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On a nonlocal problem for the first-order differential-operator
equations
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In this work, we study the spaces of generalized elements identified with formal Fourier series

and constructed via a non-negative self-adjoint operator in Hilbert space. The spectrum of this

operator is purely discrete. For a differential-operator equation of the first order, we formulate a

nonlocal multipoint by time problem if the corresponding condition is satisfied in a positive or neg-

ative space that is constructed via such operator; such problem can be treated as a generalization of

an abstract Cauchy problem for the specified differential-operator equation. The correct solvability

of the aforementioned problem is proven, a fundamental solution is constructed, and its structure

and properties are studied. The solution is represented as an abstract convolution of a fundamental

solution with a boundary element. This boundary element is used to formulate a multipoint con-

dition, and it is a linear continuous functional defined in the space of main elements. Furthermore,

this solution satisfies multipoint condition in a negative space that is adjoint with a corresponding

positive space of elements.
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1 Introduction

In the study of many problems of analysis and mathematical physics, instead of a pair of

spaces, the main and conjugate spaces, we use the triplet of Hilbert spaces of type

H+ ⊂ H ⊂ H−, where H+ is a positive space , H− is a negative space, H+, H− are spaces

of the main and generalized elements (continuous linear functionals on H+). The role of H in

such a chain is that the scalar product in it can be extended to a continuous bilinear form on

H− × H+, which sets the action of the generalized element on the main one.

Various functional spaces (e.g., Sobolev, analytic functions, infinitely differentiable, and

Schwartz distributions) can be interpreted as positive and negative spaces with respect to L2,

constructed by functions from a differentiation operator or multiplication by an independent

variable, or as projective or inductive limits. In [1], the authors discuss the spaces of the main

and generalized elements that are built by functions of an arbitrary self-adjoint operator.

This paper considers spaces of generalized elements identified with formal Fourier se-

ries and constructed by an integral self-adjoint operator A in Hilbert space; the spectrum of

this operator is purely discrete. For the differential-operator equation u′(t) + ϕ(A)u(t) = 0,

t ∈ (0, T] (ϕ(A) is a function of the operator A) is a nonlocal multipoint by time problem if
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the corresponding condition is satisfied in a positive or negative space that is constructed by

the operator A (such a problem can be understood as a certain generalization of the Cauchy

abstract problem for the specified differential operator equation). A nonlocal multipoint by

time problem belongs to nonlocal problems for differential-operator equations. Such prob-

lems arise in: (i) modeling many processes and applied tasks with boundary value problems

for differential-operator equations with nonlocal conditions, (ii) description of all correct prob-

lems for a particular operator, (iii) construction of a general theory of boundary value problems

for differential-operator equations. Many mathematicians have been involved in the study of

such nonlocal problems (see, for example, [2–11]). Important results were obtained concern-

ing the formulation, correct solvability and solution construction, and conditions of regularity

and irregularity of boundary conditions were formulated for important cases of differential-

operator equations.

In this paper we establish the correct solvability of a nonlocal multipoint by time problem

for the differential-operator equation u′(t) + ϕ(A)u(t) = 0, t ∈ (0, T]; at the same time we

build a fundamental solution of G(t), t ∈ (0, T] of such problem, and investigate its structure

and properties. The solution u(t) is given in the form of an abstract convolution G(t) ∗ g,

where the boundary element g is a continuous linear functional defined on a certain space of

main elements (positive space H+, constructed by the operator A), with {G(t), u(t)} ⊂ H+ at

each T ∈ (0, T], but the convolution of G(t) ∗ g satisfies multipoint condition in the negative

space H−.

2 Spaces of main and generalized elements. The formal Fourier series

Let H be a separable Hilbert space with a scalar product (·, ·) and the norm ‖ · ‖,

{ek : k ∈ N} is orthonormal basis in H. Let us denote

Φm =
{

ϕ ∈ H | ϕ =
m

∑
k=1

ck,ϕek, ck,ϕ ∈ C

}

, Φ =
∞
⋃

m=1

Φm,

and Φ′ is the space of all antilinear continuous functionals on Φ with weak convergence.

Matching

H ∋ ϕ −→ fϕ ∈ Φ′ : 〈 fϕ, ψ〉 = (ϕ, ψ), ∀ψ ∈ Φ,

(〈 fϕ, ψ〉 denotes the action of fϕ on ψ) defines the H ⊂ Φ′ embedding. So, Φ ⊂ H ⊂ Φ′, and

these embeddings are dense and continuous [12]. Elements from Φ′ are called generalized

elements.

Let s be the space of all numerical sequences {ck : k ∈ N}, ck ∈ C, with coordinate

convergence. Let us define the mapping

F : Φ′ ∋ f → {ck( f ) = 〈 f , ek〉 : k ∈ N} ∈ s,

which is isomorphism [12].

The series
∞

∑
k=1

ck( f )ek , where ck( f ) = 〈 f , ek〉, is called the Fourier series of the element

f ∈ Φ′, and the numbers ck( f ) are its Fourier coefficients. For an arbitrary element f ∈ Φ′ its

Fourier series converges in Φ′ to f ; on the contrary, an arbitrary series
∞

∑
k=1

ckek weakly converges
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in Φ′ to some element f ∈ Φ′, and this series is a Fourier series for f [12]. So, Φ′ can be

understood as the space of formal series of the form
∞

∑
k=1

ckek.

Let G be a continuous monotonically increasing on [0, ∞) function such that

∃ c > 0 ∀ x ∈ [0, ∞) : G(x) ≥ c, lim
x→+∞

G(x) = +∞,
∞

∑
k=1

G−2(k) < +∞.

Let us construct an operator by function G in the space Φ′

Â : Φ′ ∋ f =
∞

∑
k=1

ck( f )ek −→
∞

∑
k=1

G(k)ck( f )ek = Â f ∈ Φ′, ck( f ) = 〈 f , ek〉.

Obviously, the operator Â is linear and continuous in Φ′. If A is a restriction of the operator Â

to H, then A is an integral self-adjoint operator in H with a dense domain D(A) = {ϕ ∈ H :
∞

∑
k=1

G2(k)|ck(ϕ)|2 < ∞, ck(ϕ) = (ϕ, ek), k ∈ N}, with Φ ⊂ D(A). The spectrum of A is purely

discrete with a single infinite boundary point σ(A) = {λk : k ∈ N}, where λk = G(k), k ∈ N

(see [13, p. 14]).

Now let us introduce some classes of elements associated with the operator A. Suppose that

a monotonically increasing sequence {mn : n ∈ Z+} of positive numbers has the properties:

1) ∃ M > 0 ∃ h > 0: mn+1 ≤ Mhnmn, n ∈ Z+, m0 = 1;

2) ∀ α > 0 ∃ cα > 0: mn ≥ cααn, n ∈ Z+.

Let us denote by H∞(A) = lim pr
α→∞

Hα(A) the inverse (projective) limit, Hα(A) = D(Aα),

D(Aα) is domain of the operator

Aα : D(Aα) =
{

ϕ ∈ H :
∞

∑
k=1

λ2α
k |ck(ϕ)|2 < ∞, λk = G(k)

}

,

(ϕ, ψ)Hα
:= (ϕ, ψ) + (Aα ϕ, Aαψ), ∀{ϕ, ψ} ⊂ D(Aα),

Hα〈mn〉 := {ϕ ∈ H∞(A)
∣

∣

∣
∃ c > 0 : ‖An ϕ‖ ≤ cαnmn, α > 0, n ∈ Z+}.

The space Hα〈mn〉 ⊃ Φ is a Banach space with respect to the norm

‖ϕ‖Hα〈mn〉 = sup
n∈Z+

‖An ϕ‖
αnmn

.

Let us denote by H∞〈mn〉 :=
⋃

α>0
ind Hα〈mn〉 the direct (inductive) limit. It is obvious that

Φ ⊂ H∞〈mn〉 ⊂ H∞(A) ⊂ H, and all the embeddings are dense and continuous. If H′
∞(A),

H′
α〈mn〉 are the spaces of antilinear continuous functionals defined respectively on H∞(A),

Hα〈mn〉 with the weak convergence, then, according to [12], we obtain a chain of dense and

continuous embeddings:

H ⊂ H′
∞(A) ⊂ H′

∞〈mn〉 ⊂ Φ′, and at the same time H′
∞〈mn〉 = lim pr

α→∞

H′
α〈mn〉.

The spaces G{β}(A) := H∞〈nnβ〉, β > 0, are called the Gevrey spaces generated by the

operator A; G{1}(A) matches with the set of analytic vectors of the operator A [12].
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Let ρ(λ) = sup
n∈Z+

λn

mn
, λ ∈ [1,+∞). It follows from the properties of the sequence

{mn : n ∈ Z+} that the function ρ(λ) is continuous, monotonically increasing on [1,+∞)

(faster than λn, ∀n ∈ N), ρ(λ) ≥ 1, ∀λ ∈ [1,+∞). The space H∞〈mn〉 is the inductive limit of

Hilbert spaces (see [12])

H{α} =
{

f ∈ Φ′ :
∞

∑
k=1

|ck( f )|2ρ2
(λk

α

)

< ∞, λk = G(k), ck( f ) = 〈 f , ek〉
}

,

the scalar product in H{α} is defined by the formula

( f , g)H{α} =
∞

∑
k=1

ck( f )ck(g)ρ2
(λk

α

)

, { f , g} ⊂ H{α}.

In terms of the behavior of the Fourier coefficients of their elements, the spaces H∞〈mn〉
and H′

∞〈mn〉 are described in [12], also known as “conditions A–B”:

( f ∈ H∞〈mn〉) ⇔ (∃ µ > 0 ∃ c > 0 ∀ k ∈ N : |ck( f )| ≤ cρ−1(µλk)); (A)

( f ∈ H′
∞〈mn〉) ⇔ (∀µ > 0 ∃ c = c(µ) > 0 ∀ k ∈ N : |ck( f )| ≤ cρ(µλk)). (B)

If mn = nnβ, β > 0, then ρ(λ) ∼ exp{λ1/β}, that is, in this case for f ∈ Φ′, the following

equivalence relations are correct:

( f ∈ G{β}(A)) ⇔ (∃ µ > 0 ∃ c > 0 ∀ k ∈ N : |ck( f )| ≤ c exp(−µλ
1/β
k )),

( f ∈ G′
{β}(A)) ⇔ (∀ µ > 0 ∃ c = c(µ) > 0 ∀ k ∈ N : |ck( f )| ≤ c exp(µλ

1/β
k )).

As an example, consider the Hilbert space H = L2(R). In this space, Hermite functions

hk(x) = (−1)kπ−1/4(2kk!)−1/2ex2/2(e−x2
)(k), k ∈ Z+, x ∈ R.

form the orthonormal basis. By function G(x) = 2x + 1, x ∈ [0, ∞), and the correspond-

ing scheme, we construct in H a non-negative self-adjoint operator A, which coincides with

a harmonic oscillator which is a non-negative self-adjoint operator, generated in L2(R) by the

differential expression −d2/dx2 + x2. The Hermite functions hk, k ∈ Z+, are the eigenfunc-

tions of this operator, and λk = G(k) = 2k + 1, k ∈ Z+, are its eigenvalues. In [1, p.145] it is

proved that G{β}(A) ≡ H∞〈nnβ〉 = S
β/2
β/2, β ≥ 1, where S

β/2
β/2 are S spaces defined in [14]. The

elements of these spaces are infinitely differentiable functions on R that satisfy the condition

|xk ϕ(m)(x)| ≤ cAkkkβ/2 exp(−a|x|2/β), x ∈ R, {k, m} ⊂ Z+,

with some constants c, A, a > 0 (dependent on ϕ).

Therefore, the spaces S
β
β and (S

β
β)

′ can be characterized as follows with the Fourier coeffi-

cients of their elements (see conditions (A), (B) above):

a) f ∈ S
β
β ⇔ ∃ µ > 0 ∃ c > 0 ∀ k ∈ Z+: |ck( f )| ≤ c exp(−µ(2k + 1)

1
2β );

b) f ∈ (S
β
β)

′ ⇔ ∀ µ > 0 ∃ c= c(µ)>0 ∀ k∈Z+: |ck( f )|≤ c exp(µ(2k + 1)
1

2β ), ck( f )= 〈 f , hk 〉.
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3 Non-negative self-adjoint operators as convolution operators

Let { f1, f2} ⊂ Φ′, f1 =
∞

∑
k=1

ck( f1)ek, f2 =
∞

∑
k=1

ck( f2)ek.

In the space Φ′ we define the operation ∗, which we call the “abstract convolution” (or

simply convolution), by

f1 ∗ f2 :=
∞

∑
k=1

ck( f1)ck( f2)ek ≡
∞

∑
k=1

ck( f1 ∗ f2)ek.

Hence the properties of the commutativity and associativity of the convolution in the space

Φ′ hold. Therefore, Φ′ is a ring (relative to the convolution) with the unit element being the

generalized element e =
∞

∑
k=1

ek ∈ Φ′.

The convolution has the following properties:

1) if { f1, f2} ⊂ H′
∞〈mn〉, then f1 ∗ f2 ∈ H′

∞〈mn〉,

2) if f1 ∈ H′
∞〈mn〉, f2 ∈ H∞〈mn〉, then f1 ∗ f2 is an element of the space H∞〈mn〉.

Proof of these properties uses the statements (A), (B), and the convexity property of

ln ρ [15, p. 89], namely

∀{λ1, λ2} ⊂ [1,+∞) : ln ρ(λ1) + ln ρ(λ2) ≤ ln ρ(λ1 + λ2). (1)

Formula (1) corresponds to the definition of the convexity of the function from [16, p. 8].

Let F: [0, ∞) → [0, ∞) be some continuous function. Let us construct the operator B by the

function F:

Bϕ :=
∞

∑
k=1

F(λk)ck(ϕ)ek, λk = G(k),

ϕ ∈ D(B) =
{

ϕ ∈ H :
∞

∑
k=1

F2(λk)|ck(ϕ)|2 ≡
∞

∑
k=1

|ck(Bϕ)|2 < ∞
}

.

Note that B is a non-negative self-adjoint operator in H with a dense domain, and Φ ⊂
D(B), σ(B) = {F(λk) : λk = G(k), k ∈ N}.

Theorem 1. If continuous on [0, ∞) function F satisfies the condition

∀ ε > 0 ∃ cε > 0 ∀ x ∈ [0, ∞) : 0 ≤ F(x) ≤ cερ(εx), (2)

then the operator B is continuous in space H∞〈mn〉 ⊂ H and maps this space onto itself.

Proof. First let us prove that Bϕ ∈ H∞〈mn〉 if ϕ =
∞

∑
k=1

ck(ϕ)ek ∈ H∞〈mn〉. Since

ck(Bϕ) = (Bϕ, ek) = (ϕ, Bek) = F(λk)(ϕ, ek) = F(λk)ck(ϕ), k ∈ N,

then due to the condition (A) it suffices to prove that

∃ µ0 > 0 ∃ c0 > 0 ∀ k ∈ N : F(λk)|ck(ϕ)| ≤ c0ρ−1(µ0λk).
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Given that ϕ ∈ H∞〈mn〉, it follows that

∃ µ1 > 0 ∃ c1 > 0 ∀ k ∈ N : |ck(ϕ)| ≤ c1ρ−1(µ1λk).

So,

F(λk)|ck(ϕ)| ≤ cεc1ρ(ελk)ρ
−1(µ1λk) = cεc1eln ρ(ελk)−ln ρ(µ1λk).

Take ε from (0, µ1). Given the inequality of the convexity (1) for ln ρ, we find that

ln ρ(ελk)− ln ρ(µ1λk) ≤ − ln ρ((µ1 − ε)λk) ≡ − ln ρ(µ0λk),

where µ0 = µ1 − ε. Then

F(λk)|ck(ϕ)| ≤ c0e− ln ρ(µ0λk) = c0ρ−1(µ0λk),

it follows that Bϕ ∈ H∞〈mn〉.
Let us prove that B is a continuous operator in the space H∞〈mn〉, that is, B maps each

bounded set of this space to a bounded set of the same space. Let L be a bounded set in the

space H∞〈mn〉. Since H∞〈mn〉 =
⋃

α>0
H{α}, then L is a bounded set in some Hilbert space H{α0},

i.e.

∃ b > 0 ∀ ϕ ∈ L : ‖ϕ‖H{α0}
=

∞

∑
k=1

|ck(ϕ)|2ρ2
(λk

α0

)

≤ b.

So,

∀ ϕ ∈ L : |ck(ϕ)| ≤ b1ρ−1
(λk

α

)

, b1 =
√

b, k ∈ N.

In the inequality (2) let us assume that ε = (2α0)
−1. Then, using the inequality of the convexity

(1), we find that

|ck(Bϕ)| = F(λk)|ck(ϕ)| ≤ cεb1ρ(ελk)ρ
−1

(λk

α0

)

= b1cεe
ln ρ(ελk)−ln ρ

(

λk
α0

)

≤ b1cεe
− ln ρ

((

1
α0
−ε

)

λk

)

= b1cερ
−1

(( 1

α0
− ε

)

λk

)

= b2ρ−1
( λk

2α0

)

, b2 = b1cε, k ∈ N.

Therefore, the set BL is bounded in the space H{2α0} ⊂ H∞〈mn〉, that is, in the space H∞〈mn〉.
The theorem is proved.

Remark 1. The condition (2) on F is equivalent to the fact that f =
∞

∑
k=1

F(λk)ek is an element

of H′
∞〈mn〉.

Considering Remark 1 and property 2) of the convolution, operator B can be interpreted as

a convolution operator in the space H∞〈mn〉:

Bϕ = f ∗ ϕ, ∀ϕ ∈ H∞〈mn〉, Bϕ ∈ H∞〈mn〉, f =
∞

∑
k=1

F(λk)ek ∈ H′
∞〈mn〉.

Further we assume that F additionally satisfies the condition

∃ c0 > 0 ∃ d0 > 0 ∀ x ∈ [0,+∞) : F(x) ≥ d0 ln ρ(c0x). (3)
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4 Nonlocal multipoint by time problem

Let us consider the differential-operator equation

u′(t) + Bu(t) = 0, t ∈ (0, T], (4)

where B is the operator built in Section 3, which is linear and continuous in H∞〈mn〉. As

the solution of the equation (4) we understand the function u: (0, T] → H∞〈mn〉, strongly

differential in H, which satisfies the equation (4).

Let us consider the following problem: find a function u that is a solution of the equation

(4) and satisfies the condition

µu(0)−
m

∑
k=1

µkBku(tk) = g, g ∈ H, (5)

where m ∈ N, {µ, µ1, . . . , µm} ⊂ (0, ∞), {t1, . . . , tm} ⊂ (0, T] are fixed numbers, and at the

same time µ >

m

∑
k=1

µk, t1 < t2 < · · · < tm ≤ T; B1, . . . , Bm are operators in H constructed by

functions g1, . . . , gm respectively (see Section 3). Here gk: [0, ∞) → [0, ∞), k ∈ {1, . . . , m}, are

continuous functions that satisfy the condition

∀ ε > 0 ∀ x ∈ [0,+∞) : 0 ≤ gk(x) ≤ eεF(x), k ∈ {1, . . . , m}, (6)

the operators B1, . . . , Bm are non-negative self-adjoint in H with the dense domains, σ(Bi) =

{gi(λk) : λk = G(k), k ∈ N)}, i ∈ {1, . . . , m}, with u(0) being understood as lim
t→+0

u(t), where

the limit is considered in the space H. The problem (4), (5) is hereinafter called the nonlocal

multipoint by time problem for the equation (5).

Let u(t) be a solution of the equation (5). Since u(t) ∈ H∞〈mn〉 for every t ∈ (0, T], then

u(t) =
∞

∑
k=1

ck(u(t))ek , ck(u(t)) = (u(t), ek), t ∈ (0, T],

while also

‖u(t)‖2 =
∞

∑
k=1

|ck(u(t))|2.

To find ck(u(t)), we take scalar product of (4) and ek, k ∈ N:

(u′(t), ek) + (Bu(t), ek) = 0.

When k ∈ N is fixed, we have

(Bu(t), ek) = (u(t), Bek) = (u(t), F(λk)ek) = F(λk)(u(t), ek) = F(λk)ck(u(t)).

The strong differentiability of u(t) on (0, T] implies the differentiability of the function

ck(u(t)) ≡ c̃k(t) = (u(t), ek), k ∈ N. So,

(du(t)

dt
, ek

)

=
d

dt
(u(t), ek) =

d

dt
ck(u(t)), k ∈ N.
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Also, note that there exists a lim
t→+0

c̃k(t) = c̃k(0) = ck(u(0)). Indeed,

c̃k(t) = (u(t), ek), c̃k(0) = (u(0), ek),

|c̃k(t)− c̃k(0)| = |(u(t)− u(0), ek)| ≤ ‖u(t)− u(0)‖H → 0, t → +0.

The function c̃k(t) satisfies the differential equation c̃ ′
k(t) + F(λk)c̃k(t) = 0, a general solu-

tion of which is c̃k(t) = ck exp
{

− tF(λk)
}

, ck = const, k ∈ N. Then

u(t) =
∞

∑
k=1

ck exp{−tF(λk)}ek. (7)

To find ck, k ∈ N, we take a scalar product of (5) and ek, k ∈ N. As a result, we come to the

relation

µc̃k(0)−
m

∑
n=1

µngn(λk)c̃k(tn) = ck(g), ck(g) = (g, ek), k ∈ N,

(given that ek ∈ D(Bn) for every k ∈ N and n ∈ {1, . . . , m}, ek is an eigenvector of Bn and

gn(λk) is its eigenvalue).

Given the form of c̃k(t), we find that

ck

(

µ −
m

∑
n=1

µngn(λk) exp{−tnF(λk)}
)

= ck(g).

So,

ck = ck(g)
(

µ −
m

∑
n=1

µngn(λk) exp{−tnF(λk)}
)−1

, k ∈ N.

We introduce the notations:

Q1(t, λk) := exp{−tF(λk)},

Q2(λk) :=
(

µ −
m

∑
n=1

µngn(λk) exp{−tnF(λk)}
)−1

=
(

µ −
m

∑
n=1

µngn(λk)Q1(tn, λk)
)−1

.

Then

c̃k(t) = ck(u(t)) = Q1(t, λk)Q2(λk)ck(g), k ∈ N,

u(t) =
∞

∑
k=1

ck(u(t))ek =
∞

∑
k=1

Q1(t, λk)Q2(λk)ck(g)ek = G(t) ∗ g,

where

G(t) =
∞

∑
k=1

Q1(t, λk)Q2(λk)ek, g =
∞

∑
k=1

ck(g)ek ∈ H.

From the constraints imposed on the functions F, g1, . . . , gm and parameters of the problem

(4), (5) the inequalities

Q1(t, λk) ≤ e−d0t ln ρ(c0λk), Q2(λk) ≤
(

µ −
m

∑
n=1

µneεF(λk)−t1F(λk)
)−1

follow (it is taken into account that t1 < t2 < · · · < tm). Putting ε = t1, we arrive at the estimate

Q2(λk) ≤
(

µ −
m

∑
n=1

µn

)−1
, provided µ >

m

∑
n=1

µn. Therefore, for each t ∈ (0, T] we have

|ck(G)| = |Q1(t, λk)||Q2(λk)| ≤ γe−d0t ln ρ(c0λk), γ =
(

µ −
m

∑
n=1

µn

)−1
.
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Based upon aforementioned statements and the characteristics of the class H∞〈mn〉, we

conclude that G(t) ∈ H∞〈mn〉 for every t ∈ (0, T]. Indeed, if ϕ is a convex function on [0,+∞),

then in addition to the inequality (1) we have: a) ∀ α ∈ (0, 1) ∀ x ∈ [0,+∞): ϕ(αx) ≤ αϕ(x);

b) ∀ α ≥ 1 ∀ x ∈ [0,+∞): ϕ(αx) ≥ αϕ(x). So, if d0t < 1, then taking into account a) we get

such inequalities:

|ck(G)| ≤ γe−d0t ln ρ(c0λk) ≤ γe− ln ρ(a1λk) = γρ−1(a1λk), a1 = d0t, k ∈ N.

If d0t > 1 and d0t is non-integer, then d0t = [d0t] + {d0t}. Then

e−d0t ln ρ(c0λk) = e−[d0t] ln ρ(c0λk) · e−{d0t} ln ρ(c0λk)

≤ e−{d0t} ln ρ(c0λk) ≤ e− ln ρ(a2λk) = ρ−1(a2λk), a2 = {d0t}.

If d0t = n, n ∈ {2, 3, . . . , }, then d0t = 1 + n − 1 and

e−d0t ln ρ(c0λk) = e− ln ρ(c0λk)e−(n−1) ln ρ(c0λk) ≤ e− ln ρ(c0λk) = ρ−1(c0λk), k ∈ N.

Let a = min{a1, a2, c0}. Then, at fixed t ∈ (0, T], the following is fulfilled: |ck(G)| ≤
γρ−1(aλk), k ∈ N. Based on this (and on condition (A)), it follows that G(t, ·) ∈ H∞〈mn〉 for

every t ∈ (0, T]. Since u(t) = G(t) ∗ g, where g ∈ H ⊂ H′
∞〈mn〉, G(t) ∈ H∞〈mn〉 for every

t ∈ (0, T], then based on Lemma 1 we claim that u(t) ∈ H∞〈mn〉 for every t ∈ (0, T].

Remark 2. If u(t) is represented by the formula (7), then it is a solution of the equation (4).

In fact, according to the definition of B, we have that Bu(t) =
∞

∑
k=1

ckF(λk)e
−tF(λk)ek.

Further, we will now prove that u(t) is a strongly differentiable function on (0, T], and

u′(t) = −
∞

∑
k=1

ckF(λk)e
−tF(λk)ek.

It follows that the function u(t), t ∈ (0, T], is a solution of the equation (4). Therefore,

the formula (7) describes all solutions of the equation (4), that is, u(t) is the solution of the

equation (4) if and only if it is represented by the formula (7).

Show the uniqueness of the solution of the problem (4), (5). In fact, the solution of the

problem (4), (5) is given as

u(t) =
∞

∑
k=1

cke−tF(λk)ek,

where ck = ck(g)Q2(λk). If g = 0, then ck(g) = (g, ek) = 0, ∀ k ∈ N. Therefore, ck = 0 for

every k ∈ N, that is, u(t) = 0 for every t ∈ (0, T]. This implies the property of the uniqueness

of the solution of the problem (4), (5). The solution of the specified problem also depends

continuously on the element g in the condition (5).

Theorem 2. The problem (4), (5) is correctly solvable, its solution is given by the formula

u(t) = G(t) ∗ g, t ∈ (0, T], g ∈ H, u(t) ∈ H∞ 〈mn〉 for every t ∈ (0, T].

From property 2) of the convolution (see Section 3) it follows u(t) = G(t) ∗ g ∈ H∞〈mn〉 if

g ∈ H′
∞〈mn〉 (for each t ∈ (0, T]). Let us prove that u(t) is a solution of the equation (4), which

satisfies the condition (5), where g ∈ H′
∞〈mn〉, in the sense that

µ lim
t→+0

u(t)−
m

∑
n=1

µn lim
t→tn

Bnu(t) = g, g ∈ H′
∞〈mn〉, (8)

here limits are considered in H′
∞〈mn〉.
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Lemma 1. The function u(t) = G(t) ∗ g, g ∈ H′
∞〈mn〉 is strongly differentiable in H on (0, T],

with u′(t) = G′(t) ∗ g.

Proof. We need to make sure that for every t ∈ (0, T] there exists an element γ(t) ∈ H such

that the boundary relation holds in H

Ψ∆t :=
1

∆t
[u(t + ∆t)− u(t)]− γ(t) → 0, ∆t → 0. (9)

Let us prove

γ(t) =
∞

∑
k=1

d

dt
Q1(t, λk)Q2(λk)ck(g)ek = −

∞

∑
k=1

F(λk)Q1(t, λk)Q2(λk)ck(g)ek .

First, let us establish that γ(t) ∈ H∞〈mn〉 ⊂ H for every t ∈ (0, T].

Note that ck(γ(t)) = −F(λk)ck(G)ck(g) and, as shown previously, |ck(G)| ≤ γρ−1(aλk).

Since g ∈ H′
∞〈mn〉, we can see that

∀ µ > 0 ∃ c = c(µ) > 0 ∀ k ∈ N : |ck(g)| ≤ cρ(µλk).

Given this inequality, the inequality (2), and the convexity property of ln ρ, we find that

|ck(γ(t))| ≤ cγρ−1(aλk)ρ(ελk)ρ(µλk),

where ε > 0 is an arbitrary parameter.

Let us fix ε ∈ (0, a). Then |ck(γ(t))| ≤ βρ−1((a − ε)λk)ρ(µλk), k ∈ N. Take µ < a − ε. Then

|ck(γ(t))| ≤ βρ−1((a − ε − µ)λk) ≡ βρ−1(µ1λk), µ1 = a − ε − µ. (10)

From (A) and (10), it follows that γ(t) ∈ H∞〈mn〉 ⊂ H for every t ∈ (0, T].

Now let us prove that the boundary relation (9) holds. For this we note that

1

∆t
[u(t + ∆t)− u(t)] =

1

∆t

∞

∑
k=1

[Q1(t + ∆t, λk)− Q1(t, λk)]Q2(λk)ck(g)ek

=
∞

∑
k=1

d

dt
Q1(t + θ∆t, λk)Q2(λk)ck(g)ek, 0 < θ < 1.

So,

Ψ∆t =
∞

∑
k=1

( d

dt
Q1(t + θ∆t, λk)Q2(λk)ck(g)ek + F(λk)Q1(t, λk)Q2(λk)ck(g)ek

)

= −
∞

∑
k=1

[Q1(t + θ∆t, λk)− Q1(t, λk)]F(λk)Q2(λk)ck(g)ek

= −
∞

∑
k=1

F2(λk)Q1(t + θ1∆t, λk)Q2(λk)ck(g)ek · θ1∆t, 0 < θ1 < 1.

Using the inequality ρ2(ελk) ≤ ρ(2ελk), which follows from the convexity inequality for ln ρ,

we find that F2(λk) ≤ cερ
2(2ελk). Next, let us estimate

|ck(Ψ∆t)| = F2(λk)Q1(t + θ1∆t, λk)Q2(λk)|ck(g)|θ1|∆t|
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similar to how it was done when estimating ck(γ(t)). As a result, we come to inequalities

|ck(Ψ∆t)| ≤ βρ−1(a0λk) ≤ β(a0λk)
−1|∆t|, a0 > 0.

Then,

‖Ψ∆t‖2
H =

∞

∑
k=1

|ck(Ψ∆t)|2 ≤ β

a2
0

∞

∑
k=1

λ−2
k · |∆t|2 = β1

∞

∑
k=1

G−2(k)|∆t|2 = β2|∆t|2 → 0, ∆t → 0.

It follows that the limit relation (9) is satisfied in Hilbert space H, and u(t), t ∈ (0, T], is a

strongly differentiable function, with u′(t) = G′(t) ∗ g ≡ γ(t), g ∈ H′
∞〈mn〉, u′(t) ∈ H∞〈mn〉

for every t ∈ (0, T]. The lemma is proved.

From the form of G(t) and the definition of B, it follows that

B(G(t) ∗ g) = B
( ∞

∑
k=1

Q1(t, λk)Q2(λk)ck(g)ek

)

=
∞

∑
k=1

F(λk)Q1(t, λk)Q2(λk)ck(g)ek = −γ(t) ∗ g = −G′(t) ∗ g.

As proven in Lemma 1, we have u′(t) = G′(t) ∗ g, we see that the function u(t) = G(t) ∗ g,

g ∈ H′
∞〈mn〉 is the solution of the equation (4). Let us prove that this function satisfies the

condition (8).

Lemma 2. Let u(t) = G(t) ∗ g, g ∈ H′
∞〈mn〉, t ∈ (0, T]. Then in the space H′

∞〈mn〉 the following

limit relation holds

µ lim
t→+0

u(t)−
m

∑
n=1

µn lim
t→tn

Bnu(t) = g. (11)

Proof. To prove (11) we take an arbitrary element ψ =
∞

∑
k=1

ck(ψ)ek ∈ H∞〈mn〉 and note that due

to the continuity of embedding H∞〈mn〉 in the space H′
∞〈mn〉 and the orthonormality of the

basis {ek : k ∈ N} we have

〈u(t), ψ〉 = (u(t), ψ)H =
∞

∑
k=1

ck(u(t))ck(ψ) =
∞

∑
k=1

Q1(t, λk)Q2(λk)ck(g)ck(ψ),

〈Bnu(t), ψ〉 = (Bnu(t), ψ)H =
∞

∑
k=1

gn(λk)ck(u(t))ck(ψ).

Then

µ lim
t→+0

〈u(t), ψ〉 −
m

∑
n=1

µn lim
t→tn

〈Bnu(t), ψ〉

= µ lim
t→+0

∞

∑
k=1

ck(u(t))ck(ψ)−
m

∑
n=1

µn lim
t→tn

∞

∑
k=1

gn(λk)ck(u(t))ck(ψ).

Note that the series
∞

∑
k=1

ck(u(t))ck(ψ) converges uniformly on [0, T]. This fact follows from

the definition of the coefficients ck(u(t)), k ∈ N, and the estimates

|ck(u(t))| · |ck(ψ)| ≤ c̃|ck(g)| · |ck(ψ)|, t ∈ [0, T], k ∈ N.
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In fact, g ∈ H′
∞〈mn〉, that is,

∀ µ > 0 ∃ c = c(µ) > 0 ∀ k ∈ N : |ck(g)| ≤ cρ(µλk).

Then ψ ∈ H∞〈mn〉, therefore, due to the condition (A),

∃ µ0 > 0 ∃ c0 > 0 ∀ k ∈ N : |ck(ψ)| ≤ c0ρ−1(µ0λk).

Put µ = µ0/2. Then, given the inequality of the convexity (1), we find that

|ck(g)| · |ck(ψ)| ≤ cc0ρ−1(µ0λk)ρ
(µ0

2
λk

)

≤ cc0ρ−1
(µ0

2
λk

)

≤ c̃λ−2
k , λk = G(k).

The formulated property follows from the last inequality. Similarly, we prove that the series

∞

∑
k=1

gn(λk)Q1(t, λk)Q2(λk)ck(g)ck(ψ) ≡
∞

∑
k=1

gn(λk)ck(u(t))ck(ψ), n ∈ {1, . . . , m},

converges uniformly on [t1, T] (using the properties (6) of g1, . . . , gm). So,

lim
t→tn

∞

∑
k=1

ck(Bnu(t))ck(ψ) =
∞

∑
k=1

ck(Bnu(tn))ck(ψ) =
∞

∑
k=1

gn(λk)Q1(tn, λk)Q2(λk)ck(g)ck(ψ),

lim
t→+0

∞

∑
k=1

ck(u(t))ck(ψ) =
∞

∑
k=1

ck(u(0))ck(ψ) =
∞

∑
k=1

Q2(λk)ck(g)ck(ψ).

Taking into account the last relations, we obtain

µ lim
t→+0

〈u(t), ψ〉 −
m

∑
n=1

µn lim
t→tn

〈Bnu(t), ψ〉 =
∞

∑
k=1

[

µ −
m

∑
n=1

µngn(λk)Q1(tn, λk)
]

Q2(λk)ck(g)ck(ψ)

=
∞

∑
k=1

µ −
m

∑
n=1

µngn(λk)Q1(tn, λk)

µ −
m

∑
n=1

µngn(λk)Q1(tn, λk)
ck(g)ck(ψ)

=
∞

∑
k=1

ck(g)ck(ψ) = 〈g, ψ〉, ψ ∈ H∞〈mn〉.

Lemma 2 allows us to formulate a multipoint problem for the equation (4) in the sense of

(8). The following statement is correct.

Theorem 3. The problem (4), (8) is correctly solvable, its solution is given by the formula

u(t) = G(t) ∗ g, g ∈ H′
∞〈mn〉, t ∈ (0, T], u(t) ∈ H∞〈mn〉 for every t ∈ (0, T].

Proof. From the above it follows that the proof requires the property of the uniqueness of the

solution of the problem (4), (8) and its continuity with respect to the element g ∈ H′
∞〈mn〉.

We obtain the uniqueness of the solution for the following reasons: if g = 0, then ck(g) =

〈g, ek〉 = 0, ∀ k ∈ N, that is, u(t) = 0, t ∈ (0, T].

Now let us prove that the solution of this problem is continuous with respect to the bound-

ary condition. Let {g, gn : n ∈ N} ⊂ H∞〈mn〉, with gn → g at n → ∞ in the space H′
∞〈mn〉. It

follows that

ck(gn) = 〈gn, ek〉 −→
n→∞

〈g, ek〉 = ck(g)
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for each k ∈ N. In addition, {u, un : n ∈ N} ⊂ H∞〈mn〉, where un is the solution to the

problem (4), (8), which corresponds to the boundary element gn ∈ H′
∞〈mn〉. Then

〈un, ϕ〉 = (un, ϕ) =
∞

∑
k=1

ck(G(t))ck(gn)ck(ϕ) −→
n→+∞

∞

∑
k=1

ck(G(t))ck(g)ck(ϕ) = (u, ϕ) = 〈u, ϕ〉.

for all ϕ ∈ H∞〈mn〉. Therefore, un → u for n → ∞ in the space H′
∞〈mn〉.

Let us look at the boundary properties of the solution of multipoint problem for the evolu-

tionary equation (4) at t → +0. Based on the formulation of the solution of the problem (4), (8),

it follows that it can be represented as u(t) = G̃(t) ∗ f̃ =
∞

∑
k=1

Q1(t, λk)ck( f̃ ), where f̃ = f ∗ α,

G̃(t) =
∞

∑
k=1

Q1(t, λk)ek ∈ H∞〈mn〉, t ∈ (0, T], α =
∞

∑
k=1

Q2(λk)ek,

f =
∞

∑
k=1

ck( f )ek ∈ H′
∞〈mn〉, ck( f̃ ) = ck( f )Q2(λk), k ∈ N.

Therefore, the solution of problem (4), (8) coincides with the solution of the Cauchy problem

for equation (4), which corresponds to the generalized element f̃ . Also, note that α is an ele-

ment of H′
∞〈mn〉. Given f ∈ H′

∞〈mn〉, we have that f̃ = f ∗ α ∈ H′
∞〈mn〉, u(t) ∈ H∞〈mn〉 for

every t ∈ (0, T] and u(t) → f̃ for t → +0 in the space H′
∞〈mn〉. If f belongs to narrower than

H′
∞〈mn〉 space, then f̃ may also belong to space contained in H′

∞〈mn〉; the behavior of u(t) in

a neighborhood of the point t = 0 essentially depends on which space f̃ = f ∗ α belongs to.

Theorem 4. The equivalence relation

( f̃ ∈ H) ⇔ (∃c > 0 ∀t ∈ (0, T] : ‖u(t)‖ ≤ c)

is correct, at the same time u(t) → f̃ for t → +0 in the space H.

Proof. Let

∃c > 0 ∀t ∈ (0, T] : ‖u(t)‖ ≤ c.

Then

‖u(t)‖2 =
∞

∑
k=1

Q2
1(t, λk)|ck( f )|2 ≡

∞

∑
k=1

e−2tF(λk)|ck( f )|2 ≤ c2.

Making a limiting transition as t → +0, we find that ‖ f̃ ‖2 =
∞

∑
k=1

|ck( f̃ )|2 ≤ c2, that is,

f̃ ∈ H. Vice versa, if f̃ ∈ H, then

‖u(t)‖2 =
∞

∑
k=1

e−2tF(λk)|ck( f̃ )|2 ≤
∞

∑
k=1

|ck( f̃ )|2 = ‖ f̃ ‖2, ∀ t ∈ (0, T].

Since

‖u(t)− f̃ ‖2 =
∞

∑
k=1

(e−tF(λk) − 1)2|ck( f̃ )|2 ≤
∞

∑
k=1

|ck( f̃ )|2 = ‖ f‖2, ∀ t ∈ (0, T],

and exp{−tF(λk)} → 1 when t → +0, we can see that

lim
t→+0

‖u(t)− f̃‖2 =
∞

∑
k=1

lim
t→+0

(e−tF(λk) − 1)2|ck( f̃ )|2 = 0,

that is, ‖u(t)− f̃‖ → 0 at t → +0. The theorem is proved.
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Now, let γ be a continuous, positive and integrable function on (0, T], γ(0) = 0, Kγ is a set

of solutions of multipoint problems for the equation (4), each of which is constructed over a

certain boundary element g ∈ H′
∞〈mn〉, for which

∫ T

0
γ(t)‖u(t)‖2dt < ∞. Since γ(t) ≥ γε > 0

on an arbitrary segment [ε, T], we can see that this estimate characterizes the behavior of u(t)

when t → +0. Let

L(λ) :=
(

∫ T

0
γ(t)e−2tF(λ)dt

)−1/2
.

Function L is positive, continuous on [0, ∞) and

lim
λ→+∞

L(λ) = +∞, L(λ) ≥ c > 0, ∀λ ∈ [0, ∞), c =

(

∫ T

0
γ(t)dt

)−1/2

.

We also assume that the following condition is fulfilled

∀ ε > 0 ∃ c = cε > 0 : L(λ) ≤ cερ(ελ), λ ≥ 1.

We introduce the following scalar product in the domain D(L(A)) of the operator L(A):

(ϕ, ψ)HL
:= (L(A)ϕ, L(A)ψ), {ϕ, ψ} ⊂ D(L(A)).

Then D(L(A)) is transformed into Hilbert space HL (see the building schema of the chain of

spaces by a non-negative self-adjoint operator [1, pp. 59–61]). If we take HL as a positive space

and identify through H′
L a negative space, constructed by HL and H, then we get a chain

H∞〈mn〉 ⊂ HL ⊂ H ⊂ H′
L ⊂ H′

∞〈mn〉
of continuous and densely embedded spaces; at the same time

(ϕ ∈ HL) ⇔
(

‖ϕ‖2
HL

=
∞

∑
k=1

L2(λk)|ck(ϕ)|2 < ∞, ck(ϕ) = (ϕ, ek)
)

,

(g ∈ H′
L) ⇔

(

‖g‖2
H′

L
=

∞

∑
k=1

L−2(λk)|ck(g)|2 < ∞, ck(g) = 〈g, ek〉
)

.

Theorem 5. Let u(t) be a solution of the multipoint problem (4), (8), constructed by the bound-

ary element f ∈ H′
∞〈mn〉. Then

( f̃ ∈ H′
L) ⇔ (u(t) ∈ Kγ, t ∈ (0, T]),

at the same time u(t) → f̃ as t → +0 in the space H′
L.

Proof. The theorem follows from the relations
∫ T

0
γ(t)‖u(t)‖2dt =

∫ T

0
γ(t)

∞

∑
k=1

exp{−2tF(λk)}|ck( f̃ )|2dt

=
∞

∑
k=1

|ck( f̃ )|2
∫ T

0
γ(t)e−2tF(λk)dt =

∞

∑
k=1

L−2(λk)|ck( f̃ )|2.

Besides,

‖u(t)− f̃‖2
H′

L
=

∞

∑
k=1

L−2(λk)(e
−tF(λk) − 1)2|ck( f̃ )|2 ≤

∞

∑
k=1

L−2(λk)|ck( f̃ )|2 = ‖ f̃ ‖2
H′

L
< ∞

for all t ∈ (0, T]. Since exp{−tF(λk)} → 1 as t → +0, ∀k ∈ N, we see that ‖u(t)− f̃ ‖H′
L
→ 0

as t → +0. The theorem is proved.
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Using the representation of generalized elements in the form of formal Fourier series and

correspondingly picking the function γ, the spaces H′
∞(A), H′

∞〈mn〉 can be described by char-

acterizing the behavior of the solution of the multipoint problem (4), (8) u(t) in the neighbor-

hood of zero.

For example, if γ(t) = exp{−t−q}, q > 0, t ∈ (0, T], then as follows from the results given

in [1, page 87], the equivalence relations are correct

( f̃ ∈ G′
{β}(A) ≡ H′

∞〈nnβ〉, β > 1) ⇔
(

∀ α̃ > 0 ∃c = c(α̃) > 0 : ‖u(t)‖ ≤ c exp{α̃t−q},

t ∈ (0, T], q = (β − 1)−1
)

,

or

( f̃ ∈ G′
{β}(A) ≡ H′

∞〈nnβ〉, β > 1) ⇔
(

u(t) ∈ Kγ, γ(t) = exp{−t−q},

t ∈ (0, T], q = (β − 1)−1
)

.
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Рiзнi функцiональнi простори (наприклад, соболєвськi, аналiтичних функцiй, нескiнчен-

но диференцiйовних та розподiлiв Л. Шварца) можна трактувати як позитивнi та негативнi

вiдносно L2, побудованi за функцiями вiд оператора диференцiювання або множення на не-

залежну змiнну, або як проективнi чи iндуктивнi границi таких просторiв. М.Л. Горбачук та

В.I. Горбачук розвинули теорiю просторiв основних та узагальнених елементiв, якi будуються

за функцiями вiд довiльного самоспряженого оператора.

У цiй роботi розглядаються простори узагальнених елементiв, якi ототожнюються з фор-

мальними рядами Фур’є i будуються за невiд’ємним самоспряженим оператором у гiльбер-

товому просторi, спектр якого є суто дискретним. Для диференцiально-операторного рiвня-

ння першого порядку ставиться нелокальна багатоточкова за часом задача у випадку, коли

вiдповiдна умова задовольняється в позитивному або негативному просторах, якi побудованi

за таким оператором (таку задачу можна розумiти як певне узагальнення абстрактної зада-

чi Кошi для зазначеного диференцiально-операторного рiвняння). Встановлюється коректна

розв’язнiсть зазначеної задачi, при цьому будується фундаментальний розв’язок, дослiджує-

ться його структура та властивостi. Розв’язок дається у виглядi абстрактної згортки фунда-

ментального розв’язку з граничним елементом, за допомогою якого ставиться багатоточкова

умова i який є лiнiйним неперервним функцiоналом, заданим на просторi основних елемен-

тiв, при цьому розв’язок задовольняє багатоточкову умову в негативному просторi, який є

спряженим з вiдповiдним позитивним простором елементiв.

Ключовi слова i фрази: нелокальна багатоточкова задача, диференцiально-операторне рiв-

няння, самоспряжений оператор, гiльбертовий простiр, коректна розв’язнiсть.


