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Fuzzy fractional hybrid differential equations

Harir A., Melliani S., Chadli L.S.

This article is related to present and solve the theory of fractional hybrid differential equations
with fuzzy initial values involving the fuzzy Riemann-Liouville fractional differential operators of
order 0 < g < 1. For the concerned presentation, we study the existence and uniqueness of a fuzzy
solution are brought in detail basing on the concept of generalized division of fuzzy numbers. We
have developed and investigated a fuzzy solution of a fuzzy fractional hybrid differential equation.
At the end we have given an example is provided to illustrate the theory.
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Introduction

The differential equations involving Riemann-Liouville differential operators of fractional
order 0 < g < 1 are very important in modeling several physical phenomena [3,8,9,11,12,22]
and therefore seem to deserve an independent study of their theory parallel to the well-known
theory of ordinary differential equations.

Receiving much attention in the recent literature are hybrid differential equations. Hy-
brid differential equations evolve in continuous time like differential equations. When the
continuous-time dynamics of a hybrid equation is given by fuzzy differential equations, the
equation is called a hybrid fuzzy differential equation. For analytical results on hybrid fuzzy
differential equations see [1,2,4,5,10,16,19,21]. In [7], it is discussed the following first-order
hybrid fuzzy differential equation :

{ % [vute] = stbue), e,
u(to) = uo € Ry,
where f € C(] x Rr, Rr\{0}) and ¢ € C(J] x Rr, Rr). They established the existence results
for hybrid fuzzy differential equations initiating the study of the theory of such systems and
proved to utilize the theory of division of fuzzy numbers, its existence of solutions.

From the above works, we develop the theory of fractional hybrid differential equations
with fuzzy initial conditions involving Riemann-Liouville differential operators of order
0 < g < 1, their compact and convex level-cuts, and generalized division

b {%] =g(tu(t), te],
M(i’o) =1Ug € ]R]:.
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As we can see, a key point in our investigation is played by the division concepts for fuzzy
numbers. A recent very promising concept, the G-division proposed by [7]. We observe that
this division has a great advantage over peer concepts, namely that it always exists. In com-
parison with the paper [7], we study fuzzy fractional hybrid differential equations with fuzzy
initial value and fuzzy forcing functions, we propose a new theorem for finding the fuzzy
solutions, we prove some results and we discuss the fuzzy solution with an example.

1 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper.

Letus denoteby Rr = {u : R — [0, 1]} the class of fuzzy subsets of the real axis satisfying
the following properties (see [14]):

(i) uisnormal, i.e. there exists an xp € R such that u(xgp) =1,

(ii) uis fuzzy convex, i.e. forx,y € Rand 0 < A <1,

u(Ax + (1= A)y) > minfu(x), u(y)],

(iii) u is upper semicontinuous,
(iv) [u]° =cl{x € R: u(x) > 0} is compact.

Then R r is called the space of fuzzy numbers. Obviously, R C Rx.

For 0 < & < 1denote [u]* = {x € R : u(x) > a}, then from (i)-(iv) it follows that the
a-cuts set [u]* € Pr(R) forall 0 < a < 1 is a closed bounded interval which we denote by
[u]® = [uf,u5]. Here Px(R) denotes the family of all nonempty compact convex subsets of R
with the addition and scalar multiplication in P (R) defined as usual.

The property of the fuzzy numbers is that the a-cuts [u]* are closed sets for all « € [0, 1].

Definition 1 ([7, 14,17]). We represent an arbitrary fuzzy number by an ordered pair of func-
tions [u|* = [uf,uf],a € [0,1], which satisfy the following requirements:

(a) uf is a bounded monotonic nondecreasing left-continuous function Vo € |0,1] and right-
continuous forx = 0,

(b) uf is a bounded monotonic nonincreasing left-continuous function Vo €0, 1] and right-
continuous fora = 0,

(c) uf <uj, 0<a <1
A trapezoidal fuzzy number, denoted by u = (a,b,¢,d), where a < b < ¢ < d, has a-cuts
u*=la+ab—a),d—wald-c)], acl01],

obtaining a triangular fuzzy number if b = c.
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Theorem 1 ([14]). Let u € Rz. Denote Ay = [u]* for « € [0, 1]. Then the following is true.
1. A, is a nonempty compact convex set in R for each « € [0, 1].

2. AlggAaforO<1x§ﬁ§1.

3. Ay = ﬂ A,, for any nondecreasing sequence a; — « on [0, 1].
i=1

Define D : Ry x Ry — R4 U {0} by the equation

D(u,v) = sup Dy ([u]*,[0]"),
ael0,1]

for all u,v € Rz, where Dy is the Hausdorff metric defined as
D ([u]®, [0]*) = max {[uf —of|, [u3 — 03]} .
It is well known that (R £, D) is a complete metric space. The following properties of D (u,v)
D(u+w,v+w) = D(u,v),

D(ku,kv) = |k|D(u,v),
D(u,v) < D(u,w) + D(w,v)

hold forall u,v,w € Rr and A € R.
The addition 1 4 v and the scalar multiplication ku are defined as having the level cuts

[u+ 0" = [uf +of,uj + 053], k[u]* =

[kuf, kus], k>0,
[kuf, kuf], k<0,

and
[u]*[v]* = [min{u‘i‘.v‘f, uf.vy, uy.vf, uy.v5}, max{uj.of, uj.v5, u5.0f, ug‘vg‘}} ,

ulX ulX 4 14 uﬁl ulX 14 14
[u]* = [0]* = [min{—1 s W ﬁ},max{—l o e | ﬁ}]

4 4 14 o’ 4 4 [
1 U U1 O U1 U U1 0y

Definition 2 ([7,20]). Given two fuzzy numbers u,v € R r the division (g-division for short) is
the fuzzy number w, if it exists, such that

where ([w]*)~! = [1/w§,1/w}].

Definition 3 ([7,20]). The generalized division (G-division for short) of two fuzzy numbers
u,v € Rrand0 ¢ [v]* Va € [0,1], is given by its levels sets as

u+gol* =d | <[u]/3 g [v]ﬁ), Va € [0,1], (1)

p=u

where the g-division +4 is with interval operands [u]P and [v]F.
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Proposition 1 ([7]). The G-division (1) is given by the expression

[u+go]* = [infmin{uf u’f ug u—g},supmax{uf u’f u_g u—g}]

i A -

Let ] C R be an interval. We denote by C(], R ) the space of all continuous fuzzy functions
on].Leta >0, ] = (0,a] and ¢ > 0. Before proceeding further, we need the following notation

Ce (J,Rz) := {u € C(J,Rz); t*u € C(J,Rx)}.
Obviously, C¢ (], R ) is a complete metric space with respect to the metric

Hg (u,0) := r?eajx t5D (u(t),v(t)).

Evidently, Cy (J,Rxr) = C(J],Rf).

Also, we denote by LY(J, Rf) the space of all fuzzy functions f : | — Ry, which are
Lebesgue integrable on the bounded interval | of R.

Let u : | = Rz be a fuzzy function. We denote

(e = [, u3(0], te) aclol

The derivative u/(t) of a fuzzy function u is defined by [18]

W (O = () (), W§)'(B)], aelo1],

provided this equation defines a fuzzy number u/(t) € R z. The fuzzy integral

b
/u(t)dt, a,be ],
a

Mbu(t)dtr - [/abu‘i‘(t)dt, /:ug(t) dt},

provided that the Lebesgue integrals on the right exist. Moreover, we know [18] that the fuzzy
integral is a fuzzy number.

is defined by [15]

2 Fuzzy fractional integral and fuzzy fractional derivative

Letu : | — Rz be such that [u(f)]* = [uf(t), u5(t)] forall t € ] and g € RY.. Suppose that
ut,uy € C(J, R)NLY(J, R) forall « € [0,1] and let

Ay = ﬁ [/Ot(t — s)q_lu‘i‘(s) ds, /Ot(t — s)q_lug‘(s) ds|, te]. (2)

Lemma 1 ([6]). The family {A, : a € [0,1]}, given by (2), define a fuzzy number u € Rx such
that [u]* = A,.
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Letu € C(J, Rx) N LY(]J, Rx). Define the fuzzy fractional primitive of order g > 0 of u

Iu(t) = %q) / (= sy lu(s)ds, te ), 3)
b
’ 4 1 f e P t -1,
[17(8)] :W[/O(t—s)q ul(s)ds,/o(t—s)q ui(s)ds|, teJ.

t
For g = 1, we obtain I'u(t) = / u(s)ds, t € J, that is, the integral operator. Also, the
a

following properties are obvious:
(i) I(cu)(t) = cI7(u)(t) for each constant ¢ € R,
(ii) IT(u+0)(t) = I(u)(t) + I7(v)(t).
Proposition 2 ([6]). Ifu € C(J, Rz) NL(J, Rx) and p, g > 0, then we have
P19y = Py, (4)

Example 1. Let u : | — Rz be a fuzzy function given by u(t) = At, where A € Ry. If
[A]* = [1+a,3 —a], then

[Tu(t)]* = ﬁ Uot(l +a)(t—s)T s ds,/ot(B —a)(t—s) s ds
p+1
= T7+2) 14+a,3—a]
p+1
"

Definition4. Letu € C(J,Rx) N L(J,Rx) be a given function such that [u(t)]* = [u$ (t), u§(t)]
forallt € ] and a € [0,1]. The fuzzy fractional differential operator in the Riemann-Liouville
sense is defined

DIu(t) = ﬁ%/ot(t—s)—qu(s) s

by

[DIu(r)]"* = ml_q) [% /Ot(t—s)qu’f(s)ds, %/Ot(t—s)qu%(s) ds]

provided that the equation defines a fuzzy number Du(t) € Ryx.
In fact,
[DTu(t)]* = [Duy(t), DIuz ()]

forallt € Janda € [0,1].
Proposition 3. If u € C(J, Rx) NLY(J, Rr) and 0 < g < 1, then D917u(t) = u(t).
Proof. Indeed, using (4), we have

DI7u(t) = DI 91u(t) = DIu(t) = u(t).
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Proposition 4. There exists a function ¢ € L'(], Rz) such that u(t) = u(0) + I1¢(t). Then
ITDTu(t) = u(t) © u(0).
Proof. Indeed, by Proposition 3 we have that
I"Du(t) = 11D u(t) = I1D(I'*9u(0) + I*119¢(t)) = I"DI*"9u(0) + IDIg(t) = I1¢(t)
or u(t) 5 u(0) = I1¢(t), therefore I"D9u(t) = u(t) © u(0). O

Example 2. Let u : | — Ry be a fuzzy function given by u(t) = At, where A € Ry. If
[A]* =[1+«,3 —a], then

1 [d i [t
q & - —g) 1 _ _ — g\ 4
D))" = =y [dt/(1+a)(t ) sds,dt/O(B &)(t —s) 75 ds
Y rasoa)—
= 0(, — X = ,
I'(2—9) I'(2—4q)
that is, DAt = ( ))\ forevery A € Ryr.

3 Fuzzy fractional hybrid differential equations

Were call the result which establishes the existence of solution for fractional hybrid
differential equations (FHDEs) involving Riemann-Liouville differential operators of order
0 < g < 1. This result will be useful in the study of the corresponding fuzzy problem.

We consider the initial value problem

iy te],
{ (to{) ;]E]R ©)

where0 < g <1, f € C(J] xR, R\{0}) and g € C(J xR, R).
By a solution of the FHDE (5) we mean a function u € C(J, R) such that

(i) the function t — is continuous for each u € R,

ftu)

(ii) u satisfies the equation in (5),
where C(J, R) is the space of continuous real-valued functions defined on .

Theorem 2 ([13]). Let S be a non-empty closed convex and bounded subset of a Banach algebra
XandletA: X — X, B:S — X be two operators such that

(a) A is Lipschitzian with a Lipschitz constant 1,
(b) B is completely continuous,

(¢c) x=AxBy = x € Sforally €8S,

)
)
)
) M

(d) Mvy(r) <r, where M = ||B(S)|| = sup{||Bx|| : x € S}.

Then the operator equation AxBx = x has a solution in S.
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In what follows, we consider the following hypotheses.

(Ao) The function x — is increasing in IR almost everywhere for t € J.

X
f(t,x)
(A1) There exists a constant L > 0 such that
£t x) = f(t, y)| < Llx —y| 6)
forallt € Jand x,y € R.

(A;) There exists a function & € L!(], R) such that
8(t, X)| <h(t), te].

In the following section, we consider a fuzzy differential equation which is a fuzzy
analogue to (5).

4 Some results for fractional hybrid differential equations

We shall consider the initial value problem

D [%} _ (b u(t), teJ, qe(01),

u(O) =1ug € Rr.

(7)

The extension principle of Zadeh leads to the following definition of f(f,u) and g(t, u),
when are fuzzy numbers

f(tu)(y) =sup{u(x) 1y = f(t, x), x e R},
g(tu)(y) = sup{u(x) :y = g(t, x), x € R}.

It follows
[f(t,u)]* = [min{f(t, x) : x € [uf,u5]}, max{f(t, x): x € [u’f,u”z‘]}],
g(tw)* = [min{g(t, x) : x € [uf, us]}, max{g(t, ) : x € [uf,u3]}],

for u € Ry with a-level sets [u]* = [uf,u5],0 < a < 1. Wecallu: ] — Rr a fuzzy solution
of (7) if

o

Dq[u(t)+cf(t,u(t))]] = st u)]" and [u(0))* = ug]"

forallt € J,q € (0,1] and a € [0,1]. Denote f = (f1, fo) and § = (g1, $2),

filtu) =min{f(t, x) : x € [y, uo]}, fa(t,u) =max{f(t x) : x € [y, u2]}
and

gu(t,u) =min{g(t, x) : x € [u,uz]}, ga(t,u) =max{g(t, x) : x € [uy,u2]},

where u = (u1,u;) € R2.
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Thus for fixed & we have an initial value problems in IR?

0N
v f(t,uw),u%(t))] = 8(bui(n) (), ®
ui(0) = ug,
and
ORI
v f(t,ua*<t>,us<t>>] = 8t 5 (0), ©)
u3(0) = ug,.

If we can solve them (uniquely) we have only to verify that the intervals [uf (t), u5(t)], « € [0,1],
define a fuzzy number u(t) in Rr. Since f and g are assumed continue and Caratheodory
(resp.), the initial value problems (8), (9) are equivalent to the following nonlinear fractional
hybrid integral equation (FHIE)

7 up 1 t -1
u(t) = f(t,u(t)) (f(O,u(O)) 50 |t =97"g(s,u(s)) ds>. (10)
Theorem 3. Assume sign(u(0)) = sign(u(t)) forallt € J, g € (0,1].
Letz(t) = u(t) +¢ f(t,u(t)), 0 € [f(t,u)]*, « € [0,1] and

r(t) = f(t,u(t)) +¢ (z(O) + %q) /Ot(t — )17 Lg(s,u(s)) ds> ,

1t 2
0¢ [Z(O) + W/O (t —s)T1o(s,u(s)) ds] :
1. Ifz(0) % g(t,u) > 0O, then the function u(t) € C((0, J], Rx) is a fuzzy solution of (7).

2. If z(t) is G;-division and r(t) is G;-division or z{(0) < 0 < z5(0), then u(t) is a fuzzy
solution.

Proof. We solve the initial value problems in R?

DIzt = min{g(t, x) s x € [uf(t),ud(0)] ), wi(0) = ufy,
DIz = max{g(t, x) :x € (W (), us (D]}, u3(0) = ufy,

where g € (0,1].
Step 1. It can be assumed that (6) implies

If (£ x) = f(t, )| <Lllx —y| forallte], xyeR, (11)

where the || - || is defined by ||u|| = max{|ui|, |uz|}. It is well known that (11) and the as-
sumptions on g guarantee the existence and continuous dependence on initial of a solution

to

u(t) e

{ Dq[ﬂau(t))] = &(tult)), (12)
u(0) = ug
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and that for any continuous function 1y € R? we have (10).

By choosing 1y = (uf};, uf,) in (12) we get a solution u®(t) = (uf{(t),u5(t)) to (3) for all
a e (0,1].

Step 2. We will show that the intervals [uf (), u5(t)], « € [0,1], define a fuzzy number
u(t) € Rg. For simplicity assume [u(0)]* < 0, [f(t,u(t))]* > 0and [g(t,u(t))]" < 0 for all
a € [0,1]. The proof for other cases is similar and omitted. So, we have two cases.

Case I. By equations (8), (9) we have the two following FHDE with initial conditions

[ ug() ]
{ D7 sty | = 81 (B u(h), s
u§(0) = ug,

and

o
T| 2 | = o%
D | FECtu(D) | & (t,u(t)), (14)
us(0) = ug,.

In the consequence by Step 1, we deduce that for every a € [0, 1] the solution to problems
(13)—(14) are respectively

a0 = )| T Ra Ty KU E) s
(0 = )| kel KU E) is|

By applying the stacking Theorem 1, we check that {[u{ (), u5(t)], « € [0,1]} represent the
level set of a fuzzy set u(t) in Rx for each fixed t € J. Indeed, we fix t € | and check the
validity of the three conditions.

(1) First, we check that u{(t) < u3(t) forevery « € [0,1] and t € J. Indeed, for each & € [0, 1]
and t € | we have that f{'(t, u(t)) < f5(t,u(t)) and

ui (0) 1t L
0,0 " @) /0 (t=9)7""81(s,u(s)) ds

: ff‘(L:J%,(f()o)) " r(lq) /ot(t — 9" ga (s u(s)) ds
and by classical arithmetic we have
40 = B 000) | 20 oy Ty 9 )
< fi(t,u(t)) ff‘(L(l)%,(L(t)()O)) + F(lq) /Ot(t —8)T L% (s, u(s)) ds| = ul(t).

(2) Let0 < a < B < 1. Since uy € Rz, we have that ff(t,u(t)) < f3(t,u(t)) and

u5(0) 1t L
A0 ' () | (=9 gk (s,u(s)) ds

" r<1q> [ (6= sy 1ghs,ut s
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We deduce that

() = f 6, (0) | s+ 5 /Ot<t—s>q1g%<s,u<s>>ds]

[P t
< Al u()| o /0<t—s>q1gf<s,u<s>>ds]=uf<t>.

B
uy (0) 1 ¢
f <02 u(0) | T@) /0 (t—5)"""gb(s,u(s)) ds
us(0) 1 ¢ .
< A uio) i S Y s

SO

[P t
(1) = )| 2Oy /0<t—s>q—1g§<s,u<s>>ds]

< fi (& u(t))

which proves that [u’f(t), ug(t)] C [uf(t), us(t)].
(3) Given a nondecreasing sequence {«;} in (0,1] such that a; 1 « € (0, 1], we prove that

[uf(t),us(t)] = () [u]'(t), u3' (t)]. Indeed, by the Dominated Convergence Theorem,

i=1
1 . 1 g e
it?;m/o (t—s)1 gl (s, u(s)) ds = W/O (t—s)1 12‘?;& (s,u(s))ds
= ), 81(s,u(s))ds

and, hence,

limuy’(t) = lim <f§i(t,u(t)) [ iul"(O) + L /Ot(t — )71l (s, u(s)) ds] >

;e ;e

Hence, u(t) € Rr.
Case II. By equations (8), (9) we have the two following FHDE with initial conditions

ufy(t) o
{ DI | 7t | = gtk u(h)), 0
uﬂZC(O) = ugz
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and ()
{ D st | = 88t u() (16)
uf(0) = uf,.
The solution to problems (15)—(16) are respectively
x _ _ u%(()) 1 ! -1« ]
uZ(t) - fl (tlu(t)) _ff((oru(o)) + r(q) /0 (t - S)q &1 (S/u(s)) dS_ s
% _ _ u‘i‘(O) 1 ! -1« ]
Uy (t) - f2 (tlu(t)) _ff‘(ofu(o)) + r(q) /0 (t - S)q gZ(S/u(S)) ds|.
By applying Step 1, we consider the situation, where 0 §Z )+ / s, u( ds ,
f3 (t,u(t)) f1 (t,u(t))
e a < 1 (17)
z1(0) + Tq)fo(t—s)‘? gl (s,u(s))ds — z(0 fo 5)11g8 (s, u(s)) ds’

ie. (uf(t) <uj(t)). Similarly, by applying Theorem 1, the detalls for the Case I are analogous.
If the situation (17) does not hold, i.e. (u5(t) < uf{(t)), then by Theorem 1 u(t) is not a fuzzy
solution of (12). O

Example 3. Consider the fuzzy fractional hybrid differential equation

D2

Ll(t) _ tu(t) , te ] _ [O, 7_(]’
1+<sm(t)>u(t)] 1+‘u(t)‘

u(O) =1ug € Rr,
where [uo|* = [¢, 2 —a], Va € [0, 1].
It is easy to see that all hypotheses of Theorem 3 are satistied with

Fleu(e) =1+ (D)) >0
g(tu(t)) = #(ut()t)\ >0 and u(0) >0,
so z(0) xg(t, u(t)) > 0.
We conclude that
1 u(t) o I O
b L+ sirllét))u(t)] ] {1"‘\”(’5)\} ! (18)
u(0))" = [«, 2—a].

Hence (18) has a fuzzy solution u(t) € Rz.

5 Conclusions

We have successfully studied fractional hybrid differential equations with a fuzzy initial
value, using the Riemann-Liouville fuzzy fractional derivative of order 4 € (0,1). The ob-
tained results have been testified by an interesting examples. Also, we have provided some
sufficient conditions guaranteeing the existence of fuzzy solutions for a class of fuzzy hybrid
fractional differential equations. Our results rely on a generalized division for fuzzy numbers,
we prove some results and we have obtained fuzzy solutions to fuzzy fractional hybrid differ-
ential equations. We will apply this generalized division to more dynamics of the problems
involving fuzzy with future scope.



Fuzzy fractional hybrid differential equations 343

References

(1]

(2]

(3]

(4]

(5]

6]

(7]

(8]

[9]

[10]

(1]

[15]

(16]

(17]

(18]

Agarwal P., Ibrahim I.H., Yousry EM. G-stability one-leg hybrid methods for solving DAEs. Adv. Difference Equ.
2019, 103 (2019), 1-15. d0i:10.1186/513662-019-2019-2

Agarwal P, Ibrahim I.H. A new type OF hybrid multistep multiderivative formula for solving stiff IVPs. Adv.
Difference Equ. 2019, 286 (2019), 1-14. d0i:10.1186/s13662-019-2215-0

Arfan M., Shah K., Ullah A., Abdeljawad T. Study of fuzzy fractional order diffusion problem under the Mittag-
Leffler Kernel Law. Physica Scripta 2021, 96 (7), 074002. doi:10.1088/1402-4896 / abf582

Arfan M., Shah K., Abdeljawad T., Hammouch Z. An efficient tool for solving two-dimensional fuzzy frac-
tional-ordered heat equation. Numer. Methods Partial Differential Equations 2021, 37 (2), 1407-1418. doi:
10.1002 /num.22587

Bede B., Gal S.G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy
differential equations. Fuzzy Sets and Systems 2005, 151 (3), 581-599. d0i:10.1016/].fss.2004.08.001

Harir A., Melliani S., Chadli L.S. Fuzzy fractional evolution equations and fuzzy solution operators. Adv. Fuzzy
Syst. 2019, 2019 (2), 1-10. doi:10.1155/2019 /5734190

Harir A., Melliani S., Chadli L.S. Hybrid Fuzzy Differential Equations. AIMS Mathematics 2020, 5 (1), 273-285.
d0i:10.3934 /math.2020018

Harir A., Melliani S., Chadli L.S. Fuzzy generalized conformable fractional derivative. Adv. Fuzzy Syst. 2020,
2020, 1-7. d0i:10.1155/2020/1954975

Chadli L.S., Harir A., Melliani S. Solutions of fuzzy wave-like equations by variational iteration method. Ann.
Fuzzy Math. Inform. 2014, 8 (4), 527-547.

Harir A., Melliani S., Chadli L.S. An algorithm for the solution of fuzzy fractional differential equation. Journal of
Universal Mathematics 2020, 3 (1), 11-20. doi:10.33773 /jum.635100

Diethelm K., Ford N.J. The Analysis of Fractional Differential Equations. J. Math. Anal. Appl. 2002, 265,
229-248.

Diethelm K., Ford N.J. Multi-order fractional differential equations and their numerical solution. Appl. Math.
Comput. 2004, 154, 621-640.

Dhage B.C. A fixed point theorem in Banach algebras with applications to functional integral equations. Kyungpook
Math. J. 2004, 44, 145-155.

Diamond P., Kloeden P.E. Metric Spaces of Fuzzy Sets : Theory and Applications. World Scienific, Singapore,
1994. d0i:10.1142 /2326

Dubois D., Prade H. Towards fuzzy differential calculus -Part 1, integration of fuzzy mappings. Fuzzy Sets and
Systems 1982, 8 (1), 1-17.

Lakshmikantham V., Mohapatra R.N. Theory of Fuzzy Differential Equations and Inclusions. London: CRC
Press, 2003. doi:10.1201 /9780203011386

Ma M., Friedman M., Kandel A. A new fuzzy arithmetic. Fuzzy Sets and Systems 1999, 108 (1), 83-90.
doi10.1016 /50165-0114(97)00310-2

Seikkala S. On the fuzzy initial value problem. Fuzzy Sets and Systems 1987, 24, 319-330. doi:10.1016/0165-
0114(87)90030-3

Shah K., Seadawy Aly R., Arfan M. Evaluation of one dimensional fuzzy fractional partial differential equations.
Alexandria Engineering Journal 2020, 59 (5), 3347-3353. d0i:10.1016/].aej.2020.05.003



344 Harir A., Melliani S., Chadli L.S.

[20] Stefanini L. Ageneralization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets and
Systems 2010, 161 (11), 1564-1584. d0i:10.1016/].fss.2009.06.009

[21] Ullah A., Ullah Z., Abdeljawad T., Hammouch Z., Shah K. A hybrid method for solving fuzzy Volterra integral
equations of separable type kernels. J. King Saud Univ.-Sci. 2021, 33 (1), 101246. doi:10.1016/j.jksus.2020.101246

[22] Ur Rahman M., Arfan M., Shah K., Gomez-Aguilar J. F. Investigating a nonlinear dynamical model of COVID-19
disease under fuzzy caputo, random and ABC fractional order derivative. Chaos Solitons Fractals 2020, 140, 110232.
doi:10.1016/j.chaos.2020.110232

Received 04.02.2021
Revised 15.09.2021

Xapip A., Meaniani C., Yaani A.C. Heuimki 0pobosi 2ibpudni dugpeperyianoni pisnannsg // Kapnarcbki
MaTeM. my6a. — 2022. — T.14, Ne2. — C. 332-344.

LIst cTaTTsI CTOCY€ThCS MPEACTaBACHHSI Ta PO3BUTKY Teopii ApoboBMX ribpmanmx AvidpepeHIiannb-
HUX piBHSIHD 3 HEUiTKVMI IIOYaTKOBMMIY AQHVMIA, ITI0 BKAIOYAIOTD HEUiTKi ApobOBi ArdpepeHITiaAbHI
onepaTtopu Pimana-AiyBias nopsiaky 0 < g < 1. Mu AeTaAbHO BMBYaeMO iCHyBaHHsI Ta EAMHICTD He-
YiTKOTO PpO3B’SI3Ky Ha 6asi KOHIIEMIii y3araAbHEHOTO PO3MOAIAY HEUiTKMX umceA. Mu mobyayBaru
Ta AOCAIAVIAY HEUiTKII pO3B’SI30K HEUITKOTO APO6OBOTO Ii6pUMAHOTO AMdpepPeHITiaAbHOTO PiBHSHHSI.
Hanpukinmi My HaBeAM IPUKAaA, IO IAIOCTPYE Teopiro.

Kntouosi cnosa i ppasu: HediTKMI ApobOBIMIA AMdpepeHITian, PYHKIIiS 3 HEUiTKIM 3HaUEHHSIM, He-
uiTKe Apo6OBe ribpuaHe AMdpepeHIliarbHe PiBHSHHS.



