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Cauchy problem for inhomogeneous parabolic Shilov
equations

Dovzhytska I.M.

In this paper, we consider the Cauchy problem for parabolic Shilov equations with continu-
ous bounded coefficients. In these equations, the inhomogeneities are continuous exponentially
decreasing functions, which have a certain degree of smoothness by the spatial variable. The prop-
erties of the fundamental solution of this problem are described without using the kind of equation.
The corresponding volume potential, which is a partial solution of the original equation, is investi-
gated. For this Cauchy problem the correct solvability in the class of generalized initial data, which
are the Gelfand and Shilov distributions, is determined.
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rect solvability, volume potential.
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Introduction

In the famous work by G.Ye. Shilov [1], the definition of parabolicity of systems of equations
with partial derivatives, which generalizes the concept of the Petrovsky parabolicity [2], is
formulated. It significantly expands the Petrovsky class of parabolic systems of the first-order
equations by the time variable with constant coefficients to those systems, in which the order
p may no longer coincide with the parabolicity index i (0 < h < p).

The first studies of parabolic Shilov systems were carried out in [3], where a special method
for studying the fundamental solution of such systems, which is based on Phragmén-Lindelof-
type theorems, was developed. The classes of unity and correctness of the Cauchy problem
using spaces of the Gelfand and Shilov type S were also described. Further research on such
systems has been presented in many research papers (see [4-9]). In particular, in [4, 5] the
properties of the solutions of the Cauchy problem were studied; in [6] the problem of finding
the genus p of Shilov systems was partially investigated. In [7, 8] the alternative methods are
suggested for studying the fundamental solution of parabolic Shilov’s equations and of the
systems that do not require the use of the genus y. Here also the correct solvability of the
Cauchy problem in the classes of Gelfand and Shilov distributions are determined and all
classical solutions of Shilov equations in spaces of type S of basic functions are described. The
parabolic Shilov abstract differential systems of equations in Banach spaces are investigated
in [9]. The main attention in these studies was paid only to the case of constant coefficients.
This is primarily due to the fact that Shilov’s parabolic systems, in contrast to the systems of
Petrovsky, generally speaking, are parabolically unstable to changes in their coefficients, even
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to those found at zero derivative [10].

In [11], the study of parabolic Shilov systems with variable coefficients was started by
Ya.l. Zhitomirskiy, where one class of systems parabolically resistant to change of the lower co-
efficients is proposed, which fully covers the Shilov class. For such systems Ya.l. Zhitomirskiy
established the correct solvability of the Cauchy problem in the class of bounded functions.
The further study of the Cauchy problem for such and more general systems with nonnega-
tive genus y was carried out in [12-14]. Here the fundamental solution of the Cauchy problem
is constructed and its main properties within spaces of type S are investigated. Besides, the
wide class of the generalized initial data, with which the Cauchy problem for such systems
has a unique classical solution, is described.

In these works only homogeneous parabolic equations and systems of equations are stud-
ied. In this case, inhomogeneous parabolic Shilov equations and related questions are still
waiting for consideration.

This research is devoted to solving the Cauchy problem with generalized initial data, such
as the Gelfand and Shilov distributions for parabolic Shilov inhomogeneous equations with
time-dependent coefficients. The inhomogeneities in these equations are continuous exponen-
tially decreasing functions, which by the spatial variable have a certain degree of smoothness.
Here the correct solvability of this problem is determined, the formula of its solution is found,
and the effect of strengthening of the solution convergence when approaching an initial hy-
perplane is investigated.

The structure of this article is as follows. Section 1 formulates the problem statement and
provides the necessary preliminary information. The properties of the fundamental solution
of the Cauchy problem for parabolic Shilov equations are investigated in Section 2. Here,
developing the method of V.A. Litovchenko [7, 8], within spaces of S type the estimates of
derivatives of this solution are found, which differ from the existing ones in the fact that they
definitely do not contain any kind of equation. Section 3 is devoted to the study of the volume
potential of the Cauchy problem. It clarifies the smoothness conditions and the behavior at
the density infinity, which provide the required smoothness with respect to the temporal and
spatial variables of the corresponding potential of the problem. In addition, its behavior when
approaching the initial hyperplane is studied. Sufficient conditions for the correct solvability
of the inhomogeneous Cauchy problem are clarified in Section 4. Finally, Section 5 contains
the conclusions.

1 Useful information. Formulation of the problem

Let us provide the following notations: IR” is a real space of dimensionn > 1; R := R
Z!: is the set of all n-dimensional multiindices; Z := Z}r; i is the imaginary unit; (-,-) is
the scalar product in R”; ||x|| := (x,x)"/2 for x € R"; |x +iy| := (2 +y*)V/2,if {x,y} C R;
Zl = zlll...zé", ifz := (z1;...;2z4) € R", | := (li;...;1y) € Z%; S is the Schwartz space of
infinitely differentiable rapidly decreasing functions defined on R”, and S is its topologically
dual space [15].

The class of all functions continuously differentiable on IR” up to the order r inclusively is

denoted by C"(R"). And let Cj(IR") be the sum of all elements ¢ from C"(R"), so that

VkeZ', |kl<r, >0 VxeR": [o(x)] < ce(1+ |x])~ /. (1)
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Let us put fora« > 0 and > 0:
Se={9pcC®(R")|FA>0VkcZ" F¢, >0VgeZ Vx e R": [x1059(x)| < ¢, AlMg*1);
SP={pcC°(R")|IB>0VqgeZ" J¢c; >0VkcZ" Vx € R": |x90kep(x)| < ¢, BIFIKPEY.

With the corresponding topologies, the sets S, and SP are countably normalized complete
perfect spaces, which together with SP .= S, N SP are referred to as the Gelfand and Shilov
type S spaces [16,17].

The SP space is nontrivial at « + 8 > 1 and contains only functions ¢ € C*(IR") that satisfy
the inequality
105 (x)| < cBIFkBke=IxI" g e 7', xeR", (2)
with positive constants ¢, B and J, dependent only on the function ¢ [16]. In spaces of S type
there are determined and continuous operations of addition, multiplication and convolution,
as well as the operator F of Fourier transform, and the following topological equations are
satisfied: F[S,] = %, F[SF] = S, F[SE] = S§.

Let us consider a differential equation with partial derivatives of order p > 1

dru(t; x) = P(ti0x)u(t; x) + f(£x),  (£x) € I(g100) = (0;+00) x R". 3)

We assume that the differential expression P(t;idx) := Y i<, a;()ik19X on the set g, o0 18
uniformly parabolic by Shilov with the parabolicity index £, i.e. such that

360 >0 d6, >0 V(t,g) C H[O,'+oo) : Re Z Elk(t)gk < —51H(;"Hh + 9y,
[k|<p

while the coefficients ai(+) are continuous complex-valued functions on [0; +c0).
By @' we denote a topologically dual space to the space ® € {S'/"; Sé/h,,B > (p—1)/h}.
Let us set the initial condition for equation (3)

u(t;-) H—ﬁog’ ged. (4)

Definition. The solution of the Cauchy problem (3), (4) on the set I1 .1 is the function u,
which satisfies equation (3) on I(o,7) in the usual sense, and satisfies the initial condition (4)
in the sense of convergence in the space ®'.

The fundamental solution of the Cauchy problem for the equation (3) is a function
G(t,T;-) = F oL@t T;-), 0<T<t< oo, (5)

where
t ! k
o) —exp{ [ Pt} PO = ¥ met
[k[<p
In [7], with the help of Faa de Bruno’s formula for differentiation of the compound function,
the properties of 6. (-) are investigated, in particular, it is determined that 6% (-) belongs to the

space S%%l)

/k for each fixed t > T and the following estimates are obtained
k6L (2)] < ce =D ARIK(P= DIk gyntrBp=dolt=)El") ©)

where k € 7', € R", 0 < T < t < +0o, with positive constants c, J, p, and A. Here
v(k) =1 —p)lk|/h, if0<t—T<Tand (k) = (1+h)|k|/hatl <t-—rT.



478 Dovzhytska I.M.

The following statement is correct (see [7]). Let f = 0, and g be a real functional from
the space ®'. Then the corresponding Cauchy problem (3), (4) on the set TT(j, ) is correctly
solvable; its solution u(¢; x) is differentiable with respect to the variable t and infinitely differ-
entiable with respect to the variable x, while the next equality is satisfied

u(t;x) = (g(8),G(t,0;x —¢)),  (£x) € (g 1e0),

where the angle brackets (-, ) indicate the act of a generalized function on a test one.

In the sequel, we will denote the solution of the Cauchy problem (3), (4) for f = 0 by u.

Our task is to find out the conditions for the function f, under which the corresponding
Cauchy problem (3), (4) will have a unique classical solution.

Taking into consideration the linearity of the equation (3) and having the information about
the correct solvability of the Cauchy problem (3), (4) for f = 0, it is expedient to search
for the solution of this problem for the inhomogeneous equation (3) in the form of the sum
u = up + 11, where u; is the solution of equation (3), which satisfies the initial condition (4)
forg =0, ie.

ui(t-) —,0. @)
—
If equation (3) is parabolic by Petrovsky, then the solution of the Cauchy problem (3), (7) is

determined by the following formula [18, 19]:

t
n(tx) = [ dr [ Gt mx—Of(wadE, (%) € Mgy (8)

Thus, our task was reduced to the study of the properties of the corresponding volume
potential (8) for the parabolic Shilov equation (3). To do that, first we find out the properties of
the fundamental solution G(f, T; -).

2 Fundamental solution of the Cauchy problem

Taking into account the representation (5) of the function G(¢,7;-), as well as belonging

of 6L(+) to st/ and properties of spaces of the S type, we obtain that for fixed t and T

1/h
the fundamental solution G(¢, T;-) is an element of the space Sg;l)/h. Then for the deriva-

tives 9XG(t, T;-) the corresponding estimates (2) must be satisfied. We find these estimates,
emphasizing the dependence on the variables t and 7.
As far as the representation is performed

(ix)10EG(t, T; x) = (2m) ™" /R ) e WO ((i0)*04(8))dE, xeR", 0<T<t, {qk}CZl,

then, according to the Leibniz formula of the product of functions differentiation, we obtain

q
1X195G(t, T;x)| < (2m)~ Z /\aggkuag‘lei(g)\dg, xeR", 0<t<t {qk}cz,

here Cé is a binomial coefficient.
Hence, using the estimates (6) and taking into account the equations

1.
! n K ]’ l < k,’
k H{(:] ;=" and sup{p*e P} = (5>“ x>0 0>0,

al gk —
¢ (k - l)! j=1 0, kj < lj, 0>0
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we obtain forx € R",0 < T < t,and {q,k} C Z",

q
x105G(t, 75 x)| < =0 Y clcinAliTl (g — 1yp=Da=D/h( — ymr(a=D)
1=0

y / [k Te—oolt=)lel" gz
]Rn

< ce®t=7) i CéC,il!A“?*” (g — D)P=D@=D/hp _ yntr(q=0)=(ntlk=1])/h
1=0

—(8op;)/ (2n) —(80/2) Iy
X Hsup{p (Gopj)/ } ) (Go/2)lIvll" dy
j=1pj=0 R

< ST — T>ﬂ+’y(q)*(n+|k\)/hC1A\1‘ﬂB\1k|q(pfl)q/hkk/h,

here positive values cj, A1, B; and 6 do not depend on ¢, 7, x, g and k.
From the last ratio, we come to the following estimate

|alfc (t T; x)| <e o(t= T)(t ) —(nt[kl)/hg B‘k|kk/h1—[ 1nf{ A |x| 1 p 1)/h)‘7](t T)’Y('ij)}_
j=19=0

Thus, the following statement is true.

Lemma 1. There are positive constants ¢, B, 6 and 6y such that for all x € R", k € Z' and
0 < T < t the following estimates are performed

b 1/(p—1
’aI;G(t,T;x)‘ < ezS(th)(t_T)n*(n+\k|)/th|k\k% exp{_(g()((t”_x%) (p )}’ ©)

whereyg=1—p,if0<t—71<landyy=1+hatl <t—-T1.

Note here that the estimates (9) of the fundamental solution G in comparison with the
estimates established in [3,11] do not contain the genus p of the equation (3), therefore this
allows us to avoid the problems associated with finding this characteristic.

The “é-similarity” of the function G(¢, T; -) is characterized by the following auxiliary state-
ment.

Lemma 2. Let ¢(-) € C/(IR"), then for | > n and r > n each of the following boundary
relations

xeK xeK
(Gxg)(t,T) = ¢() (Gre)tT) = ) (10)
t—T+0 t=1+0

is satisfied; here we mean the uniform convergence on each compact set K C R".

Proof. Since ¢ € Cj(IR"), then for | > n there is a Fourier transform F[¢]| and the estimate is
performed

|Flol(¢ )\_m ¢ eR"

Then the correct image is

c) — e _ —n t —i(xy)
Cro)t )= [ Gltmx—)e@)e = 2m) " [ ey)Flp))e Yy,
The uniform convergence
xelK

07(x)Flpl(x) = Flg](x)
t—=140
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and the fact that
3c>0 v | VreR": |6l (x)Flel(x)] < —
c> t—1< X € : X xX)| < ————,
R R )
ensures the correctness of the equality
lim [ 6L(y)Flgl(y)e "y = | lim 6¢(y)Flg](y)e ¥ dy = (2m)"F " [Flg]] ().

t—=7+0 JR" R" t—T+0

Hence, taking into account the reversibility of the operator F on the elements of the class
Cj(R") for I > n and r > n, we arrive at the first boundary relation (10).
The second boundary relation (10) can be proved similarly. O

We are going to study the properties of the volume potential (8).

3 Volume potential of the Cauchy problem

We start with formulating the conditions for the density f, under which we investigate the
potential (8).

We say that for a function f(t;x) on the set IIjy. ) the condition (A) is satisfied, if f is
continuous on Iy, ) and f(t;-) € Cj(R"), t > 0, and value ¢i(-) from the corresponding
estimate (1) is limited on each compact K C [0; +0), i.e. sup, i cx(f) < co.

Theorem 1. Leth > n/(n+ 1) and for a function f the condition (A) is satisfied for | > n,
then the corresponding potential u1(t; -) for each fixed t > 0 is a differentiable function on the
set R" up to the order r inclusive, for derivatives of which the formula below is correct

iy (£ x) / dr/ (b, 100 f(t3x — E)E, (%) € T, 00)- (1)

Proof. Let us use the representation

t
(k5 x) = /0 dt / G, TEf(Gx — e, (5%) € e,

from which, by formal differentiation under the integral sign, we arrive at the formula (11).
Then, to substantiate the equality (11), it is enough to prove the uniform convergence with
respect to the variable x on the set R” of the integral

W( %) /dr/ G(t, ;) ||k f(mx — E)|dE, |k <.

However, this convergence becomes obvious if we consider condition (A) and the estimate (9),
according to which for all (t; x) € ITjy, ) and |k| < r the inequality below is satisfied

e [ e credthtn /il dy
Tt x <ceot/ t— )" e =k / ,
) = e U e G g F = W D= e (L
under the condition thath > n/(n+1) and [ > n. O

Corollary 1. If for the equation (3) the parabolicity index h is greater thann/(n + 1), and the
inhomogeneity f satisfies the condition (A) forl > n andr > p, then

P(t;idx)ur(tx) = ) ax(t |k‘/ dT/ (t, ;O f(1;x — &)dE, (5x) € I (0,100

k| <p
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The differentiability of the function u; by the variable t characterizes the following state-
ment.

Theorem 2. Let h > ;5 and for the function f the condition (A) is satisfied for | > n and
r > max{n, p — 1}, then the corresponding potential u; on the set 11, ) is a differentiable
function of the variable t > 0, and the equality below is satisfied

dur(tx) = f(t;x) + Y ae(t) |k‘/dr/n (t,7; &)k f(T; x — &)dE, (t;x) € (g, 400)- (12)

[k[<p

Proof. We arbitrarily fix > 0 and consider the auxiliary function

t—e
(£ x) = /0 dr/]Rn G(t,T;x — &) f(T;E)dE, xE€R", 0<e<t/2

It is obvious that

t—e
ouis (1 x) :/]RnG(t,t—e;x—é)f(t—e;g)d§+/0 dr/]Rn 0iG(t,T;x — &) f(T; E)dE.

We now find the limit lim0 duf (t; x). Taking into account the properties of the function f,
e—+

directly from the statement of Lemma 2 we obtain that

/ﬂG(t,t—e;x—(;")f(t _S;g)dgs:iof(t;x)'

Further, since G is the solution of the equation (3), then

/otg‘”/w G(LTx—E)f(TEE = Y ar(t)i /otsdf [ (Gl Tx — DF(T:O)dE.

k| <p

After replacing the integration variable in the last integral by the rule y = x — ¢, and then,
integrating by parts k times, we arrive at the following equality

t—e t—e
| ar [k Gt mx—ofmede = [ dr [ Gtk f(nix —y)dy.

Using the estimate (9) for the fundamental solution G and considering the fulfillment of
condition (A) for the function f, we find:

’/tt_sdT/nG(f/T;y)ali—yf(T;x—y)dy‘

t dy
< Ckeét/ (t . T)nfn/hd Cke§t€n+1 n/h
Re (14 [y )W

The obtained estimate ensures that the limit relation is correct for h > n/(n + 1)

t—e
: k
81_13:0 A dt Rna Gt Tmx—¢)f(T;6)dg = /dr/ (t,T;y)0 yf( —y)dy,
and, consequently, the fulfillment of the equality (12). O

We further clarify the question of the existence of a limit value of the potential u; on the
initial hyperplane ¢ = 0.
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Assuming thath > n/(n + 1) and for the function f the condition (A) is fulfilled for I > n,
then according to the estimate (9), for all (£, x) € T1((, ) we have

() < [ ac [ 1665 - 0lf(wole

< cedt /t(t o T)nfn/hd.r/ ¢ _ CAezStthfn/h_
0 R (1+12]])’
From this we obtain that the limit relation (7) is satisfied, and in this case, 11 tends to zero that
occurs uniformly with respect to the variable x on R".
Therefore, the following statement is correct.

Theorem 3. Assuming thath > n/(n+ 1) and for the function f the condition (A) is fulfilled
forl > n, then for the corresponding potential u; (t; -) the ratio below is correct
x€R"

ui(x) = 0.
t—+0

In the next section, the Cauchy problem for the inhomogeneous equation (3) is considered.

4 Cauchy problem

The previously obtained information on the volume potential 17 allows us to draw certain
conclusions about the correct solvability of the inhomogeneous Cauchy problem for parabolic
Shilov equations.

Theorem 4. Let ¢ be a real-valued functional from the space ', whileh > n/(n+1), and
for the function f the condition (A) is fulfilled for | > n and r > max{n, p — 1}, then the
corresponding Cauchy problem (3), (4) on the set Iy, ) is correctly solvable. Its solution u
is once differentiable by the variable t and r times — by the variable x, and is represented by
the formula

u(t;x) = (g(¢), G(t,0;, x — +/ dT/ (t,Tx—=¢)f(1;6)d, (£x) € (g yo0). (13)

Proof. We write the equation (13) in a compact form: u = ug + u1. The smoothness of the func-
tion u indicated in the formulation of Theorem 4 follows from the smoothness of the function
ug [7] and the statements of Theorems 1, 2.

Directly from Corollary 1, the equality (12), and the statements of Theorems 2, 3, we obtain
that u; is the solution of the Cauchy problem (3), (7). Then u is the classical solution of the
Cauchy problem (3), (4) on the set I1 (g, ).

Let us substantiate the unity of the solution of this problem. We assume that there are two
solutions of the Cauchy problem (3), (4): # and ii. Then their difference u = iI — 1 will be the
solution of a homogeneous problem:

dru(t; x) = P(t;idx)u(t; x);  u(t;-),_, =0.

However, this problem has only a zero solution [7]: u = 0. Therefore, #i = i, and the Cauchy
problem (3), (4) on the set Iy, ) has a unique solution (13). This solution continuously
depends on the initial data, because this is the solution u( of the Cauchy problem (3), (4) for
f=0[7]. O
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As it has already been mentioned, the initial condition (4) is regarded in the sense of weak
convergence in the space @', because the initial function ¢ is a functional from ®'. However,
if this functional has “good” properties, then the effect of the convergence increase in the
condition (4) can be observed. In particular, if g is a regular generalized function generated by
the ordinary function g(-) from the class Cj(IR"), then

noltix) = [ G0x—0)g@d, (52) € Higye,

and provided that | > n and r > n, the initial condition (4) can already be considered as a
uniform convergence with respect to the spatial variable x on each compact set K C R":
xeK
u(t;x) = g(x).
t—+0
This fact becomes obvious if we consider the statements of Lemma 2, Theorem 3, and the
fact that u = ugy + 1.

5 Conclusions

Sufficient conditions for the inhomogeneity of parabolic Shilov equations with variable co-
efficients are found, according to which the Cauchy problem for such equations in the class of
generalized initial data of the Gelfand and Shilov distributions has a unique classical solution
that continuously depends on the initial data. The obtained results, in addition to filling to
some extent the corresponding gaps in the theory of the Cauchy problem for parabolic Shilov
equations, allow to develop this theory for equations with quasilinear structure in the clas-
sical way. In addition, they will find their application in solving inhomogeneous parabolic
equations of the Shilov type with space-dependent coefficients as well as in the study of the
properties of their solutions, etc.

Further development of the problem is represented by defining the conditions of the in-
homogeneity of such equations, which provide the appropriate solution for the presence of
certain properties, in particular, its belonging to spaces of the S type or its stabilization at
infinity.
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VY aaHilt poboTi posrasaaeTbes 3arava Komri aast mapaboaiurmx 3a IllmaoBuM piBHSHD 3 He-
IepepBHIMIM 0OMeXXeHNMM KoedpillieHTaMy, HEOAHOPIAHOCTI SIKMX € KAACUIHVMMY (PYHKIIISIMY, IO
CTEIMeHeBO CMaAAI0Th Ha HECKIHUEeHHOCTI i MaroTh 3a IIPOCTOPOBOIO 3MiHHOO MEeBHVIA CTYIIHb FAaAKO-
cti. OmmcaHo BAACTMBOCTI PYHAAMEHTAABHOTO PO3B’sI3Ky 1€l 3aaaui 6e3 BUKOPMCTaHHS POAY PiB-
HSIHHSI Ta AOCAIAXKEHO BiATIOBiAHMIT 06’€MHVM HMOTEHIIaA, IO € YaCTVHHVM PO3B’SI3KOM BYXiAHOTO
HEOAHOPIAHOTO PiBHSIHHS. AASI TaKMX PiBHSHD 3HAMIAGHO KAACWUHI PO3B’SI3KM, TpaHMYHI 3HaUyeH-
HSI SIKMX Ha ITOYaTKOBil TiepIIAOIIMHI MOXYTb 6yTH y3araAbHEHMMI (DYHKIIiSIMY TUITY PO3IIOAIAIB
I'eabdpanaa i IllaoBa Ta 06TPYHTOBAHO IX €AVHICTD i HelepepBHY 3aA€XKHICTD BiA MOYaTKOBMX Ad-
HUX.

Kntouoei cnosa i ppasu: mapaboaiure 3a [lInaoBum piBHSIHHS, PyHAAMEHTAABHMIA PO3B 30K, 3a-
Aava Ko, KopekTHa po3B’sI3HICTb, 06’ eMHMIT TOTEHITiaA.



