13) = 0, |a + b + c + 2d23| = 1).

Then, d12 = d13 = 0, a = 1, b = c, 2|d23| = 1. By Proposition 1, T is contained in the list of
Theorem 4. By Remark 1, 1 > B3 = 1, a contradiction.

Suppose that

(2d13 = 0, |a − b + c| = 1) and (2(d12 − d13) = 0, |a + b + c − 2d23| = 1).

Then, d12 = d13 = 0, a = 1, b = c, 2|d23| = 1. By Proposition 1, T is contained in the list of
Theorem 4. By Remark 1, 1 > B3 = 1, a contradiction.

Suppose that B2 = B3 = B4 = B5 = 1, B1 < 1.
Suppose that

(2d13 = 0, |a − b + c| = 1) and (2d23 = 0, | − a + b + c| = 1).

Then, d13 = d23| = 0, |c| = 1, a = b. By Proposition 1, T is contained in the list of Theorem 4.
By Remark 1, 1 > B1 = 1, a contradiction.

Suppose that

(2d23 = 0, | − a + b + c| = 1) and (2(d12 + d13) = 0, |a + b + c + 2d23| = 1).

Then, d12 = d13 = d23 = 0. By Proposition 3, T is contained in the list of Theorem 4. By
Remark 1, 1 > B1 = 1, a contradiction.

Suppose that

(2d23 = 0, | − a + b + c| = 1) and (2|d12 + d13| = 1, |a + b + c + 2d23| = 0).
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Then, d12 = d13 = 0, 2|d23| = 1. By Proposition 4, T is contained in the list of Theorem 4. By
Remark 1, 1 > B1 = 1, a contradiction.

Suppose that

[

(2(d12 + d13) = 0, |a + b + c + 2d23| = 1) or (2|d12 + d13| = 1, |a + b + c + 2d23| = 0)
]

and
[

(2(d12 − d13) = 0, |a + b + c − 2d23| = 1) or (2|d12 − d13| = 1, |a + b + c − 2d23| = 0)
]

.

If (2(d12 + d13) = 0, |a + b + c + 2d23| = 1) and (2(d12 − d13) = 0, |a + b + c − 2d23| = 1), then
2|d23| = 1. By Proposition 4, T is contained in the list of Theorem 4. By Remark 1, 1 > B1 = 1,
a contradiction.

If (2(d12 + d13) = 0, |a + b + c + 2d23| = 1) and (2|d12 − d13| = 1, |a + b + c − 2d23| = 0),
then 4|d12| = 4|d13| = 4|d23| = 1. By Proposition 5, T is contained in the list of Theorem 4. By
Remark 1, 1 > B1 = 1, a contradiction.

If (2(d12 + d13) = 1, |a + b + c + 2d23| = 0) and (2|d12 − d13| = 0, |a + b + c − 2d23| = 1),
then 4|d12| = 4|d13| = 4|d23| = 1. By Proposition 5, T is contained in the list of Theorem 4. By
Remark 1, 1 > B1 = 1, a contradiction.

If (2(d12 + d13) = 1, |a + b + c + 2d23| = 0) and (2|d12 − d13| = 1, |a + b + c − 2d23| = 0),
then 2|d12| = 1 or 2|d13| = 1. By Proposition 4, T is contained in the list of Theorem 4. By
Remark 1, 1 > B1 = 1, a contradiction.

Therefore, Bj = 1 for all j = 1, . . . , 5. Since T is extreme, by Lemma 2, there are
j0 ∈ {1, . . . , 5} such that

|Wj0 ± Zj0 | = 1.

By Theorem 2, it suffices to consider the cases j0 = 1, 3, 4.

Case 1. j0 = 1.

Then, (2|d12 | = 1, a + b − c = 0) or (2d12 = 0, |a − b + c| = 1). If 2|d12| = 1,

a+ b− c = 0, then | − a+ b+ c| = |a− b+ c| = 1, a+ b+ c = 0. Hence, T =
(

1
2 ,−1

2 , 0,±1, 0, 0
)

.

Suppose that 2d12 = 0, |a − b + c| = 1. Since |(a + b + c)± 2d23| = 1 − 2|d13|, by Lemma 1,
(2|d23| = 1 − 2|d13|, a + b + c = 0) or (2d23 = 0, |a + b + c| = 1 − 2|d13|). Suppose that
2d23 = 0, |a+ b+ c| = 1− 2|d13|. Since |b± (a− c)| = 1, by Lemma 1, b = 0, a− c = |a− c| = 1.
Since a ≥ |b| ≥ |c|, a = 1, b = c = d12 = d13 = d23 = 0. Hence, T = (1, 0, 0, 0, 0, 0). Suppose
that 2|d23| = 1− 2|d13|, a + b + c = 0. Notice that |a + b− c| = 1. Without loss of generality, we
may assume that a + b− c = 1. Hence, c = −1

2 and b = 1
2 − a for 0 ≤ a ≤ 1. Since a ≥ |b| ≥ |c|,

a = 1, b = −1
2 . Hence, d12 = d13 = d23 = 0. 1 = B5 = 0, a contradiction. Hence, the case

2|d23| = 1 − 2|d13|, a + b + c = 0 can not happen.

Case 2. j0 = 3.

Then, (2|d23| = 1,−a + b + c = 0) or (2d23 = 0, | − a + b + c| = 1). If 2|d23| = 1,
T = (0, 0, 0, 0, 0,±1). Then, 1 = B1 = 0, a contradiction. Therefore, the case 2|d23| = 1,
−a + b + c = 0 can not happen. Suppose that 2d23 = 0, | − a + b + c| = 1. Since |2d12 ± 2d13| =

1 − |a + b + c|, by Lemma 1, (2|d12| = 1 − |a + b + c|, 2d13 = 0) or (2d12 = 0, 2|d13| =

1 − |a + b + c|). Suppose that 2|d12| = 1 − |a + b + c|, 2d13 = 0. Since |c ± (a − b)| = 1, by
Lemma 1, c = 0, a − b = |a − b| = 1. Hence, b = a − 1 and

T = (a, a − 1, 0,±(1 − |1 − 2a|), 0, 0)
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for 1
2 ≤ a ≤ 1. Since T is extreme, T = (1, 0, 0, 0, 0, 0) or T =

(

1
2 ,−1

2 , 0,±1, 0, 0
)

. Suppose that

2d12 = 0, 2|d13| = 1− |a+ b+ c|. Since |b± (a− c)| = 1, by Lemma 1, b = 0, a− c = |a− c| = 1.
Since a ≥ |b| ≥ |c|, c = 0 = d13 and T = (1, 0, 0, 0, 0, 0).

Case 3. j0 = 4.

Then, (2(d12 + d13) = 0, |a + b + c + 2d23| = 1) or (2|d12 + d13| = 1, a + b + c + 2d23 = 0).
Suppose that 2(d12 + d13) = 0, |a+ b + c+ 2d23| = 1. Then, d13 = −d12 = 0 because d12d13 ≥ 0.
Hence, |a + b + c| = |a − b + c| = |a + b − c| = 1. By Proposition 2, T = (1, 0, 0, 0, 0, 0). Sup-
pose that 2|d12 + d13| = 1, a + b + c + 2d23 = 0. Without loss of generality, we may assume that
d12 ≥ d13 ≥ 0. Notice that 2|d23| = 2d13 = 1 − 2d12 and |c + (a − b)| = |c − (a − b)|. Let
l := |c + (a − b)|. By Lemma 1, (|c| = l, a − b = |a − b| = 0) or (c = 0, a − b = |a −

b| = l). Suppose that |c| = l, a − b = |a − b| = 0. Since |2a ± c| = 1 − 2d12, by Lemma 1,
2a = 1 − 2d12, c = 0. Hence,

T =
(1 − 2d12

2
,

1 − 2d12

2
, 0, 2d12, 1 − 2d12,±(1 − 2d12)

)

for 0 ≤ 2d12 ≤ 1. Since T is extreme, T = (0, 0, 0, 1, 0, 0) or T =
(

1
2 , 1

2 , 0, 0, 1,±1
)

. This is

a contradiction because 1 = B2 = 0 or 1 = B4 = 3 or 1 = B5 = 3. Therefore, the case
|c| = l, a − b = |a − b| = 0 can not happen. Suppose that c = 0, a − b = |a − b| = l. Then,

a = 1
2 , b = 1

2 − 2d12 and T =
(

1
2 , 1

2 − 2d12, 0, 1 − 2d12,±(1 − 2d12)
)

for 1
2 ≤ 2d12 ≤ 1. Since T is

extreme, T =
(

1
2 ,−1

2 , 0, 1, 0, 0
)

or T =
(

1
2 , 0, 0, 1

2 , 1
2 ,−1

2

)

.

Therefore, we complete the proof.
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Кiм С.Ґ. Класифiкацiя екстремальних точок простору Ls(2l3
∞) за допомогою математичних обчи-

слень // Карпатськi матем. публ. — 2022. — Т.14, №2. — C. 371–387.

Нехай простiр l3
∞ = R3 оснащено рiвномiрною нормою. У статтi [Comment. Math. 2017, 57

(1), 1–7], С.Ґ. Кiм класифiкував екстремальнi точки одиничної кулi простору Ls(2l3
∞) викори-

стовуючи лише пакет Mathematica 8, де Ls(2l3
∞) є простором симетричних бiлiнiйних форм

на l3
∞. Виглядає на те, що було б цiкаво та важливо класифiкувати екстремальнi точки одини-

чної кулi простору Ls(2l3
∞) без використання Mathematica 8. Метою цiєї статтi є зробити таку

класифiкацiю за допомогою математичних обчислень.

Ключовi слова i фрази: екстремальна точка.


