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On a nonlocal problem for the first-order differential-operator
equations

Horodets’kyi V.V., Martynyuk O.V., Kolisnyk R.S.

In this work, we study the spaces of generalized elements identified with formal Fourier series
and constructed via a non-negative self-adjoint operator in Hilbert space. The spectrum of this
operator is purely discrete. For a differential-operator equation of the first order, we formulate a
nonlocal multipoint by time problem if the corresponding condition is satisfied in a positive or neg-
ative space that is constructed via such operator; such problem can be treated as a generalization of
an abstract Cauchy problem for the specified differential-operator equation. The correct solvability
of the aforementioned problem is proven, a fundamental solution is constructed, and its structure
and properties are studied. The solution is represented as an abstract convolution of a fundamental
solution with a boundary element. This boundary element is used to formulate a multipoint con-
dition, and it is a linear continuous functional defined in the space of main elements. Furthermore,
this solution satisfies multipoint condition in a negative space that is adjoint with a corresponding
positive space of elements.

Key words and phrases: nonlocal multipoint problem, differential-operator equation, self-adjoint
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1 Introduction

In the study of many problems of analysis and mathematical physics, instead of a pair of
spaces, the main and conjugate spaces, we use the triplet of Hilbert spaces of type
Hy C H C H_, where H, is a positive space , H_ is a negative space, H, H_ are spaces
of the main and generalized elements (continuous linear functionals on H). The role of H in
such a chain is that the scalar product in it can be extended to a continuous bilinear form on
H_ x H, which sets the action of the generalized element on the main one.

Various functional spaces (e.g., Sobolev, analytic functions, infinitely differentiable, and
Schwartz distributions) can be interpreted as positive and negative spaces with respect to L,
constructed by functions from a differentiation operator or multiplication by an independent
variable, or as projective or inductive limits. In [1], the authors discuss the spaces of the main
and generalized elements that are built by functions of an arbitrary self-adjoint operator.

This paper considers spaces of generalized elements identified with formal Fourier se-
ries and constructed by an integral self-adjoint operator A in Hilbert space; the spectrum of
this operator is purely discrete. For the differential-operator equation u'(t) + ¢(A)u(t) = 0,
t € (0,T] (¢(A) is a function of the operator A) is a nonlocal multipoint by time problem if
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the corresponding condition is satisfied in a positive or negative space that is constructed by
the operator A (such a problem can be understood as a certain generalization of the Cauchy
abstract problem for the specified differential operator equation). A nonlocal multipoint by
time problem belongs to nonlocal problems for differential-operator equations. Such prob-
lems arise in: (i) modeling many processes and applied tasks with boundary value problems
for differential-operator equations with nonlocal conditions, (ii) description of all correct prob-
lems for a particular operator, (iii) construction of a general theory of boundary value problems
for differential-operator equations. Many mathematicians have been involved in the study of
such nonlocal problems (see, for example, [2-11]). Important results were obtained concern-
ing the formulation, correct solvability and solution construction, and conditions of regularity
and irregularity of boundary conditions were formulated for important cases of differential-
operator equations.

In this paper we establish the correct solvability of a nonlocal multipoint by time problem
for the differential-operator equation u/(t) + ¢(A)u(t) = 0, t € (0, T]; at the same time we
build a fundamental solution of G(t), t € (0, T] of such problem, and investigate its structure
and properties. The solution u(t) is given in the form of an abstract convolution G(t) * g,
where the boundary element g is a continuous linear functional defined on a certain space of
main elements (positive space H, constructed by the operator A), with {G(¢),u(t)} C Hy at
each T € (0, T], but the convolution of G(t) * g satisfies multipoint condition in the negative
space H_.

2 Spaces of main and generalized elements. The formal Fourier series

Let H be a separable Hilbert space with a scalar product (-,-) and the norm | - ||,
{ex : k € N} is orthonormal basis in H. Let us denote

i oo
@m:{QDGHHO:chlq,ek,ck,?ec}, b — Uq)m/
k=1 e

and @’ is the space of all antilinear continuous functionals on ® with weak convergence.
Matching

Hs¢— foc®: (fo,¥) = (9, ¢), Vpeco,

((fg, ) denotes the action of f, on ) defines the H C @' embedding. So, ® C H C ¢/, and
these embeddings are dense and continuous [12]. Elements from @' are called generalized
elements.

Let s be the space of all numerical sequences {cy : k € N}, ¢, € C, with coordinate
convergence. Let us define the mapping

F: > f—{c(f) =(fe): ke N} €s,

which is isomorphism [12].

The series ) _ c(f)ex, where ci(f) = (f,e), is called the Fourier series of the element
k=1
f € @', and the numbers ¢, (f) are its Fourier coefficients. For an arbitrary element f € @' its

Fourier series converges in @ to f; on the contrary, an arbitrary series Z cxex weakly converges
k=1
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in @' to some element f € &', and this series is a Fourier series for f [12]. So, ®’ can be
[ee)
understood as the space of formal series of the form Z Cke-
k=1
Let G be a continuous monotonically increasing on [0, o) function such that

X—>—+00

Jc>0Vxe[0,00): G(x) >c¢, lim G(x) =+oo, Y G ?(k) < +oco.
k=1
Let us construct an operator by function G in the space @’
A: @ 5f=Y alfex — Y GRex(fex = Af €@, alf) = (Fex)-
k=1 k=1

Obviously, the operator A is linear and continuous in ®'. If A is a restriction of the operator A
to H, then A is an integral self-adjoint operator in H with a dense domain D(A) = {¢ € H :

of; G2(k)|ck (@) > < o0, ck(@) = (9, ex), k € N}, with @ C D(A). The spectrum of A is purely
k=1

discrete with a single infinite boundary point 0(A) = {A : k € IN}, where Ay = G(k), k € N
(see [13, p. 14]).

Now let us introduce some classes of elements associated with the operator A. Suppose that
a monotonically increasing sequence {m,, : n € Z. } of positive numbers has the properties:

HDIAM>0 Fh>0:myy < Mh'my,, n € Z4, my=1;

2)Va >0 dcy > 0:my > cpd”, n € Zy.

Let us denote by H(A) = limpr Hy(A) the inverse (projective) limit, Hy(A) = D(A%),

n—r 00
D(A") is domain of the operator

A DAY ={peH: ¥ Alalp)f <o, A=G0)},
k=1

(9, ¥)n, = (9, 9) + (A%, A%p),  V{p, ¢} C D(AY),
Hy(my) :== {9 € Ho(A) ‘ dc>0: ||A"p|| <ca"my, « >0, n€Z}.

The space H,(m,) O ® is a Banach space with respect to the norm

_ sup 1479l
W1,y = sup Z

Let us denote by Heo(m,,) := | ind Hy(my) the direct (inductive) limit. It is obvious that
a>0
® C Heo(my) C Heo(A) C H, and all the embeddings are dense and continuous. If H,,(A),

H, (my) are the spaces of antilinear continuous functionals defined respectively on He(A),
Hy(my) with the weak convergence, then, according to [12], we obtain a chain of dense and
continuous embeddings:

H C HL(A) C Hiy(m,) C ®, and at the same time H_,(m,) = limpr Hj,(m;,).

n—r 00

The spaces Gyg)(A) = Heo(n"), B > 0, are called the Gevrey spaces generated by the
operator A; G(1)(A) matches with the set of analytic vectors of the operator A [12].
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n
Let p(A) = sup P A € [1,4o0). It follows from the properties of the sequence
HEZ+ n
{my, : n € Z,} that the function p(A) is continuous, monotonically increasing on [1, +c0)
(faster than A", Vn € IN), p(A) > 1, VA € [1,40). The space He (1) is the inductive limit of

Hilbert spaces (see [12])

Hig={fed : ki (P2 () <o, A= GK), alf) = (fre) ),

the scalar product in Hy,) is defined by the formula

f g Hyyy — ch <&)/ {ffg} - H{rx}'

o

In terms of the behavior of the Fourier coefficients of their elements, the spaces Heo(11,,)
and H/,(m,) are described in [12], also known as “conditions A-B”:

(f € Hoo(mn)) & (3u>03c>0Vk € N [er(f)] < cp™ ' (uAr)); (4)

(f € Ho(mn)) & (Vi >03c=c(p) > 0¥k e N = [ex(f)] < cp(ur))- (B)

If my, = n"f, B > 0, then p(A) ~ exp{A!/P}, that is, in this case for f € @/, the following
equivalence relations are correct:

(f €Gpy(A) & Bu>03c>0VkeN: |(f)] < cexp(—pr/P)),

(f € Glg(A) & (Yp>0Tc=c(u) >0VkeN: |e(f)] < cexp(pr,P)).

As an example, consider the Hilbert space H = L,(R). In this space, Hermite functions
he(x) = (=1)Fa V428112200 ke Z,, x e R

form the orthonormal basis. By function G(x) = 2x+ 1, x € [0,00), and the correspond-
ing scheme, we construct in H a non-negative self-adjoint operator A, which coincides with
a harmonic oscillator which is a non-negative self-adjoint operator, generated in Ly(R) by the
differential expression —d?/dx? 4+ x2. The Hermite functions y, k € Z., are the eigenfunc-
tions of this operator, and Ay = G(k) = 2k + 1, k € Z_, are its eigenvalues. In [1, p.145] it is
proved that Gy, (A) = Heo(n "By = S’gﬁ, B > 1, where Sg/z are S spaces defined in [14]. The
elements of these spaces are infinitely d1fferent1able functions on R that satisfy the condition

\xkqo(m)(x)] < cAkKkB/2 exp(—a]x\z/ﬁ), x€R, {k,m}CZy,

with some constants ¢, A,a > 0 (dependent on ¢).
Therefore, the spaces Sg and (Sg )’ can be characterized as follows with the Fourier coeffi-
cients of their elements (see conditions (A), (B) above):

a) fesheIu>03c>0Vke Ze: olf)] < coxp(—p(2k+1)%);
b) f € (SEY &V >03e=c() >0 VkeZ: [ep(f)| <cexp(u(2k+ 1)), cp(f) = (f ).
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3 Non-negative self-adjoint operators as convolution operators

Let {fi, r} C @, fi = ch fi)ex fa = ZCk(fz)ek
=1

In the space @' we deflne the operatlon *, which we call the “abstract convolution” (or
simply convolution), by

fi*fa —chfl cr(f2)ex = ch fi* f2)ex

Hence the properties of the commutativity and associativity of the convolution in the space
@’ hold. Therefore, @' is a ring (relative to the convolution) with the unit element being the
(o]

generalized elemente = ) ¢, € @',

k=1
The convolution has the following properties:

1) if {f1, fo} C Hi(my), then fi * f, € H. (my),
2) if 1 € H(my), f» € Hoo(my), then fi * f, is an element of the space Heo(111,).

Proof of these properties uses the statements (A), (B), and the convexity property of
Inp [15, p. 89], namely

V{A1, A2} C[1,400) : Inp(A1) +Inp(A2) < Inp(Ay + Ap). (1)

Formula (1) corresponds to the definition of the convexity of the function from [16, p. 8].
Let F: [0,00) — [0, 00) be some continuous function. Let us construct the operator B by the

function F:
o

By := ) F(M)er(@)er, Ax = Glk),
k=1

peD(B)={pcH: T POklo)f = L le(Bo)P <o}
=1 =1

Note that B is a non-negative self-adjoint operator in H with a dense domain, and ® C
D(B), 0(B) = {F(Ax) : Ay = G(k),k € N}.

Theorem 1. If continuous on [0, o) function F satisfies the condition
Ve>03c,>0Vxe[0,00):0<F(x) <ceplex), (2)

then the operator B is continuous in space He(1,) C H and maps this space onto itself.

Proof. First let us prove that B € Heo(m,) if ¢ = )_ ci(@)ex € Hoo(my). Since
k=1

ck(Bg) = (Bg,ex) = (¢, Bex) = F(Ak)(9,ex) = F(Ap)er(e), k€N,
then due to the condition (A) it suffices to prove that

Jpup>03cpg >0VkeN: F(Ak)\ck((p)\ < Copil(}lo}\k).
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Given that ¢ € He (my,), it follows that
Juy >03c; >0VkeN: |ep(@)] < crp t(mAy).

So,
F(A) lek(@)] < cecrp(eAr)o ™t (1Ax) = cecremPEM) nelmd),

Take € from (0, jt1). Given the inequality of the convexity (1) for In p, we find that
Inp(eAr) —Inp(Ax) < —Inp((p1 —e)A) = —Inp(pody),
where yy = 1 — €. Then
F(Ag)lex(@)] < coe™ PN = cop™ (o),

it follows that B¢ € Heo ().

Let us prove that B is a continuous operator in the space Hw (1), that is, B maps each
bounded set of this space to a bounded set of the same space. Let L be a bounded set in the
space Heo(my). Since Heo (M) = UO Hy,y, then L is a bounded set in some Hilbert space Hy, ),

o>

i.e.

d A
30>09pel: |l = L lal)Pe(5) <P
k=1

So,
A
Ve L) < blp—l(;"), b = Vb, keN.

In the inequality (2) let us assume that ¢ = (2ag) ~!. Then, using the inequality of the convexity
(1), we find that

/A Inp(eAy)—Inp i—k
ce(Bo)| = FAw)lex(9)] < cebrplero)o™ (3F) = breee™ ™ (+)

<t " UEP) Lo (2 a) =t (), b= bice ke

Therefore, the set BL is bounded in the space Hyy,1 C Heo(my,), that is, in the space Heo (11,).
The theorem is proved. O

Remark 1. The condition (2) on F is equivalent to the fact that f = Z F(Ag)ex is an element
k=1
of H.,(my).

Considering Remark 1 and property 2) of the convolution, operator B can be interpreted as
a convolution operator in the space Heo(111,):

qu = f* (PIV(P € Hoo<mn>r B(P € Hoo<mn>/ f - Z F(Ak)@k S Héo<mn>
k=1

Further we assume that F additionally satisfies the condition

Jeg>03dy >0Vx e [0,4+00): F(x)>dylnp(cox). (3)
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4 Nonlocal multipoint by time problem

Let us consider the differential-operator equation
u'(t)+Bu(t) =0, te€(0,T], (4)

where B is the operator built in Section 3, which is linear and continuous in He(1,). As
the solution of the equation (4) we understand the function u: (0,T| — He(m,), strongly
differential in H, which satisfies the equation (4).

Let us consider the following problem: find a function u that is a solution of the equation
(4) and satisfies the condition

m
pu(0) — Y mBu(ty) =g, g€ H, (5)
k=1
where m € IN, {u, p1,..., m} C (0,00), {t1,...,tm} C (0, T] are fixed numbers, and at the
m
same time py > Z U, Bl < tp < -+ < ty, < T; By,..., By are operators in H constructed by

k=1
functions g1, . .., gm respectively (see Section 3). Here gi: [0,00) — [0,00), k € {1,...,m}, are

continuous functions that satisfy the condition
Ve>0Vxe[0,+00): 0<ge(x) <eF™, ke{1,...,m}, (6)

the operators By, ..., By, are non-negative self-adjoint in H with the dense domains, o(B;) =

{gi(Ak) : A = G(k),k e N)}, i € {1,...,m}, with u(0) being understood as tlimou(t), where
—+

the limit is considered in the space H. The problem (4), (5) is hereinafter called the nonlocal

multipoint by time problem for the equation (5).
Let u(t) be a solution of the equation (5). Since u(t) € He(my,) for every t € (0, T], then

u(t) = ki clu(Ber,  enlu(h) = (u(t),e), te (0,T],
=1

while also -
()1 = 3 lex(u(®) .

k=1
To find c(u(t)), we take scalar product of (4) and ex, k € IN:
(u/(t),ex) + (Bu(t),ex) = 0.

When k € N is fixed, we have
(Bu(t), ex) = (u(t), Bex) = (u(t), F(Ar)er) = F(Ar)(u(t), ex) = F(Ax)cr(u(t)).

The strong differentiability of u(t) on (0, T] implies the differentiability of the function
cr(u(t)) = ¢x(t) = (u(t),er), k € N. So,

(0 6) = L ut), e = Lau(e)), keN.
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Also, note that there exists a tl_i)rJrrlo Ge(t) = ¢x(0) = cx(u(0)). Indeed,
Cr(t) = (u(t) ex), &(0) = (u(0),ex),
(1) — &(0)] = (u(t) — w(0), )] < u(t) — u(0) 11 — 0, & +0.

The function ¢(t) satisfies the differential equation ¢ (t) + F(Ax)c(t) = 0, a general solu-
tion of which is & (t) = cgexp { — tF(Ax)}, cx = const, k € N. Then

u(t) =Y cpexp{—tF(Ag) ek (7)
k=1
To find ¢y, k € IN, we take a scalar product of (5) and ¢, k € IN. As a result, we come to the

relation
m

uee(0) = Y pn&n(Ak)ek(tn) = (), ck(g) = (g,e0), keN,

n=1
(given that e, € D(B,) for every k € N and n € {1,...,m}, ¢ is an eigenvector of B, and
9n(Ag) is its eigenvalue).
Given the form of ¢i(t), we find that

cr(1 = X2 i () oxp (0P (M)}) = ().

So,

m -1

o = c(9) (1 — L #ngn(Ae) exp{~tF(A)}) , KEN.

n=1
We introduce the notations:
Qi1 (t, Ay) = exp{—tF(Ax)},

Qa0 = (1= L a0 el -4F(R}) " = (1= L pun()Qutn 1)

n=1
Then
Ck(t) = cr(u(t)) = Qu(t, Ad)Q2(Ak)ek(g), k€N,
u(t) = k;Ck(u(t))ek = 1;1 Q1(t, Ap)Qa(Ai)er(g)ex = G(t) * g,
where

G(t) = i Q1(t, M) Qa(Mi)er, g = i ce(g)ex € H.
k=1 P

From the constraints imposed on the functions F, g1, ...,gn and parameters of the problem
(4), (5) the inequalities

Qi(t, M) < e~ dotInp(cody) Qa(A) < <V _ i HnesF(Ak)tlF(Ak))l

n=1
follow (itis taken into account that t; < t, < --- < t;;). Putting ¢ = t;, we arrive at the estimate
m -1 m
Qa(Ap) < (pt — Z yn) , provided p > Z pin. Therefore, for each t € (0, T| we have
n=1 n=1

m -1
c6(G)] = 1Q1 (M) 1Qa (A)| < e bielats) o — (5= Y~ pu,)
n=1



On a nonlocal problem for the first-order differential-operator equations 521

Based upon aforementioned statements and the characteristics of the class Heo(11,,), we
conclude that G(t) € He(my) for every t € (0, T]. Indeed, if ¢ is a convex function on [0, +c0),
then in addition to the inequality (1) we have: a) Va € (0,1) Vx € [0, +00): ¢(ax) < ag(x);
b)Va > 1 Vx € [0,+00): ¢(ax) > ap(x). So, if dot < 1, then taking into account a) we get
such inequalities:

Ick(G)| < ye~Dtnplore) < yp=Inplah) — 4 0=1(gyA;), a1 = dot, k € N.
If dot > 1 and dyt is non-integer, then dot = [dot] + {dot}. Then
e—dotInp(cor) — p—ldot]Inp(cori) . p—{dot} Inp(coAs)
S e*{dot}h’lp(Co)\k) S eilnp(az)\k) — pfl(az)\k)’ ap = {d()t}.
Ifdot =n,ne€{2,3,...,},thendpt =1+n—1and
e~ dotInp(cory) — p=Inp(coe) o= (n=1)Inp(core) < p—Inp(cods) — P_l(CO)\k)/ k€ N.

Let a = min{aj,ay,¢co}. Then, at fixed t € (0, T], the following is fulfilled: |cx(G)| <

v0~1(aAx), k € N. Based on this (and on condition (A)), it follows that G(t,-) € Heo(my) for

every t € (0,T]. Since u(t) = G(t) xg, where g € H C H,(my,), G(t) € He(my) for every
t € (0, T], then based on Lemma 1 we claim that u(t) € He(my,) for every t € (0, T].

Remark 2. Ifu(t) is represented by the formula (7), then it is a solution of the equation (4).

In fact, according to the definition of B, we have that Bu(t) = ¥ ¢ F(Ax)e F(Mey.
k=1

Further, we will now prove that u(t) is a strongly differentiable function on (0, T], and
w(t) = — ¥ cF(Ap)e  tF(Mey,
k=1

It follows that the function u(t), t € (0,T], is a solution of the equation (4). Therefore,
the formula (7) describes all solutions of the equation (4), that is, u(t) is the solution of the
equation (4) if and only if it is represented by the formula (7).

Show the uniqueness of the solution of the problem (4), (5). In fact, the solution of the
problem (4), (5) is given as

u(t) = Z cre” FMe,,
k=1

where ¢, = ¢x(g)Q2(Ak). If g = 0, then ¢4(g) = (g,ex) = 0, Vk € IN. Therefore, ¢, = 0 for
every k € IN, that is, u(t) = 0 for every t € (0, T|. This implies the property of the uniqueness
of the solution of the problem (4), (5). The solution of the specified problem also depends
continuously on the element g in the condition (5).

Theorem 2. The problem (4), (5) is correctly solvable, its solution is given by the formula
u(t) =G(t)xg, te€(0,T], g€ H, u(t) € Ho (my) forevery te (0,T].

From property 2) of the convolution (see Section 3) it follows u(t) = G(t) * § € Heo(my,) if
¢ € Hl,(m,) (for each t € (0, T]). Let us prove that u(t) is a solution of the equation (4), which
satisfies the condition (5), where ¢ € H/,(m,), in the sense that

. u . . !
p lim u(t) - n; o Jim Buu(t) = g, & € Heo(mn), (8)

here limits are considered in H,(m,).
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Lemma 1. The function u(t) = G(t) x g, ¢ € H.(my) is strongly differentiable in H on (0, T],
withu'(t) = G'(t) x g.

Proof. We need to make sure that for every t € (0, T] there exists an element y(t) € H such
that the boundary relation holds in H

¥ i i[u(t LA —u(®)] —7(t) =0, At 0. ©)

Let us prove

1(t M) Q2(Ax)er(8)ex = — i F(A)Q1(t, Ak)Qa(Ak)ek(g)ex-
=1

Q..|Q_‘

First, let us establish that y(t) € He(m,) C H for every t € (0, T].
Note that c;(y(t)) = —F(Ar)cx(G)cx(g) and, as shown previously, |cx(G)| < yp~1(aAy).
Since g € H[,(my), we can see that

Vu>03dc=c(u) >0VkeN: |ck(9)] < cp(pAy).
Given this inequality, the inequality (2), and the convexity property of In p, we find that

ek (v (1) < cvp~t (ah)p(edi)p(pA),

where € > 0 is an arbitrary parameter.
Let us fix e € (0,a). Then |cx(7(t))| < B~ ' ((a — e)Ax)p(uAk), k € N. Take u < a — &. Then

k(Y| < Bt ((a—e— w)Ax) = o HmAy), m=a—e—p (10)

From (A) and (10), it follows that y(t) € He(m,) C H for every t € (0, T].
Now let us prove that the boundary relation (9) holds. For this we note that

At + A0 —u(t)] = Ai i [Q1(t+ At Ar) — Qu(t, Ap)] Q2 (Ak)ck(g)ex
k=1
i di (t+0At A ) Qa(Ak)ek(g)er, 0<8 <1

So,

<
>
|| I
Aagk:
Ms —

Qu(t -+ 08, A1) Q2 (Ar)er(g)ex + FA)Qu(t M) Qa(M)ex(g)e)

»
= =~

[Qu(t+ 04t Ap) — Qu(t, A)JF(Ak) Q2(Ax)ck(g)ex

»
I
—_

I
|
Ms

F2(Ag)Qu(t + 018t A ) Qo (A )ck(Q)ex - 0148, 0 < 6y < 1.

T
1

Using the inequality p?(eAx) < p(2eAx), which follows from the convexity inequality for In p,
we find that F?(A;) < cep?(2eAy). Next, let us estimate

ek (Far)| = F2(Ax)Qu(t + 0148, Ar) Qo (Ak) ek (g) 61| At]
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similar to how it was done when estimating ci(y(f)). As a result, we come to inequalities

lex(¥ar)| < B~ (a0Ar) < BlaoAy) '[AE], ag > 0.
Then,
¥ aellzr = Z ek (Far)|? <5 ZA 2 At =By Z G 2(k)|At|* = Ba|At]> =0, At — 0.
k=1 0 k=

It follows that the limit relation (9) is satisfied in Hilbert space H, and u(t), t € (0,T], is a
strongly differentiable function, with u/(t) = G'(t) x ¢ = y(t), § € Hl(my), ' (t) € Heo(my)
for every t € (0, T]. The lemma is proved. O

From the form of G(t) and the definition of B, it follows that
B(G(t) +8) = B( Y Qu(t, M) Qa(M)ek()er)
k=1

= Y F(A)Qu(t A)Q2(Ai)e()ex = —(t) x g = =G/ (t) * 8.
k=1
As proven in Lemma 1, we have u/(t) = G'(t) * g, we see that the function u(t) = G(t) x g,
¢ € H.,(my) is the solution of the equation (4). Let us prove that this function satisfies the
condition (8).

Lemma?2. Letu(t) = G(t)xg, ¢ € Hi(my),t € (0, T]. Then in the space H.,(m,) the following
limit relation holds

m
i tlirﬂou (t) — r; Hn tlgﬁ Bu(t) = g. (11)

Proof. To prove (11) we take an arbitrary element ) = Y _ ¢ (1)ex € Heo(m,) and note that due
k=1
to the continuity of embedding He (1) in the space H,,(m,) and the orthonormality of the

basis {e : k € IN} we have

<wmw4wwm=§qwmmw=§gwMQWM@mw
=1 =1

(Bau(t), ) = (Buu(t), ¥)n = i &n(Aw)er (u(t)) ek (9)-

k=1
Then
bl 1 (8), ) = 2 p gggwnu(t),w
=u lim ch Z pn lim Zgn Ak Ck( ( ))Ck(w)

t%+0 t—t "

Note that the series Z cr(u(t))ex (¢
k=1
the definition of the coefficients c;(u(t)), k € IN, and the estimates
<

lex(u(t)] - e ()]

) converges uniformly on [0, T]. This fact follows from

Clec(@)l - lex(w)l, €0, T], keN.
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In fact, ¢ € H.,(m,), that is,
Vu>03dc=c(u) >0VkeIN: |ck(g)| < co(pk).
Then ¢ € Heo(my), therefore, due to the condition (A),
Fug>03cog>0VkeN: |ep(p)] < cop H(poAk).

Put u = /2. Then, given the inequality of the convexity (1), we find that

k(@) - lex(9)] < ceop (uoredo(E0Ae) < caop ! (E0A6) < eA% A= Gk,

The formulated property follows from the last inequality. Similarly, we prove that the series

Y 8n (M) Qu(t M) Qa(Ai)ek()ek () = ) gn(Ae(u(t))e(y), n€{L,...,m},
k=1 k=1
converges uniformly on [t1, T] (using the properties (6) of g1, ..., gm)- So,

lim }:Ck (Buu(t))ck(¢) = ick(Bn”(tn))ck(’ab) = ign(Ak)Ql(tmAk)Qz(Ak)Ck(g)Ck(lP)f

t—ty p

k=1 k=1
tl_lglo Z ck(u(t))er(p) = ) ce(u(0)ek () = Y Qa(Ar)e(g)er ().
k=1 k=1
Taking into account the last relations, we obtain
p lim (ut), Z po Tim (Bya(8),9) = Y [ = 32 e (4 Q1 (b0, 20| Q2 A ek (§)e ()
—+0 —ty =1 =1
w B g ngn(Ak) Q1 (tn, Ak)
-r—7 c(8)ex(y)

k=1 H— gl Un8n ()\k)Ql(t”’ Ak)

- ki e(9)ce(P) = (8, 9), € Haolmy).

O

Lemma 2 allows us to formulate a multipoint problem for the equation (4) in the sense of
(8). The following statement is correct.

Theorem 3. The problem (4), (8) is correctly solvable, its solution is given by the formula
u(t) = G(t)x g, g € H,(my), t € (0,T], u(t) € Hoo(my) forevery t € (0,T).

Proof. From the above it follows that the proof requires the property of the uniqueness of the
solution of the problem (4), (8) and its continuity with respect to the element g € H., (m,,).
We obtain the uniqueness of the solution for the following reasons: if ¢ = 0, then ¢(g) =
(g,ex) =0,Vk € N, thatis, u(t) =0, t € (0, T].
Now let us prove that the solution of this problem is continuous with respect to the bound-
ary condition. Let {g, g, : € N} C Heo(m,), with g, — g at n — oo in the space HJ, (my,). It
follows that

cx(8n) = (gn ex) —= (8 &) = cx(8)
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for each k € IN. In addition, {u,u, : n € N} C Hs(my), where u, is the solution to the
problem (4), (8), which corresponds to the boundary element g, € H (m,). Then

(n, @) = (ttn, @ ch Nek(gn)ex(p) = ch 8)ck(p) = (u,9) = (u, ).

for all ¢ € Heo(my,). Therefore, u, — u for n — oo in the space H.,(my). O

Let us look at the boundary properties of the solution of multipoint problem for the evolu-
tionary equation (4) at t — +0. Based on the formulation of the solution of the problem (4), (8),

it follows that it can be represented as u(t) = G(t) * f = f Q1(t, Ap)cr(f), where f = f *a,

G(t) = ) Qi(t A)ex € Hoo(mu), t€(0,T], a= Z Q2(Ak)ers

k=1 k=1

f = éck<f>ekeH;o<mn>, () = ae(f)Qa(A), k€.

Therefore, the solution of problem (4), (8) coincides with the solution of the Cauchy problem
for equation (4), which corresponds to the generalized element f. Also, note that a is an ele-
ment of H.,(m,). Given f € H.(m,), we have that f = f xa € H. (m,), u(t) € Heo{m,) for
every t € (0,T] and u(t) — f for t — +0 in the space H.,(m,). If f belongs to narrower than
H/,(m,) space, then f may also belong to space contained in H., (mm,); the behavior of u(t) in
a neighborhood of the point ¢ = 0 essentially depends on which space f = f * a belongs to.

Theorem 4. The equivalence relation
(fEH) < (Fc>0Vvte (0,T): |lu(t)| <o)
is correct, at the same time u(t) — f fort — +0 in the space H.

Proof. Let
de>0vte (0,T]: |u(t)] <ec.

Then o
Ju(t)|)* = Z Q}(t, A (F)? = Y e 2HEM e (£) 2 < &
k=1

Making a limiting transition as t — +0, we find that ||f||*> = Z lce(F)? < 2, that is,

f € H. Vice versa, if f € H, then

Ju(t)|> = }:6 2 e (f Z = |IflI>, vte(o,T]
Since
u(t) — flI* = Y (e — (P < Z lck(HIZ = IIfII7, Vte(0,T],
k=1

and exp{—tF(Ax)} — 1 when t — 40, we can see that

lim [lu(t) - f|* = Z lim (e~ —12|e (F)]* = 0,

t—+40 t+0

thatis, |u(t) — f|| — 0 att — +0. The theorem is proved. O
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Now, let y be a continuous, positive and integrable function on (0, T], 7(0) = 0, K is a set
of solutions of multipoint problems for the equation (4), each of which is constructed over a

certain boundary element ¢ € H/,(m,), for Wthh/ (8)||u(t)|?dt < oo. Since y(t) > ¢ > 0

on an arbitrary segment [¢, T], we can see that this estimate characterizes the behavior of u(t)

when t — +0. Let . -
L) = / Ye 2 War)
0

Function L is positive, continuous on [0, o) and
-1/2

T
lim L(A) =400, L(A)>c¢>0,VAe€[0,o), c= (/ 'y(t)dt>
A——+00 0

We also assume that the following condition is fulfilled
Ve>03dc=c>0: L(A) <cep(er), A>1
We introduce the following scalar product in the domain D(L(A)) of the operator L(A):

(¢, ¥), = (L(A)g, L(A)p), {9} C D(L(A)).

Then D(L(A)) is transformed into Hilbert space H (see the building schema of the chain of
spaces by a non-negative self-adjoint operator [1, pp. 59-61]). If we take H| as a positive space
and identify through H] a negative space, constructed by H; and H, then we get a chain

Heo(my) C HL C H C H] C HL(my)

of continuous and densely embedded spaces; at the same time

(9 ) = (Ioll, = 3 POl <, elo) = (o),

(g€ Hi) & QwH—ZL (A)le(@) P < o0, cilg) = (g.ex) ).

Theorem 5. Let u(t) be a solution of the multipoint problem (4), (8), constructed by the bound-
ary element f € H,(m,). Then

(f € Hy) & (u(t) € K, t €(0,T)),
at the same time u(t) — f ast — +0 in the space H}.

Proof. The theorem follows from the relations

T T 00 )
/o W(f)Hu(f)szf:/O ZGXP{ —2tF(Ag) }Her(f)[*dt
Z f|/ Je 2F (Mg ZL (Ao lex(F) %

Besides,
lu(t) = i3y = ZL (e~ FM) — 12|y (f \2<2L Al (HIP = [IFl1F, < o0

forall t € (0, T]. Since exp{—tF(Ax)} — 1ast — +0, Yk € IN, we see that ||u(t) _JEHH’L -0
as t — +0. The theorem is proved. O
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Using the representation of generalized elements in the form of formal Fourier series and
correspondingly picking the function vy, the spaces H,,(A), H.,(m,) can be described by char-
acterizing the behavior of the solution of the multipoint problem (4), (8) u(t) in the neighbor-
hood of zero.

For example, if y(t) = exp{—t"7},q > 0, t € (0, T], then as follows from the results given
in [1, page 87], the equivalence relations are correct

(f € Gip (A) = Hy(n"F),8>1) & (Vﬁc >03dc=c(&) >0: Ju(t)| <cexp{at 7},

e, q=(-1"),

or

(F € Gy (A) = Hio(n"P), B >1) & (u(t) € Ky, 7(t) = exp{~t7},
te (0,T), q=(p—-1)7").

References

[1] Gorbachuk V.I., Gorbachuk M.L. Boundary value problems for operator differential equations. Nauk.
Dumka, Moscow, 1984. (in Russian)

[2] Dezin A.A. Operators involving a first derivative with respect to time and nonlocal boundary conditions. Izv. Akad.
Nauk SSSR Ser. Mat. 1967, 31 (1), 61-86. (in Russian) doi:10.1070/IM1967v001n01 ABEH000547

[3] Dezin A.A. General questions of the theory of boundary value problems. Nauka, Moscow, 1980. (in Russian)

[4] Romanko V.K. Boundary-value problems for a class of differential operators. Differ. Uravn. 1974, 10 (11), 117-131.(in
Russian)

[5] Romanko V.K. Boundary-value problems for some operator-differential equations. Doklady Akademii Nauk SSSR
1976, 227 (4), 812-816. (in Russian)

[6] Yunusov M.Yu. Operator equations with small parameter and nonlocal boundary conditions. Differ. Uravn. 1981, 17
(1), 172-181. (in Russian)

[7] Chesalin V.I. A problem with nonlocal boundary conditions for certain abstract hyperbolic equations. Differ. Uravn.
1979, 15 (11), 2104-2106. (in Russian)

[8] Chesalin V.I, Yurchuk N.I. Problem with nonlocal conditions for abstract love equations. Vestsi Akad Navuk BSSR
Ser. Fiz.-Mat. Nauk 1973, 6, 30-35. (in Russian)

[9] Gorodetskyi V.V., Martynyuk O.V., Feduh O.V. The well-posedness of a nonlocal multipoint problem for a differ-
ential operator equation of second order. Georgian Math. J. 2020, 27 (1), 67-79. d0i:10.1515/gm;j-2018-00

[10] Horodets'kyi V.V., Martynyuk O.V. Cauchy problem and nonlocal problems for first-order evolution equa-
tions on a time variable. Rodovid, Chernivtsi, 2015. (in Ukrainian)

[11] Ptashnyk B.I, II'’kiv V.S., Kmit’ I.Ya., Polischuk V.M. Nonlocal boundary-value problems for partial differential
equations. Naukova Dumka, Kyiv, 2002. (in Ukrainian)

[12] Gorbachuk V.I. On the solvability of the Dirichlet problem for a second-order differential-operator equation in various
spaces. Direct and inverse problems of the spectral theory of differential operators: Sb. nauch. tr. - K., 1985 .
— P. 8-22. (in Russian)

[13] Horodets’kyi V.V. The set of initial values of smooth solutions of differential-operator parabolic type equa-
tions. Ruta, Chernivtsi, 1998. (in Ukrainian)



528 Horodets’kyi V.V., Martynyuk O.V., Kolisnyk R.S.

[14] Gel'fand .M., Shilov G.E. Spaces of test and generalized functions. Fizmatlit, Moscow, 1958. (in Russian)

[15] Horodets'kyi V.V. The Cauchy problem for evolution equations of infinity order. Ruta, Chernivtsi, 2005. (in
Ukrainian)

[16] Gel’'fand I.M., Shilov G.E. Some questions of the theory of differential equations. Fizmatlit, Moscow, 1958.
(in Russian)

Received 01.03.2021
Revised 12.11.2022

T'opoaewsximi B.B., Mapturtiox O.B., Koaicank P.C. Ipo 00nY HenokanvHy 3a0auy 019 OugpeperyianoHo-
onepamopHux pisHaHb nepuioeo nopsoxky // Kapmarceki marem. my6a. — 2022. — T.14, Ne2. — C. 513
528.

Pisni pyHKIIOHAABHI TpOCTOPH (HapyMKAaA, COBOAEBCHKI, aHAATUIHMX PYHKIIiM, HeCKiHUeH-
HO AudpepeHIioBHNMX Ta po3roAiais A. IllBapia) MoXHa TpaKTyBaTH SIK TIO3WTHBHI Ta HeraTMBHI
BiAHOCHO L), mobyaoBaHi 3a PYHKIISIMM Bia orlepaTopa AudpepeHIIioBaHHS a60 MHOXKeHHS Ha He-
3aAeXHy 3MiHHY, ab0 SIK IPOeKTUBHI UM iHAYKTUBHI TpaHmii Takux npocropis. M.A. I'opbauyk Ta
B.I. Topbauyx po3BMHYAM T€OPito MPOCTOPiB OCHOBHMX Ta y3aTaAbHEHVX €A€MEHTIB, SIKi 6y AYIOThCST
3a PYHKIISIMY BiA AOBIABHOTO CaMOCHPSIXEHOTO oIlepaTopa.

Y it poboTi pO3rAsIAQIOTHCS IIPOCTOPY y3aTaAbHEHMX eAeMEHTIB, SIKi OTOTOXHIOIOTECS 3 pop-
MaAbHMMU psipamu Dyp’e i 6YAYIOTBCS 3a HEBiA €MHIUM CaMOCIPSDKEHVM OIIEPaTOpOM Y Tiabbep-
TOBOMY IPOCTOPI, CIIEKTP SIKOTO € CyTO AMCKPeTHMM. AAsl AMdpbepeHIiaAbHO-0IIepaTOPHOTO PiBHSI-
HHsI TIEPIIOTO MOPSIAKY CTaBUThCS HeAOKAaAbHA HaraToOTOUKOBa 3a YacOM 3aAava Y BUITAAKY, KOAM
BiATIOBiAHA yMOBa 3aA0OBOABHSIETHCS B TIO3UTUBHOMY abo HETaTMBHOMY IIPOCTOpaX, SKi nobyaoBaHi
3a TaKMM OIepaTOpOM (Taky 3apady MOXKHA PO3YMITH SIK IIeBHe y3araAbHeHHs abCTpakTHOI 3aAa-
ui Komi AnsT 3a3HaueHOTO AVcpepeHIIiaAbHO-OIIePaTOPHOTO PiBHSHHS). BCTaHOBAIOETHCSI KOpeKTHa
PO3B’SI3HICTD 3a3HaUeHOI 3apadi, IPY IIbOMY OYAYEThCS (PYHAAMEHTAABHMI PO3B’ 30K, AOCAIAXKYeE-
TBCSI IOTO CTPYKTypa Ta BAACTMBOCTi. PO3B’SI30K AQ€THCSI y BUTASIAL abCTpaKTHOI 3ropTKM PyHAA-
MEHTaABHOTO PO3B’SI3KYy 3 TPaHWYIHMM eAeMeHTOM, 3a AOTIOMOTOIO SIKOTO CTaBUThLCSI 6araTOTOUYKOBA
yMOBa i SIKWIT € AiHIVHVM HellepepBHMM (PYHKITIOHAAOM, 3aAaHMM Ha IIPOCTOPi OCHOBHMX eAeMeH-
TiB, IPM IIbOMY PO3B’SI30K 3aAOBOABHSIE 6araTOTOYKOBY YMOBY B HeTaTMBHOMY IPOCTOPi, SIKMI €
COpSIKEHUM 3 BiATIOBiAHMM HO3UTMBHUM IIPOCTOPOM €A€MEHTIB.

Kntouosi cnoea i ppasu: HeaOKaAbHa 6araTOTOUKOBa 3ajada, AMdpepeHIliaAbHO-OIIepaTOpHe piB-
HSTHHSI, CAMOCITPSIXeHMIA OTlepaTop, TiAbOepTOBMIT ITPOCTip, KOPEKTHA PO3B SI3HICTh.



