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Classification of the extreme points of £;(*I2)) by computation

Kim Sung Guen

Let 120 = R3 be endowed with the supremum norm. In [Comment. Math. 2017, 57 (1), 1-7],
S.G. Kim classified the extreme points of the unit ball of £5(%3,) only using Mathematica 8, where
L(%12,) is the space of symmetric bilinear forms on [3,. It seems to be interesting and meaningful to
classify the extreme points of the unit ball of £;(%I2,) without using Mathematica 8. The aim of this
paper is to make such classification by mathematical calculations.
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1 Introduction

Throughout the paper, we let n,m € IN,n,m > 2. We write Bg for the closed unit ball of
a real Banach space E. The dual space of E is denoted by E*. An element x € Bg is called an
extreme point of Bg if y,z € Bg with x = %(y +z) implies x = y = z. An element x € Bg
is called an exposed point of B if there is f € E* so that f(x) = 1 = ||f|| and f(y) < 1 for
every y € Bp \ {x}. Itis easy to see that every exposed point of B is an extreme point. An
element x € Bg is called a smooth point of B if there is unique f € E* so that f(x) =1 = ||f]|.
We denote by ext Bg, exp Br and sm B the set of extreme points, the set of exposed points
and the set of smooth points of Bg, respectively. A mapping P : E — R is a continu-
ous n-homogeneous polynomial if there exists a continuous n-linear form T on the product
E x --- x E such that P(x) = T(x,--- ,x) for every x € E. We denote by P("E) the Banach
space of all continuous n-homogeneous polynomials from E into R endowed with the norm
|P|| = SUP)|y|=1 |P(x)|. We denote by L("E) the Banach space of all continuous n-linear forms
on E endowed with the norm ||T[| = supy, _; |T(x1,- -, xu)|. Let Ls("E) denote the closed
subspace of all continuous symmetric n-linear forms on E. Notice that £("E) is identified with
the dual of n-fold projective tensor product &, ,E. With this identification, the action of a
continuous n-linear form T as a bounded linear functional on &, ,E is given by

k k
Wi ... (n),i — (D .. 4(n)i
<i§x1 ® R x ,T> ;T(xl , , X )

Notice also that £,("E) is identified with the dual of n-fold symmetric projective tensor prod-
uct ®S,7WE . With this identification, the action of a continuous symmetric n-linear form T as
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a bounded linear functional on ®s,mnE is given by

(L (Er 0o ah), 1) = (30 500),

where ¢ goes over all permutations on {1,...,n}.

Since the geometries of the unit balls of P("E) and Ls("E) are closely related with the
geometry of the unit ball of E, it is interesting and significant to investigate the geometries
of P("E) and Ls("E). For more details about applications and significance of the theory of
polynomials and (symmetric) multilinear mappings on Banach spaces, we refer the reader
to [8].

Let us introduce the history of classification problems of the extreme points, the exposed
points and the smooth points of the unit ball of continuous n-homogeneous polynomials on a
Banach space.

We let I; = R" for every 1 < p < oo equipped with the [,-norm. Y.S. Choi et al. [3-5]
initiated and classified ext BP("—Z%) for p = 1,2. Y.S. Choi and S.G. Kim [6] classified sm B'p(zl -
B.C. Grecu [12] classified ext B’P(21§—,) forl < p <2or2 < p < 0. In the paper [45], S.G. Kim
et al. showed that if E is a separable real Hilbert space with dim(E) > 2, then, ext Bp(2p) =
exp Bp(zE In [16], S.G. Kim classified exp Bp(zlz) for1 < p < oo, and in [18, 20], he charac-

terized ext Bp (2, (1,4)2) and sm Bp 24 (14)2), where dy (1, w)? = R? with the octagonal norm

| (x,¥)|lw = max { |x], |y, |3;|:£/\} for 0 < w < 1. In[25], S.G. Kim classified exp Bp (24, (1,0)2)

and showed that exp Bp 24 (14)2) 7# ext Bp(2g,(1,0)2)- In [30,33,44], he classified ext B, PRRZ )
n(l)

exp Bp e n and sm BP(ZIRZ ), where ]Ri = IR? with the hexagonal norm ||(x, y)Hh 1) =

h(%) nd) (3)
max {[y], x| + 3y }

Parallel to the classification problems of ext Bp(nr), exp Bp gy and sm Bpup), it seems to be
natural and interesting to study the classification problems of the extreme points, the exposed
points and the smooth points of the unit ball of continuous (symmetric) multilinear forms on
a Banach space since (symmetric) multilinear forms on a Banach space is closely related with
homogeneous polynomials in their definitions.

In [17,19,21,22,24,28,29,32,34,36,37,39], S.G. Kim classified ext B, 22, ext B; (24 (1,0)2),
ext B[:(Zd*(l,w)z)/ exp Bﬁs(zd*(l,w)z)l ext Bﬁ(zd*(l,w)z)f ext B,c(2lgo)f ext Bﬁs(zl{}o)’ ext Bll(”lgo)’ sm Bﬂs("lgo)
for every n > 2 and studied extB,z ). He showed that expB, ony = extBg o),
exp By nz) = extBy np2), expBrop) = extBpopm), expBrumpay = extBrup ), | ext By, | =

), |ext B Lozl = 2n+l for every n > 2.In [2], M. Cavalcante et al. Characterlzed ext B L(nm)-
In [40], S.G. Kim classified sm B (ujy) and sm B () for every n,m > 2.In [38], S.G. Kim char-
acterized ext By (njm), ext By ) and showed that exp By mym) = ext By inm), exp Bpmm) =
ext By (nym) for every n,m > 2. In [41], S.G. Kim classified extreme points and exposed points
of the unit ball of the space of bilinear symmetric forms on the real Banach space of bilinear
symmetric forms on /% It is shown that for this case, the set of extreme points is equal to the set

of exposed points. In [42], S.G. Kim characterized ext B CORY) and ext B, ("RY" )/ where ]RH I

is R™ with a norm || - || such that | ext B]RWH| = 2m for m > 2. In [43], S.G. Kim characterized

ext Bl:(nll) forn > 2.
We refer the reader to [1,6,7,9-11,13-15, 23, 26,27, 31,35-38,46-53] and references therein
for some recent work about extremal properties of homogeneous polynomials and multilinear
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forms on Banach spaces. For the applications of extreme point theory in optimization and
optimal control theory, we refer the reader to [54, 55].

The aim of this paper is to classify the extreme points of the unit ball of £;(?I3,) by mathe-
matical calculations.

2 Results

In [28], S.G. Kim classified ext B LC1) only using Mathematica 8. Using the classification
it was also shown that every extreme point of the unit ball of £s(%3,) is exposed. It seems to
be interesting and meaningful to classify extB,_ (213,) Without using Mathematica 8. We will
classify ext B, (213,) by mathematical calculations.

Let I3, = R® with the supremum norm. If T € £;(%I3)) and (x1,y1,21), (x2,y2,22) € I3,
then

T((x1,Y1,21), (X2, Y2,22)) = axyxp + by1yz + cz122 + dip(x1y2 + X2y1)

+ diz(x122 + x221) + da3 (V122 + Y221)
for some a, b, ¢, d1p,d13,d3 € R. For simplicity, we denote T = (a, b, ¢, 2d13,2d13,2d53).
Theorem 1 ([28]). Let T = (a, b, c,2d1p,2d13,2d23) € Ls(?13,). Then,

|T|| = max{2|dia| + |a + b —c|,2|d1s| +|a —b+c|,2[ds| + | —a+b+c|,
2|diz + diz| + |a + b+ ¢+ 2do3|, 2|d1p — dis| + |a + b+ ¢ — 2das]}.
Note that if ||T|| = 1, then [a| < 1,[b| < 1,[c| < Tand 2|d;| < 1for1 < i < j < 3. For
T = (a,b,c,2d1p,2d13,2d03) € Ls(?13,), we let
Ty := (a,b,c,2d1p, —2d13, —2d23), S1:= (b,a,c,2dq3,2d03,2d13),
Ty := (a,b,c, —2d1p, —2d13,2d23), So := (c,a,b,2dq3,2d03,2d75),
T := (a,c,b,2d13,2d12,2d23), Sz := (c,b,a,2d23,2d13,2d17).
Then, Ty, Sk € Ls(%13) with | T || = ||Sk|| = ||T|| for k = 1,2,3.
Notice that if T = (a, b, ¢, 2d1,2d13,2d23) € Ls(%12,), we may assume that a > |b| > |c| and
dypdyz > 0. (1)

Theorem 2. Let T = (a,b,c,2d,2d13,2dp3) € L (2120). Then, the following are equivalent:
(a) T € ext B ()i
(b) Ty, Sk € ext Bﬁs(zlgo) for somek =1,2,3.

Proof. It is obvious.

U
Theorem 3. Let x,a;,bj,c,d € R for 1 <j < 6and T(x) = (a1x +by,...,a6x + bs) € Ls(?13).
Suppose that | T(x)|| <1 forallc < x < d.Ifxy € R be such thatc < xo < d and || T(xp)|| =1,
then T(x) ¢ ext B -

Proof. Let§ > Obe such that ¢ < xg — 6 < xg+ 6 < d. Define T; € Ls(%I3,) by

T = (al(xo+5) +b1,...,a6(x0+(5) +bg) and T, = (al(xo —(5) +b1,...,a6(x0 — ) + bg).
By the hypothesis, || T;|| < 1fori = 1,2.Since T; # T(x) fori = 1,2 and T(xo) = 3(T1 + T»),
T(x0) & extB, 23 O
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Lemma 1. Letx,y,z € R. Then,
(a)1=|x+y|=|x—y|ifandonlyif (x| =1,y=0)or (x =0, |y| =1);
(b)if|14+z| <1, |1 —z| <1, thenz =0.

Proof. (a) Necessity. Suppose the contrary. Then, x # 0 and y # 0. Without loss of generality
we may assume that 0 < y < x < 1.1t follows that 1 = x + y = x — y, which shows that x =1,
a contradiction. Sufficiency is obvious.

(b)Since2 = [(1+2z)+(1—2z)| <[14+z|+[1—z| <2and [1+z| <1, |[1—z| = |14z =1
By (a),z=0. O
Lemma 2. Leta, b € R be such that |a| + |b| = 1. Then, the following are equivalent:

(i) (Ja =1,b=0) or (a =0,|b| =1);

(ii) ife, 6 € R satisfies |a+¢€| +|b+J| <land|a—€|+ |b—6| <1, thene =5 =0.

Proof. By symmetry, we may assume that |a| > |b].

(i) = (ii) Suppose that [a| = 1,b = 0 and lete, 6 € R be such that [a +€|+ b+ 6| <1
and |a — €|+ |b — 6] < 1. Then, [a+ €|+ |0] < 1and |a — €|+ |6] < 1, which shows that
1> |a| + |e| + 16| =1+ |e| + |9|. Therefore, e = 5 = 0.

(ii) = (i) Suppose the contrary. Then 0 < |b| < |a| < 1. Lett > 0 be such that t|a| < |b|.
Let € := t|a|sign(a) and ¢ := —t|a|sign(b). Notice that € # 0 and ¢ # 0. It follows that

|a+ el +[b+d| = (la] + tla]) + (b — t|a]) = [a] +[b] =1

and
|a — €|+ |b— 4| = (|a] —t|a]) + (|b| + t[a]) = |a| + [b] = 1.

This is a contradiction. O

Proposition 1. Let T = (a,b,c,2d13,2d13,2d3) € Ls(%13,) be such that |T|| = 1. If|a] = 1 or
bl =1or|c| =1, then T = £(1,0,0,0,0,0) or+(0,1,0,0,0,0) or £(0,0,1,0,0,0), respectively.

Proof. By (1) we may assume thata > |b| > |c|. Hence, |a| = 1. Without loss of generality we
may assume that 4 = 1. By Theorem 1, we have

1>Jla+b—c|=1+b—¢|, 1>la—b+c/l=1-b+c|
By Lemma 1 (b), b = c. By Theorem 1, we have
1>2|dp|+|la+b—c|=1+2|dp|, 1>2|ds|+|a—b+c| =1+ 2|dys|,
which shows that di; = dj3 = 0. By Theorem 1, we have

1> 2|dyp +dig| + |a+ b+ c+2dps| = |1+ 2b+ 2dp3], (2)
1> 2|d12 —d13| + |a+b+c—2d23| = |1+2b—2d23|,

which implies that |1 4+ 2b] < 1. By Theorem 1, |1 —2b| < 2|dys| + |1 —2b] < 1. By
Lemma 1 (b), b = ¢ = 0. By (2), dog = 0. Therefore, T = £(1,0,0,0,0,0). We complete the
proof. O

Proposition 2. Let T = (a,b,c,2d1p,2d13,2dy) € Ls(?I3) be such that ||T| = 1 and
dip = diz = dpz = 0. If at least three among |[a+ b +c|,|la+b—c|,|a—b+c|,| —a+ b+
equal to 1, then T € { %(1,0,0,0,0,0), +(0,1,0,0,0,0), %(0,0,1,0,0,0)}.



Classification of the extreme points of L;(%2,) by computation 375

Proof. By (1) we may assume thata > |b| > |c|. By symmetry it suffices to show the theorem

when|a+b—c|=|a—b+c|=|—a+b+c| =1.ByTheorem1, |[a+b+c| < 1since ||T| = 1.
Since |[a £ (b —c)| =1,by Lemma 1, |a| = 1,b = ¢. By Proposition 1, T = £+(1,0,0,0,0,0). O
Proposition 3. Let T = (a,b,c,2d1p,2d13,2dy) € Ls(?I3) be such that ||T| = 1 and

dip =di3 =dyz3 = 0. Then, T € ext Bﬁs(zlgo) if and only if
T € {+(1,0,0,0,0,0),+(0,1,0,0,0,0),+(0,0,1,0,0,0) }.
Proof. Necessity. By Theorem 1,
la+b+c|<1,la+b—c|<1l]Ja—b+c|<1,|—a+b+c| <1
Claim. At least three among |[a +b+c|,|[a+b—c|,|[a—b+c|, | —a+b+c|equaltol.

Otherwise. We have two cases.
Casel. la+b+cl=1]Ja+b—c|=1]a—b+c|<1,|—a+b+c <1l

By Lemma 1,1 = |a+b| =a+Db,c=0.Obviously, [a—b| <land T = (4,1 —4,0,0,0,0)
for 0 < a < 1. By Theorem 3, T is not extreme. This is a contradiction.

Case2. |—a+b+c|=1,Ja—b+c|=1a+b+c| <1, ja+b—c| <1

By analogous arguments as Case 1, T = (2,4 — 1,0,0,0,0) for 0 < a < 1. By Theorem 3, T
is not extreme. This is a contradiction.
Therefore, the claim holds. By Proposition 2, necessity follows. Sufficiency is obvious. [

Proposition 4. Let T = (a,b,c,2d1p,2d13,2dy) € Ls(*13,) be such that |T|| = 1 and at least
one among 2|d1y|, 2|d13|, 2|d23| equals to 1. Then, T € ext B, 23 ) if and only if

T e {i (1,—1,0,1,0,0),i<1 1 o,—1,0,o),j:(1 0 1,0,1,0),

27 2 272 2772
+ <%,0,—%,O,—1,0>,:|:<O, %,—%,0,0,1),:&(0, %,—%,0,0,—1)}.

Proof. By (1) we may assume thata > |b| > |c|.

Necessity. By Theorem 2, it suffices to show the assertion for the case 2|d1,| = 1. By Theorem
L0=a+b—c=a+b+c=dy = dy, whichshowsthat0 =c=a+b —1 <a < 1and
T = (a,—a,0,+£1,0,0) for —% <a< % Since T is extreme, by Theorem 3, 2 = j:% and hence,
T = +(3,-%,0,4£1,0,0).

Sufficiency. By Theorem 2, it suffices to show that T = (%, —%, 0,1,0,0) € extB L)

Let Rj € Ls(*I3,) be such that

1 1
Ry = <_ +e,—= 46631+ 512,513,523)

2 2
and , ,
Ry = (5 — €1, —5 €, —€3,1— 01, —d, —523)
with [[Ry]| = ||Rz|| = 1 for some €;,6;; € R fori,j = 1,2,3 with i < j. By Theorem 1, it follows
that

0=01p=013=03, 0=€1+e2+e3, 0=—-€1+er+€, 0=€—€ +e¢€3

which show that €; = 6ij =0 fori,j = 1,2,3 withi < j. Hence, Ry = Ry = T and hence
T € ext Bﬁq(zlgo) O
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Proposition 5. Let T = (a, b, c,2d1p,2d13,2d23) € Ls(?13,)) be such that | T|| = 1 and 2|dq,| =
2|d13| = 2|dos| = 1. Then T € ext B, (23, if and only if

e+ (o0 3L 2Gook L) Gootl )
c@bo i) 0l )0l L)
S0l i )0l L)ool L)
(ool dt) o bod e LiLT)

Proof. By (1) we may assume that a > |b| > |c| and d1pd13 > 0.
Necessity. By Theorem 2, it suffices to show the assertion for the case 2d1, = 2d;3 = % By
Theorem 1, we have

1 1 1
a+b+c=2dy, |a+b—c|§§, |a—b—{—c|§§, |—a+b—|—c|§§, la+b+c+2dy| <1.

Hence, |[a + b+ c+ 2dy| = 1.
Claim. At least two among [a +b —c|,|[a —b+c|,| —a+ b+ c| equal to 3.
Otherwise. Then,

1 1
<|a+b—c| |a—b—|—c|<§,|—a+b+c|<§),
1 1
<]a—|—b—c]< ,|a —b+c\—§,\—a—|—b—|—c\<§),
1 1
<|a+b—c|< ,la —b—{—c|<§, —a+b+c|:§)or
1 1
<|a+b—c|< Ja—bel <5, —a+b+c|<§).

Suppose that [a+b—c| = 3,Ja—b+c| < tand | —a+b+c| < 1. Let R; € Ls(*I3,) be such
that

1 1 1
N,2d12, 2d13,2d23) and R; = <a,b - 2d12,2d13,2d23>,

1
R1:<a,b+—,c+ N’C_N'

N
where | —a+b+c|+ % < 3. Then, |Ry|| = |[Rz|]| = 1and T = 1(Ry + R,) and, hence, T is
not extreme. This is a contradiction. Similarly, if T satisfies the other cases, we may reach to a
contradiction. Therefore, we have shown the claim.

Hence, (ja+b—c|=|a—b+c|=3), (la+b—c|=|—a+b+c|=3)or(la—b+c| =
|—a+b+c|=13).

By symmetry, we may assume that [a+b —c| = [a —b+c| = 3. Since [2a £2(b— )| =1,
by Lemma 1, |a| = 3,b = c. Since |20 —4b| < 1, |2a+4b| = 1, by Lemma 1, b = ¢ = 0,

a:—Zdzgz%andT:< OO’;’;’_%)

Let Rj € L(%I3,) be such that

1 1 1 1
Ry = <§ t 162,635 4012, 5 + 013, —5 + 523)
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and 1 1 1 1
Ry = <§ — €1, €2, €3, 5 —01p, 5 — 013, —5 — 523)
with [|[Ry|| = [|Rz|| = 1 for some €;,0;; € R, i,j =1,2,3 withi <.

By Theorem 1, it follows that
0 =012 — d13 = d12 + d13,
0=¢€1+ex+€3— 23,
0=e1+er+e3+0d23,
0= —€1+e+e3,
0=€1—€ery+e3,
which show that €; = 4;; = 0 fori,j = 1,2,3 withi < j. Hence, Ry = Ry, = T and, hence,
T € ext Bﬁq(zlgo) O

We are in position to show the main result.

Theorem 4.

extBy () = { +(1,0,0,0,0,0),+(0,1,0,0,0,0),£(0,0,1,0,0,0),
1 1 1 1 1 1

+ <%,—§,;),1,0,0>,:|:<§, —15,0,1—1,0,0),i<2,§), % ,0,1, o)
0300203000203 300 )
ey
020320202 -21) 20203 ).
+ (0'0?‘51' 51' 51)'i(0 0, 51' 5'151' 51)'i(0'0'§'§1' 51'151)'
£(=500555)%(0-30553)%(00-3553)}

Proof. By Theorem 2 and Propositions 1-5, the 42 bilinear forms in the list of Theorem 4 are
extreme.

Let T = (a,b,¢,2d12, 2d13,2d23) € ext B, 3 ). By (1) we may assume that a > |b| > |c|] and
dipdq3 > 0. We will show that T is contained in the list of Theorem 4.

Let Wy :=2dyp, Z1:=a+b—c, Wy :=2d13,Zp :=a—b+c, W3 :=2dy3, Z3:= —a+b+c,
Wy = 2(d12 +diz), Z4 == a+b+c+ 2dys, W5 := 2(d12 —dz), Zs == a+b+c— 2dy,
B; := [W;| +|Zj|forj=1,...,5.

Remark 1. Notice that if S = (a’, b/,c/,2d12,2d13,2d’23) € Ls(?3)) is an element in the list of
Theorem 4, then B;- =1forallj=1,...,5 where

By = |2dp,| +|a +b — ],

By :=[2dys| +|d — b+,

By = |2dos| + | —a +b +¢,

By :=2ldy, +dys| +]a +b +c +2dy),
Bs :=2|dyy —dis| + @ 4+ b + ¢ —2dy).



378 Kim Sung Guen

Claim. B]- =1forallj=1,...,5.
Otherwise. Suppose that only two among By, .. ., Bs equal to 1. We will reach to a contra-
diction. Ten cases may occur:

(Bi=B,=1,B3<1,By<1,B5<1), B3;=1,B,<1,By<1,B5<1),
(By=B4;=1,By,<1,B3<1,Bs5<1), (Bj=Bs=1,B,<1,B3<1,By<1),
(Bp=B3=1,B1 <1,B4<1,B5<1), »=By=1B1<1,B3<1,B5<1),
(Bp=Bs=1,B;<1,B3<1,B3<1), (B3=By=1,B<1,B,<1,B5<1),
(

B3 =B5=1B1<1,By<1,By<1) or (B4y=Bs=1B;<1,By<1B3<1).
By symmetry it is enough to consider the five cases:

(Bl =By,=1,B3<1,B4<1,Bs < 1), (Bl =B3=1,B,<1,B4<1,Bs< 1),
(Bp=By=1,By<1,B3<1,Bs<1), (B3=By=1,B;<1,B,<1,Bs<1) or
(By=Bs=1,By<1,By<1,B;<1).

Suppose that By = B; and the others are less than 1. Let N € IN such that B; + % < 1 for
j=34,5 LetT; € Ls(?13,) be such that

1 1
Ty = <11, b,c,2dy1p,2d13,2d3 + N) and T = <11, b,c,2d1p,2d13,2d3 — N)'

By Theorem 1, Ty # Tp, ||Tj|| = 1 and T = 3(T; + T). Hence T is not extreme. This is a
contradiction.

Suppose that By = B3 and the others are less than 1. Let N € IN such that B; + % < 1 for
j=2,4,5 LetT; € Ls(?13)) be such that

1 1 1 1

Ty = <ll + N, b,C+ N’2d12’2d13’2d23) and Ty = (El - N’ b,C - N,2d12,2d13,2d23).
By Theorem 1, Ty # Tp,||Tj|| = 1and T = 1(Ty + T»). Hence T is not extreme. This is a
contradiction.

Suppose that By = B4 and the others are less than 1. Let N € IN such that B; + Z < 1for
j=2305 LetT; € Ls(?13,) be such that

1 1 1 1 1 1
T = (El—|— N,b,C—F N,2d12,2d13,2d23 - N) and T, = <a — N,b,c — N,2d12,2d13,2d23 + N)

By Theorem 1, Ty # Tp,||Tj|| = 1and T = 3(T1 + T»). Hence T is not extreme. This is a
contradiction.

Suppose that B; = B4 and the others are less than 1. Let N € IN such that B; + % < 1 for
j=1,2,5.Let Tj € Ls(*I3,) be such that

1 1
T, = <ﬂ,b + N 2d12 + ,2d13 — ,21123)

and 1 1 1 1
T :<,b——, = 2y — —,2dys — —,2d )
2 a NC+N 12 = 3572413 — 3y 2423
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By Theorem 1, Ty # Tp,||T;|| = 1 and T = }(Ty + T). Hence T is not extreme. This is a
contradiction.

Suppose that By = Bs and the others are less than 1. Let N € IN such that B; + % < 1 for
j=1,2,3. Let Tj € Ls(*I3,) be such that

1 1 1 1
Tl = <ll + N, b,C - N,2d12’2d13’2d23) and T = <a + N, b,C - N,2d12,2d13,2d23).

By Theorem 1, Ty # Tp,||T;|| = 1 and T = 5(Ty + T). Hence T is not extreme. This is a
contradiction.

Suppose that only three among By, ..., Bs equal to 1. We will reach to a contradiction. Ten
cases may occur:

(By=By=B3=1,By<1,Bs<1), (Bi=By=By=1,B3<1,Bs<1),
(By=By=Bs=1,B3<1,By<1), (Bij=B3=By=1B,<1,Bs<1),
(By=Bs=Bs=1,By<1,By<1), (By=B3=By=1B;<1,Bs<1),
(Bp=B3=Bs=1,By<1,By<1), (By=By=Bs=1,B,<1,B3<1),
(Bp=Bsy=Bs=1,Bi<1,B3<1) or (B3y=By=Bs=1,B;<1,B,<1).

By symmetry it is enough to consider five cases:

(Bl =By=B3=1,B4<1,B5 < 1), (Bl =B,=B;=1,B3 <1,B;5 <1>,
(Bi=B3=Bs=1By<1,Bs<1), (Bij=Bi=Bs=1By<1By<1) or
(By=By=Bs=1,B,<1,By < 1).

Suppose that By = By = B3 =1and By < 1,B5 < 1.
Since T is extreme, by Lemmas 1-2, we have

(241 =0,]a+b—c| =1) or (2dio| = 1 [a+b—c| =0)],
[(2d13 =0,la—b+c|=1)or (2|diz| =1,]a—b+| :O)] and
[(zd23:o,|—a+b+c| =1)or (2/dy|=1,|—a+b+c| :0)].

If at least one among 2|d1;|,2|d13],2|d23| equals to 1, then, by Proposition 4, T is contained in
the list of Theorem 4. By Remark 1, 1 > B4 = 1, a contradiction. If 2d1, = 2dy3 = 2dy3 = 0,
then, by Proposition 3, T is contained in the list of Theorem 4. By Remark 1,1 > By = 1, a
contradiction.

Suppose that By = Bp = By =1and B3 < 1,B5 < 1.

Since T is extreme, by Lemmas 1-2, we have

[(Zdu —0,Ja+b—c|=1)or 2ldin| =1,Ja+b—| :0)},

[(2&113 =0,la—b+c|=1)or (2ldiz|=1,la—b+c| = 0)} and

{(2(0112 +di3) =0,|a+b+c+2dy| =1) or 2{diz +diz| = 1,[a+ b+ c+ 2dp3| = 0)]-
We claim that 2|d1;| = 1 or 2|d13| = 1. Otherwise. Then, 2d1, = 2d13 = 0. Then,

la+b—c|l=la—b+c|=1.
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By Lemma 1,4 = 1, |b — ¢| = 0. By Proposition 1, T = (1,0,0,0,0,0). Hence, 1 > B3 = 1, a
contradiction.

Suppose that By = Bs = By =1and B < 1,B5 < 1.

Since T is extreme, by Lemmas 1-2, we have

(241 = 0,Ja+b—c| = 1) or (2dio| =1 Ja+b—c| =0)],
(245 =0,| —a+b+c| =1)or (2dn| =1,|—a+b+c[=0)], and
{(2(61124—6113) :O,’ﬂ+b+c+2d23’ :1) or (2’d12+d13’ :1,\a+b—|—c+2d23] :0)]

If 2|d1| = 1 or 2|dy3| = 1, by Proposition 4, T is contained in the list of Theorem 4. By
Remark 1,1 > B> = 1, a contradiction.
Suppose that 2|d15| = 2|d3| = 0. Then,

(2d13 :O,|a+b+c| = 1) or (2|d13| = 1,|ll+b+C| :0)

By Propositions 3—4, T is contained in the list of Theorem 4. By Remark 1,1 > B, =1, a
contradiction.

Suppose that By = By = Bs = 1and B, < 1,B3 < 1.

Since T is extreme, by Lemmas 1-2, we have

[2d12_o a+b—c|=1)or 2ldn| =1,|a+b—| _0)]
{2 d12+d13 —O ]a+b+c+2d23] :1) O].‘(Z’dlz-i-dlg,’ =1, ]a+b+c+2d23] :O)] and
[(Z(dlz—dlg,):O,]a—l—b—l—c—2d23!:1) or(2]d12—d13]:1,]a+b+c—2d23120)].

If 2|d15| = 1, by Proposition 4, T is contained in the list of Theorem 4. By Remark 1,1 > B, =1,
a contradiction. Suppose that 2|d1,| = 0. Then,

[(mlg =0,[a+b+c+2dys| =1)or (2|diz| =1, |a + b+ c + 24| 20)] and
[(mlg =0,la+b+c—2dys| =1)or (2Jdiz| =1, |a + b+ c — 24| 20)].

If 2|d13| = 1, by Proposition 4, T is contained in the list of Theorem 4. By Remark 1,1 > B, =1,
a contradiction. Suppose that 2|d13| = 0. Then, |(a + b + ¢) £ 2dp3| = 1. By Lemma 1,

(@a+b+c=0,2[dys| =1)or (Ja+b+c|=1,2dx3| =0).

If 2|dy3| = 1, by Proposition 4, T is contained in the list of Theorem 4. By Remark 1,1 > B, =1,
a contradiction. If 2|dp3| = 0, then d1p = di3 = dy3 = 0. By Proposition 3, T is contained in the
list of Theorem 4. By Remark 1,1 > B, = 1, a contradiction.

Suppose that B3 = By = Bs = land B; < 1,B; < 1.

Since T is extreme, by Lemmas 1-2, we have

[(2d23 =0, —a+b+c|=1)or(2dn| =1,|—a+b+c| 20)],
[(2(d12+d13) = 0,|a+b+c+2dys| =1)or (2ldip +dis| =1, |a+ b+ c + 2da3) 20)] and

{(2(6112 —d13) = O,’EI—Fb—FC—Zdzg‘ = 1) or (2’[112 —d13’ = 1,’ﬂ+b+0—2d23’ :O)].
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If 2|dy3| = 1, by Proposition 4, T is contained in the list of Theorem 4. By Remark 1,1 > B; =1,
a contradiction.

Let 2|dp3| = 0. Suppose that 2(dyp +di3) = 0,]|a+ b+ ¢+ 2dys| = 1. If 2(d1p — d13) = 0,
|a +b+c—2dys| =1, then

d12:d13 and [(ﬂ+b+CZO,2|d23|:1) or (|a+b+c|:1,2d23:0)].

By Propositions 3-4, T is contained in the list of Theorem 4. By Remark 1,1 > B; =1, a
contradiction.
Suppose that 2|d1y + di3| =1, |a + b+ c + 2dp3| = 0. Then, |2d1, £ 2d13| = 1. By Lemma 2,

(|2d12| =1, |2d13| = 0) or (|2d12| =0, |2d13| = 1)

By Proposition 4, T is contained in the list of Theorem 4. By Remark 1, 1 > B; = 1, a contra-
diction.

Suppose that only four among By, .. ., Bs equal to 1. We will reach to a contradiction.

Five cases may occur:

(Bl—Bz B3—B4—1B5<1) (B1:BZZB3:B5:1,B4<1),
(BlszzB4IB5:1,B3<1), (31:B3:B4:B5:1,Bz<1> or
(B2:B3:B4:B5:1,Bl<1).

By symmetry it is enough to consider three cases:

(Bi=By=By=By=1Bs<1), (By=By=By=Bs=1B3<1) or
(B2:B3:B4:B5:1,B1<1).

Supposethat By = By = B3 =B; =1,B5 < 1.
Since T is extreme, by Lemmas 1-2, we have

—er_0m+b—d—1ﬁnQuuM_1m+b—d—0ﬂ and
:me—OM—b+cL—D (aﬁﬂ:14w—h+q=oﬂ}

(2d Z_Qm+b—q:1yn@mup:Lm+b—q:oﬂ and

:(2d23_0 |—a+b-+c|=1)or (2dxs| =1, ]—a+b+c]—0)]}

[(2d z_qm+b—q:1yn@mup:Lm+b—q:oﬂ and

:(2(d12+d13) 0,0 +b+c+2dy| = 1) or (2]din +drs| =1, |a+ b+ c + 2] :0)] }
(2d 3_oya—b+cy—moramw\_1ya—b+cy—m] and
:@@3_0|—a+b+cp_nor@m8|_1|—a+b+cp_m]}

(2d 3_oya—b+cy—moramw\_1ya—b+cy—m] and
:@mu+dmy_om+b+c+z@ﬂ_1yn@mu+dmp_1m+b+c+2@ﬂ_oﬂ} or
(
(

'2@3_0|—a+b+cp_nor@mmy_1|—a+b+cm_m] and

2(d12+d13) =0, \a+b+c—|—2d23\ =1)or (2’d12+d13‘ =1, ]a+b+c+2d23\ —O)]}
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By symmetry it is enough to consider four subcases:

{

2d12—0\a—l—b—c\—l)or(Z\dlz\—l\a+b—c\—0)} and
2d13=0,|a—b+c|=1)0 (z|d13|:1,|a—b+c|:0)]},

2d 2—0,|a+b—c|:1)or(2|d12|:1,|a~|—b—c|:0)} and

2y = 0,| —a+b+c| =1)or (2dos| = 1,| — a+b+c\:0)”,

2(dip +d13) = 0,a+b+c+2das| = 1) or (2ldip + das| =1, @+ b+ c + 2da3 _0)] and
2(d1y +diz) =0, a+b+c+2dy| = 1) or (2ldip +diz| =1, |a + b + ¢ + 2das] _0)” or

(
(
(
(
(
(
(23 = 0,| —a+b+c|=1)or (2ds| =1,[—a+b+c| =0)] and
(

2(dip +d13) = 0,a+b+c+2das| = 1) or (2ldip + das| =1, |a + b + ¢ + 2da3 _0)]}
Suppose that

[(25112 —0,Ja+b—c|=1)or ldn| =1,]a+b—c| = 0)] and

[(zdlg =0,Ja—b+c|=1)or(2ldis| =1,]a—b+c| 20)].

If 2|diz| = 1 or 2|di3| = 1, by Proposition 4, T is contained in the list of Theorem 4. By
Remark 1,1 > Bs = 1, a contradiction.

Letdi, =di3=0,la+b—c|=]a—b+c|] =1.ByLemmal, a =1,b = c. By Proposition 1,
T is contained in the list of Theorem 4. By Remark 1, 1 > Bs = 1, a contradiction.

Suppose that

{(2&113—0]a—b+c\—1)or(2\d13] 1, \a—b—i—c\—O)} and
[(2(0112—0113):o,|a+b+c—zd23|:1)or(z|d12—d13|:1,|a+b+c—2d23|20)].

If 2|d13| = 1, by Proposition 4, T is contained in the list of Theorem 4. By Remark 1,1 > Bs =1,
a contradiction.

Let 2d13 = dlZ - dlg =0. Then, dlZ = dlg =0, |ll +b— C| = |a —b+ C| =1. By Lemma 1,
a =1,b = c. By Proposition 1, T is contained in the list of Theorem 4. By Remark 1,1 > B5 =1,
a contradiction.

Suppose that

[(z(dlz Hdi3) = 0,]a+b+c+2dos| =1) or (2ldip +dis| =1, |a+b+c+2dps| = 0)] and
[( (dia —diz) = 0, |a+ b+ c— 2dos| = 1) or (2|d1p — di3| = 1, |a+ b+ c — 2d3] :0)]
Let 2(dyp + d13) = 2(d1p — d13) = 0. Since |(a + b+ ¢) £ 2dp3| = 1, by Lemma 1,
(la+b+cl=1dyp=0)or (Ja+b+c|=0,2|dys| =1).

If la+b+c| =1,dy =0, then dip = di3 = dpz = 0. By Proposition 3, T is contained in the list
of Theorem 4. By Remark 1, 1 > Bs = 1, a contradiction.
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If [a+b+c| =0,2|dy| = 1, by Proposition 4, T is contained in the list of Theorem 4. By
Remark 1,1 > Bs = 1, a contradiction.
If 2|dyp + di3| = 2|d12 — d13| = 1, by Lemma 1,

(|2d12| = 1,d23 = 0) or (d12 = 0,2|dp3| = 1).

By Proposition 4, T is contained in the list of Theorem 4. By Remark 1, 1 > Bs = 1, a contra-
diction.

Let (2(d1p +d13) = 0,2|d1p —dys| = 1) or (2(d1p + dy3) = 1,2|d1p — di3] = 0). Suppose that
(2(6112 +di3) =0, ’ﬂ +b+c+ 2d23’ = 1) or (2’[112 + d13’ =0, ’ﬂ +b+c+ Zdzg‘ = 1). Then,
4|d1p| = 4|d13| = 4|daz2| = 1. By Proposition 5, T is contained in the list of Theorem 4. By
Remark 1,1 > Bs = 1, a contradiction.

If (2(d12 + dlg) =1, |ll +b+c+ 2d23| = 0) or (2|d12 + d13| =1, |a +b+c +2d23| = 0),
then 4|dqp| = 4|d13| = 4|dos2| = 1. By Proposition 5, T is contained in the list of Theorem 4. By
Remark 1,1 > Bs = 1, a contradiction.

Suppose that By = By = B4 =Bs =1,B3 < 1.

Suppose that

(2d1 =0,la+b—c|=1) and (2d13=0,la—b+c|=1).

By Lemma 1, 2 = 1,b = c. By Proposition 1, T is contained in the list of Theorem 4. By
Remark 1,1 > B3 = 1, a contradiction.
Suppose that

(2d12:0,|a—1—b—c|:1) and (2(d12+d13):0,|a+b+c+2d23|:1)

Then, dip = di3 = 0,a = 1,b = ¢,2|dy3| = 1. By Proposition 1, T is contained in the list of
Theorem 4. By Remark 1,1 > B3 = 1, a contradiction.
Suppose that

Then, dip = di3 = 0,a = 1,b = ¢,2|dy3| = 1. By Proposition 1, T is contained in the list of
Theorem 4. By Remark 1,1 > B3 = 1, a contradiction.

Suppose that By = B3 = By = Bs =1,B; < 1.

Suppose that

(2d;3=0,la—b+c|=1) and (2d3=0,|—a+b+c|=1).

Then, di3 = dy3| = 0,|c| = 1,a = b. By Proposition 1, T is contained in the list of Theorem 4.
By Remark 1,1 > B; =1, a contradiction.
Suppose that

(2dy3 =0,| —a+b+c|=1) and (2(diz+d13) =0, |la+b+c+2dy|=1).

Then, dip = di3 = dyz = 0. By Proposition 3, T is contained in the list of Theorem 4. By
Remark 1,1 > B; = 1, a contradiction.
Suppose that

(2dys =0,|—a+b+c|=1) and (2|dyp+diz| =1,|a+b+c+2dy3| =0).
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Then, dyp = di3 = 0,2|dy3| = 1. By Proposition 4, T is contained in the list of Theorem 4. By
Remark 1,1 > B; = 1, a contradiction.
Suppose that

[(2((112 tdi3) =0,]a+b+c+2dos| =1) or (2ldip +dis| =1, |a+b+c+2dps| = 0)] and

{(2(6112 —d13) = O,’EI—Fb—FC—Zdzg‘ = 1) or (2’[112 —d13’ = 1,’ﬂ+b+0—2d23’ :O)].

If (2(d12 + dlg) =0, |ll +b+c+ 2d23| = 1) and (2(d12 - dlg) =0, |a +b+c— 2d23| = 1), then
2|dp3| = 1. By Proposition 4, T is contained in the list of Theorem 4. By Remark 1,1 > B; =1,
a contradiction.

If (2(d12 + dlg) =0, |ll +b+c+ 2d23| = 1) and (2|d12 - d13| =1, |a +b+c— 2d23| = 0),
then 4|dy,| = 4|d13| = 4|das| = 1. By Proposition 5, T is contained in the list of Theorem 4. By
Remark 1,1 > B; = 1, a contradiction.

If (2(d12 + dlg) =1, |ll +b+c+ 2d23| = 0) and (2|d12 - d13| =0, |a +b+c— 2d23| = 1),
then 4|dqp| = 4|d13| = 4|das| = 1. By Proposition 5, T is contained in the list of Theorem 4. By
Remark 1,1 > B; = 1, a contradiction.

If (2((112 + dlg) =1, |ll +b+c+ 2d23| = 0) and (2|d12 - d13| =1, |a +b+c— 2d23| = 0),
then 2|dy;| = 1 or 2|di3| = 1. By Proposition 4, T is contained in the list of Theorem 4. By
Remark 1,1 > By = 1, a contradiction.

Therefore, Bi =1 for all j = 1,...,5. Since T is extreme, by Lemma 2, there are
jo € {1,...,5} such that

“Njo + Z]'o‘ =1.

By Theorem 2, it suffices to consider the cases jo = 1,3, 4.

Case1. jo = 1.

Then, (2|d12| = 1,ll+b—C = 0) or (2d12 = 0,|ll—b+C| = 1) If 2|d12| = 1,
a+b—c=0ﬂmm]—a+b+ch:M—b+cM:La+b+c:OikmmﬁT:<%—%JL¢LQO)
Suppose that 2d1, = 0,]a — b +c| = 1. Since |(a + b+ ¢) & 2dy3| = 1 — 2|dy3|, by Lemma 1,
(2|dy| = 1—2|dy3l,a+b+c = 0) or (2dy3 = 0,]a+b+c| = 1—2|dy3]). Suppose that
2dy3 =0,la+b+c| =1—2]dy3|.Since |[b+ (a—c)| =1,byLemmal, b =0,a—c=|a—c| =1
Sincea > |b| > |c|,a = 1,b = ¢ = dyp = di3 = dp3 = 0. Hence, T = (1,0,0,0,0,0). Suppose
that 2|dys| = 1 —2|d13],a + b+ c = 0. Notice that |a + b — ¢| = 1. Without loss of generality, we
may assume thata +b —c = 1. Hence, c = —% andb=1—afor0<a<1.Sincea > |b] > |c|,
a=1b= —%. Hence, di; = di3 = dyz3 = 0.1 = Bs = 0, a contradiction. Hence, the case
2|dys| =1 —2|d13|,a + b+ c = 0 can not happen.

Case 2. jo = 3.

Then, (2|d23| = 1,—a+b+c = O) or (2[7[23 = 0,| —a—{—b—{—c| = 1). If 2|d23| =
T = (0,0,0,0,0,4£1). Then, 1 = B; = 0, a contradiction. Therefore, the case 2|dy;| =
—a+ b+ ¢ = 0 can not happen. Suppose that 2dy3 = 0, | —a + b+ ¢| = 1. Since |2d15 + 2d3]
1—|la+b+c|, by Lemma 1, (2|dz] = 1—|a+b+c|,2di3 = 0) or (2dp = 0,2|d13] =
1—1]a+0b+c|). Suppose that 2|d1p| = 1 —|a+b+c|,2d;3 = 0. Since [c+ (a —b)| = 1, by
Lemmal,¢c=0,a—b=|a—b| =1 Hence,b =a—1and

—_
~ ~

T = (a,a—1,0,4(1 — |1 —2a|),0,0)
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for 3 < a < 1.Since T is extreme, T = (1,0,0,0,0,0) or T = <%,—%,O,i1, 0, o). Suppose that
2d1 = 0,2|d13| =1—Ja+b+c|.Since|b£ (a—c)| =1,byLemmal,b=0,a—c=|a—c| =1
Sincea > |b| > |c|,c=0=d;zand T = (1,0,0,0,0,0).

Case 3. jo = 4.

Then, (2([112 +di3) =0, ’ﬂ +b+c+ Zdzg‘ = 1) or (2‘6112 + d13‘ =1l,a+b+c+2dy =0).
Suppose that 2(d1p +di3) =0, |a+ b+ ¢+ 2dp3| = 1. Then, d13 = —dq2 = 0because dipdq3 > 0.
Hence, [a+b+c| =|a—b+c| = |a+b—c| = 1. By Proposition 2, T = (1,0,0,0,0,0). Sup-
pose that 2|dip +dy3| = 1,a+ b+ ¢ + 2dy3 = 0. Without loss of generality, we may assume that
dip > diz3 > 0. Notice that 2|d23| = 2d13 = 1 —2dyp and |C + (ll - b)| = |C - (a - b)| Let
l:=|c+(a—"b)]. By Lemmal, (Jc] = l,a—b = |la—b =0)or (c =0a—-b=|a—
b| = I). Suppose that |c| = l,a—b = |a —b| = 0. Since |2a £ ¢| = 1 — 2d1p, by Lemma 1,
2a =1 — 2dqp,¢ = 0. Hence,

1-2dyp 1-2d
T:< 12 12

2 ’ 2 ’ Or 2d12/ 1 - 2d12! :i:(l - 2d12))

for 0 < 2d1p < 1. Since T is extreme, T = (0,0,0,1,0,0) or T = (%,%,0,0, 1,11). This is
a contradiction because 1 = B, = Qor1 = By = 3 or1 = Bs = 3. Therefore, the case
lc| =1,a—b = |a—b| = 0 can not happen. Suppose that c = 0,a —b = |a — b| = I. Then,
a=1b=1-2d,and T = (%,% — 2d1p,0,1 — 2dyp, +(1 — 2d12)) for 1 < 2dy, < 1.Since T is
extreme, T = <%, —%,0,1,0, 0) orT = <%,O, 0, %, %, —%)

Therefore, we complete the proof. O
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Hexait pocrip I3, = R® ocnameno pisHOMipHO© HOpMoMo. Y craTTi [Comment. Math. 2017, 57
(1), 1-7], C.T. Kim kracudpikyBaB eKCcTpeMaAbHi TOUKM OAMHIYHOI KyAi pocTopy Ls(%12,) Buxopu-
cToBytoun Amize makeT Mathematica 8, ae £(%13,) e mpocTopom cumerpuarmx 6iAiHiiHIX dpopm
Ha [3,. Burasiaae Ha Te, 1110 6yA0 6 LiKaBO Ta BaXKAMBO KAAcUiKyBaTH eKCTpeMaAbHi TOUKY OAMHM-
uHoOi Kyai mpoctopy Ls(13,) 6e3 Bukopucranss Mathematica 8. MeToro 1iei cTaTTi € 3po6uTH TaKy
KAacmdikario 3a AOIIOMOrOX0 MaTeMaTWIHIMX OOUMCAEHb.

Kntouosi cnosa i ppasu: excTpeMasbHa TOUKA.



