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m-submultisets and m-permutations of multisets elements

Makhnei O.V.*, Pylypiv V.M., Zatorskii R.A.

The article is devoted to two classical combinatorial problems on multisets, which in the existing
literature are given unjustifiably little space. Namely, the calculation of the number of all submulti-
sets of power m for an arbitrary multiset and the number of m-permutations of such multisets. The
first problem is closely related to the width of a partially ordered set of all submultisets of a multi-
set with the inclusion C. The article contains some important classes of multisets. Combinatorial
proofs of problems on the number of m-submultisets and m-permutations of multiset elements are
considered. In the article, on the basis of the generatrix method, thrifty algorithms for calculating
m-submultisets and m-permutations of multiset elements are constructed. The paper also provides
a brief overview of the results that are related to this area of research.
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Introduction

In discrete mathematics, problems of investigating sets of objects with identical objects
often arise. Therefore, from the middle of the last century the concept of multiset (see [1,14,15])
begins to gain more and more value. Since the multiset is a natural generalization of the set, the
problems of generalization of the classical results of combinatorics of finite sets naturally arise.
Thus, in the paper [7], C. Green, D.]. Kleitman, in fact, consider the problem of calculating the
number of m-submultisets of a multiset. However, in the general case, just a few problems
were solved. Usually, authors are limited to considering only some partial but very important
classes of multisets.

In the papers [3,5], P. Cartier, D. Foata introduced the concept of “intercalation product”
«'T B, which extended a number of known results concerning ordinary permutations of sets
to the case of multisets. In the book [10], D. Knuth develops combinatorial techniques for
multisets. Using the theorem that each permutation of a multiset can be written as

o ToT...Ta, t=0,

where 0; are cycles such that their elements are not repeated, D. Knuth gives examples of
enumeration of permutations of multisets with some restrictions. The case t = 0 corresponds
to the division of the empty multiset into cycles which is carried out using the intercalation
product of Foata. This can be found in more detail in [10].

The paper [13] is very useful for applications.
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The so-called nondecreasing series in the permutations of multisets (see [2,4]) have impor-
tant applications in the study of “order statistics”. In the case of a constant multiset
{1P,2P,...,mP} in the paper [11, pp. 212-213], P.A. MacMahon showed that the number of
permutations with k 4 1 series is equal to the number of permutations with mp — p —k + 1 se-
ries. Also, by the generatrix method, P.A. MacMahon proved that the number of permutations
of the multiset {1"1,2"2,..., m"»} with k series is equal to

Xk:(_l)](n—i—l) <n1—1+k—j> <n2—1+k—j> <nm—1+k—j>
j=0 j m 2 T '

where n = ny+ny+... 4 ny.
An interesting approach for enumerating submultisets of multisets is proposed in [9].
Sometimes a continual apparatus is used to solve discrete mathematics problems. For in-
stance, in [6], using the generatrix method, V.V. Gotsulenko proved an integral formula for
calculating the number of m-submultisets of the given multiset

- _ 1 nex . noexp{i(kj +1)p} —1
C"(A)] = 5 [ ex D= ol

do,

where i = \/—1. In [6], the problem for m-submultisets of a multiset is also somewhat gener-
alized.

Note also that the principle of inclusion-exclusion can be used to find the number of sub-
multisets of a multiset. In the case of constant multisets, it gives the following result

of O.G. Ganyushkin:

C(A) = Y(~1) (:l) <n +m —nl_—li(q + 1))
i=0

However, in the general case, this approach leads to an exponential algorithm.

This paper contains some important classes of multisets. Combinatorial proofs of problems
on the number of m-submultisets and m-permutations of multiset elements are considered
(see Theorems 1 and 9). Note that these theorems give exponential algorithms for finding the
corresponding numbers.

The most economical algorithms for calculating m-submultisets and m-permutations of
multiset elements are algorithms that are constructed using the generatrix method. They are
given at the end of this work (see Algorithms 1 and 2).

This paper is a survey and contains part earlier published results in Ukrainian and Russian
in the works [16-19]. Due to their inaccessibility to the English-speaking reader, these results
are included in this publication.

1 Auxiliary concepts

The multiset A means an arbitrary disordered set of elements of some set [A], which we
call the base of this multiset. Therefore, an arbitrary multiset can be written in the canonical
form

A= {all(l,agz,...,aﬁ" , (1)
where [A] = {a1, a2, ...,a,} and indices k; of elements a; indicate the multiplicity of occurrence
of the element a; to the multiset A. We can assume without loss of generality that

ki Z>ky > ... 2 ky.
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The multiset A’ = {kq,k, ..., kn} of indices of the multiset (1) is called its primary specifi-
cation. Suppose the primary specification A’ of the multiset (1) is represented in the canonical
form

Al = {1M, 2%, M,
where

r = max(ky, ko, ... k), (2)
then the multiset of its indices A” = {A1, Ay, ..., A} is called the secondary specification of
the multiset A.

If i does not belong to the multiset A’, then we assume that A; = 0. Note that for the
secondary specification of the multiset (1) we have the equality

Al = A+ 20+ ...+ TA, 3)

Multisets A = {alfl, agz, el aﬁ”} and A = {a]?l, agz, e, a];_r} are called the adjoint multisets
if
Here r is given by the formula (2).

, 1=12,...,r, j=12,...,n 4)

Let us remark that k; has a certain combinatorial meaning. Namely, k; is the maximum
number of groups of i identical elements that can be chosen from the multiset (1).

If the equality A = A holds true, then the multiset A is called the multiset with a self-
adjoint primary specification or the self-adjoint multiset.

If A and A are the adjoint multisets and

A =1ky,.. . knt, A"={A1,.. Ay, A =1{ki,... kD,
A=A, A r=max(ky ko, .. k),

then between the elements of their specifications, in addition to relationship (4), the following
11 relationships hold

ki={A+. A A+ + A2, i=1.n =17, (5)
Ai={j:kj=i}, i=1...n j=1,..,r (6)
ki=HA 4+ A A+ A 20, i=1,.,r, j=1,...,m, 7)
Ai={jki=i}, i=1...r j=1,...n (8)
ki=Wki:ki=i}, i=1,...,n, j=1,...,1, 9)
Ai={j: A+ =i}, i=1..,n j=1..r, (10)
Ai={j: A+ +A =i}, i=1..,r, j=1...,n (11)
MA =k, (12)

M k=2, (13)

M\ =k, (14)

Mk = A. (15)

In equalities (12) and (13), k and A are n-dimensional column vectors such that their coordi-
nates coincide with the elements of the specifications k(A) and k?(A) accordingly. In equalities
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(12) and (13), M and M ! are square matrices of order n of the next form

11 11 1 -1 0 0
01 11 0 1 0 0
M= ................ S MU= .
00 11 0 0 1 -1
0 0 01 0 0 0 1

In equalities (14) and (15), A and k are similar r-dimensional column vectors, M and M1
are similar matrices of order r.

Remark 1. Since k(j) = k(A), it follows that formulas (4), (5), (6), (10), (12), (13) are analogous
to formulas (7), (8), (9), (11), (14), (15) correspondingly. In fact, formulas (12), (13) establish
the one-to-one correspondence between the sets of solutions of equation (3) and the equation

|A| = Ay +2As + ... + nA,, which is analogous to equation (3). A similar conclusion can be
made for formulas (14), (15).

Finally, we give a well-known statement about a cardinality of multiboolean of the
multiset (1).

Proposition1. If A = {al , az ey a'f,”} and C(A) is a set of all submultisets of the multiset A,
then

n

[C(A)] =]k +1).

i=1

2 Some classes of multisets and their specifications

1. The multiset with a positive integer function of a natural argument is the multiset of the form
1) g2
A={a$M, 89, . a8, (16)

where ¢ : N — IN is some nondecreasing function that satisfies the inequality g(i) > i
foralli € IN.
2. The multiset with a continuous function f is the multiset of the form

A={[F LI, [Fm]}, (17)

where f is some continuous increasing function
f:D—=E D=[Ln, E2[[f(m)]],

that satisfies the inequality f(x) > x, [ -] is the integer part of a number. Specification (17) is a
partial case of the multiset (16).
For example, for the function f(x) = exp(x) and n = 5 the first derivative of the multiset
has the form
A’ = {2,7,20,54,148}.
3. The linear multiset is the multiset that has the form

_ {a;ﬂrq p+29 aP+”’1},

s cr¥n

wherep € Ng,g € Zand 1< p+4.
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4. The constant multiset is the multiset that has the form

A= {az,ag,...,az},

whereg > 1
5. The multiset with repetitions without restrictions is the specification that has the form

A={a,a3,..., a7 }. (18)

Finally, we give an example of another class of multisets such that a number of m-submulti-
sets is calculated relatively simply

A= {212, 2", <k <. .. <k (19)
3 Number of m-submultisets of a multiset
Definition 1. The set
Cu(A)={BC A: IBI =m} (20)

k n

of all m-submultisets of the multiset A = {a’{l, ..., 1"} is called the set of m-combinations of

elements of this multiset.

To denote the cardinality of set (20) we use the notation

kiky ... ky
Culay] = (112 5), @

which was proposed in [7].
For some specifications of the multiset A the cardinality of the set has been considered
formerly. In particular, for n-element sets the classical formula

U1y
" m!(n —m)!

is known.
For a multiset with repetitions without restrictions it is known that the formula

000 ... © _(n+m—1)!
< " >_m!(n—1)! @2)

is valid.
The following theorem is proved in [16], but due to its inaccessibility to an English-speaking
reader, we present its proof below.

Theorem 1. The number of m-submultisets of the multiset A = {alfl, .., a’,ﬁ”} is equal to

<k1 kzn;.. kn) = |Cu(A)| = Z H< )ijjﬂ Ai)'

AEAy,

where A, (A) is the set of those solutions of the equation

S
Y iAi=m (23)
i=1
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that satisfy the inequalities
s J—
Y A<k, j=1,...5, (24)
i=j

where s = min(m,r), r = max{k;}, i = 1,...,n, and k; is the jth element of specification (4),
which is adjoint to the primary specification of the multiset A.

Proof. From the definition of the set A,,(A) it follows that this set satisfies the conditions:
(1) VB € Cu(A) = B" € An(A);
Q) VAe Ap(A)=3IBeCyu(A): B =A.

Let us prove that the set A, (A) consists of all integer non-negative solutions of equation
(23) that satisfy inequalities (24). Indeed, let B be some multiset that belongs to the set (20)
and A = {Aq, Ay, ..., Ap} = B’. Since |B| = m, it is obvious that the elements of this secondary
specification satisfy equation (23). The truth of inequalities (24) for solutions of this equation
follows from the inequalities ky(B) < ky(A), x € [B], where the symbol ky(B) denotes the
multiplicity of occurrence of the element x to the multiset B.

Let A = {Aq,...,As} be some solution of equation (23) that satisfies inequalities (24). We
construct a multiset B € Cp,,(A) such that B” = A. Let us start by selecting A different groups
of s identical elements from the multiset A. This can always be done because A5 < ks due to
(4). Suppose we have already selected };_; ; A; different groups of elements such that each
group consists of at least j 4 1 identical elements. Let k_] be the maximum number of groups of
j identical elements that can be selected from the multiset A. Then there are

S
ki— 2 A
i=j+1
groups of j identical elements in each group, in addition to other groups, in the multiset A
after selecting from this multiset of the above groups of elements. Thus, the selection of the
following A; groups of identical elements from the multiset A ensures the fulfillment of in-
equalities (24).
If every secondary specification from the set A, (A) is assigned a non-empty set

Ch(A) ={B € Cu(A): B" ={\1,...,As}} (25)
of the multisets from the set C,,(A), then set (25) for A € A, (A) forms a partition of the set
Cm(A). Under this condition the equality

ICu(A) = Y |Ch(A)] (26)
AEAL(A)

is valid. Let us find the cardinality of set (25). It has already been determined such that the
multiset A contains )
51 A

i=j+1
groups of j identical elements after selecting from the multiset A of all groups of identical
elements that consist of at least j 4 1 identical elements. Therefore, there are exactly

(k_] - 2?:j+1 Ai)
A.

]
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different choices for these groups from the multiset A. The number of all elements belonging
to the set (25) is equal to

S ki — Y5 . A
SRS s (i @)
j=1 Aj
by the combinatorial rule of the product. Here and then we have } ;. A; = 0. Note that if
the inequalities k1 > ky > ... > k, are fulfilled, then the elements of specification k(A), in

addition to the relation (4), can be calculated accordingly to one of the following formulas:

ki=n—k7'G)+1, j=1,...kn, (28)
kﬂ
kj:ZAi, i=1,...kn, (29)
=]
where A; € A”,
k7'(j) = min{i : k; > j} (30)

is the minimum preimage of those elements of the primary specification A’ that are not less
than j. Formula (29) follows from relation (14). Now from (26) and (27) it follows that formula
(21) is valid. O

Example 1. Calculate the number of all 6-submultisets of the multiset

5 55 3 3 3 3 2 2 1 1 1 _1
A = {aj,a3,a3,ay, a3, ag, a, ag, ag, ayy, ayy, 41y, 43 }-

Heren =13, m = 6,r = 5,s = min(5,6) = 5. We get the elements of the specification k(A)
from relations (4):
k1=13, k=9, k3 =7, ky =3, ks = 3.
To find the elements of the set A, (A) we seek all solutions of the equation

A1+ 2A2 +3A3 + 414 + 545 = 6. (31)
There are ten solutions of this equation:

(6,0,0,0,0), (4,1,0,0,0), (3,0,1,0,0), (2,2,0,0,0), (2,0,0,1,0),
(1,1,1,0,0), (1,0,0,0,1), (0,3,0,0,0), (0,1,0,1,0), (0,0,2,0,0).

Moreover, all these solutions satisfy the inequalities

MAA+A3+ A4+ A5 <13, A+ A3+ A4+ A5 <9,
A3+ A3+ A5 <7, Ag+A5<3, A5 <3.

For each solution of equation (31) we calculate the product (27) and seek the sum of these
products:

o= <163> ! <142 ) @ * (132> @ " (121> (Z) . <122> G)
o OO0 5006

Now we calculate the number of all m-submultisets of the multiset whose primary specifi-
cation is a positive integer function of a natural argument (16).



m-submultisets and m-permutations of multisets elements 247

Theorem 2. Suppose the multiset A = {akl . k"} has the primary specification of the form
A ={g(1),4(2),...,¢(n)} and g(i) >1i,i =1, 2 ,n, then the equality
mom—g 1) —Yr A+ 1
Cu(A)| = AR ) 32
cual= I . @

M+ AmAy=m j=1
is fulfilled for m < n, where g~ 1(j) = min{i : ¢(i) > j},j=1,...,m.

Proof. First note that since the inequalities g(n) > n > m hold, we have s = min(m, g(n)) = m.
Therefore equation (23) and inequalities (24) have the form

M+t mAy =m, (33)

ZA ki, j=1,...,m. (34)

We prove that each solution of equation (33) satisfies inequalities (34). By A denote the set
of solutions of equation (33). From the obvious inequalities

m

Y A< max{Z)\} LJ, min{i: g(i) > j} <j, j=1,...,m,

i=j

it follows that to prove the statement it is enough to prove the validity of inequalities

L%Jén—jﬂ, j=1,...,m (35)

Inequalities (35) can be proved by induction on 7.
Thus from (28) and (30) it follows that equality (32) holds true due to Theorem 1. O

Example 2. Suppose A = {a},a3,a3,a7,a2}, then g(i) = 2i — 1 > i. We shall find C4(A). Here
n =5, m = 4 and the equation Ay + 2A + 3A3 + 4A4 = 4 has 5 solutions:

(4,0,0,0), (2,1,0,0), (1,0,1,0), (0,2,0,0), (0,0,0,1).
We have

1) = min{i : 2i —

< “1(2) = min{i : 2i —
¢ 1(3) =min{i: 2i —

r=1 g
2, ¢ '(4) =min{i:2i -

1
3}

2}
4}

1> 1> 2,
1> 1> 3.

Therefore,

C4(A)] = y ﬁ("— () — ot ]HA-H)

A +2A04+3A3+404=4 j=1 A]

QOO O () -romrerson

If the primary specification of a multiset is given by some continuous function f(x), then
the following theorem is useful for calculation of the number of all its m-submultisets.
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Theorem 3. Suppose the primary specification of the multiset A = {a’{l, ...,a¥"} has the form

A ={lfD],Lf@2)],...,|f(n]}, where f : D — E, D = [1,n], E 2 [1,[f(n)]], is some

continuous increasing function. Then the formula

m o/ 1n—max(f1(j _ym .
Cu(A) = ¥ H(L (F10), 1)) 1:]HA1>

M+.AmAy=m j=1 Aj

is fulfilled for m < n.

Proof. Since the function f is continuous and increases in its domain, we see that the equality
min{i : f(i) > j} = f~'(j) holds true for all j > 1. Hence, we obtain the equality

e e S max (1, f~1(j)), f710) € Zp,
minqi : )| =2jr= 1/ _1/:
500> ={ T30 o, F0 7 7
where Zp = D N N. Therefore the equality n — min{i : | f(i)] > j} = [n — max(l ~1G))] is
valid and we have the equalityk_j =n—min{i:k; > j} +1= |[n—max(1, f1(j))] +1.
Since the inequalities

max (A +...+Ay) < {TJ
M+ AmAy=m ]

and f~1(j) < j are fulfilled for all j = 1,...,m, we see that inequality (34) is equivalent to
inequality (35). The proof of this theorem is finished with similar reasoning to the reasoning

over the proof of Theorem 2. O
Example 3. Suppose in the multiset A = {al , ,a?,aﬁ‘*,a?,a;} the primary specification is
given by the continuous function f(x) = +/x on the interval [1,6], ie. k = |Vi],

i=1,2,3,4,56. Then
ki=1k =1 k=1, ki =2 ks =2, ke =2.

Find, for example, the number of all 5-submultisets of the given multiset. We have 7 solu-
tions of the equation Ay + 2, + 3A3 + 4A4 +5A5 = 5:

(5,0,0,0,0), (3,1,0,0,0), (2,0,1,0,0), (1,2,0,0,0), (1,0,0,1,0), (0,1,1,0,0), (0,0,0,0,1).
Since f~1(x) = min{i : f(i) > j} = j? we have |n — max(f~1(j),1)] = n — j*. Therefore,
m.os7_ 2 257 A
=y I ( Sl )
A +..4+5A5=5j=1 ]

In the last sum each summand is corresponded to each of the seven solutions of the above
equation. Moreover, only those summands are non-zero that are corresponded to the first,
second and fourth solutions of the above equation. Thus,

() + () )+ ()E) -erorn-n

Consider the case of a linear multiset.
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Theorem 4. Suppose A is a linear multiset with the primary specification k(A) = {pi +q :
i=1,...,n},wherel < p+q,q € Z, p € Ny, then we have

Cu(A) = Y H(”_max(( D/l + ’s:f““), p£0,  (36)

AeAm(A) j=1 Aj
where s = min(m, pn + q).
If m < n, then equality (36) have the form
S (|n — max q)/ — Y5 A

MA+sAs=m j=1 )‘J‘

Proof. Consider first the case p # 0. Since the linear function f(i) = pi + g satisfies the condi-
tions of Theorem 3, we have

ka{n—max( ]_pq>J+1. (38)

Hence equality (36) is valid.
In addition, suppose that m < n. Then, using equality (38) and inequality px +g9 > x
x € [1,n], from Theorem 1 it follows equality (37). O

Theorem 5. The number of m-submultisets of the constant multiset A — {aq, ag, cee, aZ} can
be obtained by the following formulas:

(1)

n!
Cu(A)| = , where r = min(m,q); (39)
[CmlA)] AeAZm:(A)All-...-Ar!(n—)tl—...—)\r)! (m.q)

(2) ifm < g, then

n!

)= ¥ ; (40)
A1+2/\2+”‘+m)\m:m)\l!'...')\m!(n_Al_..._Am)!
(3) if m < n, then
n!
Cu(A)| = , where s =min(m,qg). (41)
[Cn(A) A1+___§As_m)\1!-...-As!(n—Al—...—As)! (m,4)

Proof. (1) In the case of a constant multiset we have s = min(m, q) and k_] =nj=12,...,s
Therefore,

-y A
‘Cm(A)‘ :AEAZ:( H< )Z‘J']H | _AeA (A)
(2) If m < g, then the set A,,(A) coincides with the set of all solutions of the equation
AMA2A+ ...+ mAy, =m.

Therefore formula (39) has the form (40).
(3) If m < n, then inequalities (24) hold for all j = 1, ..., s and equality (41) is valid. O

n!
Al!'...'As!(n_Al_..._As)!.

Remark 2. From Theorem 5 (see item (2)) and equality (22) it follows that

n! _ n+m-—1
Mo A=A — . = A m ‘

Notice that the left-hand side of this identity consists only of those summands such that
Tl_()\l—i_..._'—Am) 20.

AMA2A04...4+mAy,=m
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4 Generatix method

A generatix is the function

I
=

I
O
—~
S
SN—
~=

f(#)

for the calculation of the number of m-submultisets of the multiset A = {alfl, ...,a%"}. There-
fore, after m-fold differentiation of this function we obtain the equality

1d"f
(Cn(A)] = = (0)
We have
dnf(t) Y ml dgi(t)  dmgu(t)

dtm e T Tl dt T de

where g;(t) = 1+t + 2+ ... + 5. Since
d?’,‘ 1 t) ri . Vi Je:—p. d?’,‘ 1
jtlrf =7+ (r+ Dt 4.+ KT and dt(rgil 0) =r!,

we obtain

1d"f 1 m!
Cu(A) = ——=(0) = — —n!.r! = 1
el = O = T ntoni= T 1,
where 0 < r; < k;.

Thus, we have the next theorem.

Theorem 6. The number of m-submultisets of the multiset A = {alil, ey a'f,”} is equal to

|Cm(A)|:: z: 1.

r+ro+...+rp=m
0<r;<k;, i=1,...n
Let us use Theorem 6 to determine the formula for the calculation of the number of
m-submultisets of the constant multiset A = {a?,ag, ...,a3}. First note that if the solution
(s1,82,-..,5n) of the equation
rm+rn+...+r=m (42)
satisfies the inequalities 0 < s; < ¢, then an arbitrary permutation of the components of
this solution leads to a new solution of this equation. Therefore we need to find all disor-
dered solutions of equation (42), i.e. such solutions (r1,7,...,1,) that satisfy the inequalities
rp =1 = ... > 1, > 0and we need to count the number of permutations of the compo-
nents of each solution. Suppose among the components of solution (r1,7y,...,,) are Ag zeros,
A1 ones, and so on; then all disordered solutions of equation (42) can be counted using the
system of equations

{0A0+1A1+...+qu:m,

)\0+A1+...+Aq =n.
Therefore,
n!

Cn(4) = AoAgl A

0Ao+1A +...+gAg=m
A0+A1+...+Aq:n

Thus the next theorem is valid.
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Theorem 7. The number of m-submultisets of the constant multiset A = {aq,ag, ..,an} is

equal to
n!

Cn(4) = AoAgl A

OAg+1Aq ot ghg=m
A0+A1+...+Aq:n
Remark 3. If in Theorem 7 m < g, then, using equality (22), we obtain the following identity

Z n! _ m+n—1
AoApl. Al m ‘

0Ag+1A +...+mAy=m
A+A+. FAy=n

Example 4. Let us find the number of m-submultisets of the multiset with specification
A = {x°,x3°,...,x°} which contain each element of basis [A] (see [12]) of the multiset A.
To find them we use the generatrix

(Zt) t1(1—t)~" t”i"—iti:i"—it”“.
= T Al

o~ £ £ (e

We shall consider one more class of multisets with primary specification (19), i.e.

Putn + i = m, then

n

1 In _
A={a?""1 .. ,a" 1), L<h<.. <,

such that their number of m-submultisets is calculated relatively easily. As shown in [12], the
generatrix of the number of m-submultisets of such multisets has the form

n 2li—1

1T L 7

i=1 j=0

However1+t+...+ 21 = A+ +2)A+t4) ... (1+ 27") whence, using the desig-
nation %' = Xiy1,i=0,...,1 =1, we get

W) =1 +x)™ ... (1+x,)"™.
Obviously, the number |C,,(A)]| is equal to the sum of coefficients of the monomials
Mo A
K()\l, .. .,)\l )xll . Xlnl

with [, variables such that their indices A1, Ay, ..., A; are the components of solutions of the
equation
MA22+ 2205+ . 420y =m
and these indices satisfy the inequalities A; < kz, 1,i=1,...,1,, where (kl, oo ko1, _q) is the
specification of the multiset A that is adjoint to the multiset A. Therefore,
kyi1

D N (R}

MA2Ap+.. 421N =m i=1
)Ligkzl',l, i:1,...,l;1

Thus the next theorem is valid.
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Theorem 8. The number of m-submultisets of the multiset
A={2"1. 2", Lh<h<... <1,

is equal to

[
Cm(A)] = > H( 3)
A1+2/\2+.._+21n*1)\ln:m i=1 i
Ai<kyisy, i=1,.0

Example 5. Suppose we have the multiset A = {a3,a},a}°,a3'}. We seek the primary specifi-
cation of the adjoint multiset A :

k=(4,44,3,3,3,3,2,22,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1).

Therefore,
ki=4k =4k =3 k=2, kg =1.
The equation
A1+ 242 +4A3 + 8A4 + 165 = 21
have 60 solutions. But only 12 solutions satisfy the inequalities

M <k, A <kg, Az < kg, Ay < ks, As < ke
List of these solutions:

(3,3,3,0,0), (3,3,1,1,0), (3,1,2,1,0), (3,1,0,2,0), (3,1,0,0,1), (1,4,1,1,0),
(1,2,2,1,0), (1,2,0,2,1), (1,2,0,0,1), (1,0,3,1,0), (1,0,1,2,0), (1,0,1,0,1).

- (O0-OOO6-OOOB- OO0
000 0000 0000 0600
B00-000-000- 000

5 Algorithm for calculation of m-submultisets of an arbitrary multiset

_l_

Let us construct a recursive algorithm for calculation of the number of m-submultisets of
the multiset A = {al ,azz, .. aﬁ” )

We use for the number Cm (A) the notation from [7]. Then we have

ﬁ(1+t+t2+ +t"i)—i R AT r—ik-
= Z_ , r=Y ki

i=1 i=0

A(i) = (kl’kz"lj "k’—1>, i=0,...,5,

If the coefficients

of the polynomial

199
—
|
Jy

Y A =TTA+t+.. +15), s_ZkZ,
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are known, then the coefficients

B(j) — <k1,k2,j...,kz>, j=0,1,...,s+k,

of the polynomial
s+k; s

ZB W= (1+t+... 4th) Z

i=0
are obtained by summing kl + 1 last elements of the row

0. .0A0)A(1)... A(j)Q...0.
k; ki

More exactly, we have

j
(kl,kz,'...,kl>: y (kl,kz,.q..,kl_1>, i=0,...,5+k, (43)

J q=j—k

(kllkz,---,k1—1> _o,
q
ifg<Oorg>s.

The calculation process is convenient to design according to the next algorithm.

where

Algorithm 1 ([17]). We calculate C,,(A) if A = {al ,a2 s an),

We construct the algorithm in the form of a table of e]ements A(i,]), where i is the row
number, and j is the column number of the table. The elements of non-negative columns are
called the significant elements.

Stepl.s:=0,i:=1,j:=0.

Step 2. We specify the significant element of the first line: A(i, ) :=

Step 3. Whilei < n + 1 go to step 4, otherwise issue result is C,;(A) = A(i,m) and stop
work.

Step 4. Add to the left and right of the significant elements of ith row in k; zeros: for j from
s — kj tos — 1 specify A(i,j) := 0, for j from s + 1 to s + k; specify A(i,j) :== 0

Step 5. Find the significant elements of the (i + 1)th row: for p from 0 to s + k; execute
Ali+1,p) =17,  AGj).

Step 6.5 :=s+k;, i :=i+1, and go to Step 3.

We illustrate this algorithm in the form of the table.

Example 6. Suppose we have the multiset A = {a{’, a%, a%}, then, using the above algorithm,
we obtain the following table.

Co(A) Ci(A) Ca(A) GC3(A) Cy(A) Cs(A) Ce(A) Cr(A)

00O 1 0 0 0
00 1 1 1 1 0 0
00 1 2 3 3 2 1 0 0
1 3 6 8 8 6 3 1

The results are written in the last row of this table: Co(A) = 1, C1(A) = 3, C2(A) = 6,
C3(A) =8, ...
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Remark 4. If the multiplicities of the multiset elements are large, then it is convenient to use
the relations

kl,kz,...,kl> <k1,k2,...,kl> <k1,k2,...,kll> <k1,k2,...,kll> , !
. = . + . - . ’ :O/---/ k'/
< j j—1 j j—k—1 J 1; l

which follow from relations (43). This can significantly reduce the number of operations.

Remark 5. Since any k-submultiset B of the multiset A uniquely corresponds to (|A| — k)-
submultiset A — B of this multiset, we have

<k1,k2,:..,kl> _ (klkaI-..-rkl>’ ]':O,,,.,S,
j *7J

where s = 2521 k;, i.e. the numbers that are equidistant from the ends of each row of the table
are equal to each other. Thus, if m > |s/2], then instead of calculating |Cy,(A)| it is more
convenient to calculate |Cs_,,(A)].

6 m-permutations of the multiset elements

Definition 2. The set of all ordered m-samples of elements of the multiset A = {alfl, e, a’,ﬁ”

is called the set of m-permutations on this multiset. By P, (A) we denote this set.
The following statement is well known.

Proposition 2. The number of all permutations of elements of the multiset A is equal to

(ki + ko4 ... +kn)!

[Pla(A)] = kiko! .. k!

To determine the number of all m-permutations of the multiset A = {a’{l, ey aﬁ”} we use
Theorem 1. In this theorem it was found that the number of all m-combinations of the multiset
A is equal to

Cu(A)l =} ICn(A)],

AEAM(A)

where
CAM(A) ={B e Cu(A):B" ={A1,..., A} }.
Obviously,
Pu(A)l =) [P(B)IICy(A)] (44)
AEAL(A)
but
m!

P (B = i o
whence equality (44) leads to the following theorem.

Theorem 9 ([16]). The number of all m-permutations of the multiset A = {a’{l, . anY s equal

to
m! S (ki — YA
Pu(A) = Y —H<J =i+ ) (45)
pe T2 s 4 g A

where A, (A) is the set of those solutions of the equation

S
Y iAi=m (46)
i=1



m-submultisets and m-permutations of multisets elements 255

that satisfy the inequalities

S

Z)‘i <k, j=1,...,5 s=min(m,;r), r=max{k}, i=1,...,n,

i=j
k_j is the jth element of specification (4), which is adjoint to the primary specification of the
multiset A.

The number of solutions of the equation }_;_;iA; = m increases with increasing m and s.
For example, already at m = s = 20 this equation has 627 solutions. Consequently formula (45)
is not always convenient for practical use because it requires large amounts of computation.

We construct an algorithm for calculating m-permutations of elements of the multiset
A= {alfl, ..., a%"} such that in many cases this algorithm eliminates these shortcomings.

Let e k ‘

Ba(A)] = |12,

In particular, if ky = kp = ... = k, = 1, then the multiset coincides with its basis and this

multiset is an ordinary set, i.e.

11...1 al
n = ’ Oémgn.
m (n—m)!

Ifky=nky=ks=... =k, =0, then

{n]zl, 0<m<n.
m

In the case, where the multiset A has specification (18), we have the obvious equality
xR0 - -+ OO0
N———r __ ,m
i B0
m

Theorem 10. For anyr = 2,3, ..., n the equality

min(irk1+“‘+kr—1) i kl kz krfl .
{kl ko ... kr] B Lj=0 <J) [ i }’ Pk, )

i Zmin(i,k1+...+k,,1) (Z) [kl k;_.:.k,,l}’ ky <i<ki+...+k,

j=i—ky j i

is fulfilled, where 0 < i < |A.

Proof. The generatrix for the number of permutations

[kl ky ... kr]

i
of elements of the multiset A = {a’{l, ..., a5} has the form

[[ 5= L T

g
i=1j=0/" i=0

nokiy etk [klkz...kn] t
Z. .

Hence,

J

ki+...+k, 1
( 3

ki ko ...k,_l] t7> ke g Rtk [klkz k] fi
j=0 ' s i
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Since
N T A T A WL e kiky . K q] £
(5 PRS- ()
we have kiky ..k, il Tkiky ... ko4 i\ [kiky ... k4
TR oF - i B9 o ) i

In the last sum, for both expressions

G) e [

to have meaning it is necessary to have the inequalities j < iand j < ky +... +k,_, i.e. the
inequality j < min(i, ky + ...+ k,_1) is valid. If i < k;, then from the inequality 0 < s < k; it
follows that the smallest value of the index j under the restrictionj +s =iisj = 0.If i >k,
then the smallest value of the index j is j = i — k. This completes the proof. O

Recurrence equality (47) can be used to calculate the number of all m-permutations of the
multiset A = {alfl,. . .,a’,ﬁ” ,wherem =0,...,|A|.

For this purpose, we present the following algorithm.

Algorithm 2 ([18]). Step 1. Write the row of k; + 1 ones, which are numbers of i-permutations

ki
!
on the multiset A = {a'l(l },i=0,...,ky. This row is called the basic row.

Step 2. Under the basic row we construct a table with k1 + 1 columns and ki + k, + 1 rows.
We number rows of the table from top to bottom by numbers from 0 to ki + k;.

Step 3. In the ith row of the table we write the first k; + 1 elements of the ith row of the
Pascal triangle. If the ith row of the Pascal triangle contains the less than ki + 1 elements, then
we add the required number of zeros.

Step 4. In the lower left corner of the table we replace the written numbers by zeros so that
the zeros form a right isosceles triangle with the leg k;.

Step 5. We calculate the sum of the products of elements for the ith (i = 0,...,k; + kp)
row of the table and the corresponding elements of the basic row. The resulting number of
permutations
[kll ka

; :|, i:O,...,k1+k2,

is added to the ith row on the right.

Step 6. If the number of rows of the last table is greater than the cardinality of the multiset,
then the calculation is completed and the result of the algorithm is the column of numbers
such that these numbers were added to the table on the right. Otherwise, we transpose the
column of numbers that were added to the table on the right, consider this as the base row of
the new table, the parameters of the table are increased by the value of the multiplicity of the
next element of the multiset, and then we go to Step 2.

Thus, if the multiset A has the cardinality basis 1, then the execution of the algorithm
requires the construction of the (n — 1)th table.
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Example 7. Find the number of all m-permutations of the multiset A = {a2, a3, a3},
m =0,1,...,11. For this purpose we build the following tables.
12 4 7 11 15 15
0 10 0 0 O 0 0 1
11 1 1 11 0 0 O 0 0 3
0T 1T 0 o 1 2 121 0 O 0 O 9
1111 o ’ 3 13 3 1 0 0 O 26
> 112 1 4 4 14 6 4 1 0 0 72
3113 3 7 5 1510 10 5 1 0 191
4114 6 1 6 0 6 15 20 15 6 1 482
5105 10 | 15 7 0 021 3 35 21 7 1134
600 151 15 8 00 0 5 70 56 28 2422
9 00 0 0 126 126 34 4536
10 00 0 0 O 252 210 | 6930
1 {00 0 0 O 0 462 | 6930

Therefore,
P°(A) =1, PY(A) =3, P2(A) =9, P3(A) =26, P*(A) =72, P°(A) =191, P°(A) = 482,
P7(A) = 1134, P8(A) = 2422, PP(A) = 4536, P1°(A) = 6930, P}(A) = 6930.
This algorithm is effective for multisets of relatively large cardinality but with a small base.
For example, to calculate the number of 20-permutations on the multiset A = {a?, a;, a}f} this
algorithm requires the construction of two tables of sizes 4 x 13 and 13 x 26 accordingly and

the calculation by the formula requires the analysis of the set of 627 solutions of equation (46)
and significant calculations.

Example 8. For the multiset A = {a%, a%, aé, ai, aé, a%, a%, ag, ag, a?o} we have

PY°(A) =1, PY(A) =10, P2(A) =97, P3(A) =912, P*(A) = 8299,
P5(A) = 72946, P°(A) = 617874, P7(A) = 5029948, P8(A) = 39237380,
PY(A) = 292327224, P°(A) = 2072330400, P''(A) = 13920355680,
P2(A) = 88179787080, P'3(A) = 523856052720, P'4(A) = 2899520704080,
P(A) = 14831963546400, P'®(A) = 6938695764000,

PY7(A) = 292608485769600, P8(A) = 1088829613872000,

PY(A) = 3456466684070400, P?°(A) = 8834757003072000,

P2 (A) = 162615846032640000, P?(A) = 162615846032640000.
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CraTTs IpuCcBsTYeHa ABOM KAACMYHMM KOMOIHATOpHMM 3aAavaM Ha MYABTMMHOXMHAX, SIKMM Y
icHyTOUill AiTepaTypi BiABeA€HO HEBMIIPABAAHO MAAO MicIsl. A caMe: OOUMCAEHHIO UMCAa BCiX Imia-
MYABTMMHOXIH IOTY>KHOCTI 111 AOBIABHOI MYABTMMHOXIHM Ta YMCAQ M-TIepPeCTaHOBOK TaKMX MYAb-
TUMHOXMH. [lepima 3apada TicHO OB’ s13aHa i3 IIMPMHOIO YacTKOBO BIOPSIAKOBAHOI MHOXXIMHI BCiX
MiAMYABTMMHOXI/H MYABTVMHOXVHM 32 BKAIOWeHHsIM C. Y CTaTTi BUAIAGHO AesIKi BaXKAMBI KAacy
MYABTUMHOXUH. PO3TASIHYTO KOM6IHATOPHI AOBEAEHHS 3aAaU IIPO YMCAO M-IMiAMYABTUMHOXMH Ta
M-TIepeCTaHOBOK eAeMEHTIB MyABTVMHOXMHI. Y CTaTTi, Ha OCHOBI METOAY IeHepaTpUC, 6YAyIOThCSI
€KOHOMHI aATOPUTMM OOUMCAEHHS HI-THAMYABTMMHOXMH Ta /1-TIepeCTAHOBOK €AEMEHTIB MYABTH-
MHOXMHI. Y pobOTi TaKOX 3pO6AEHO KOPOTKMIL OTASIA Pe3YABTATIB, IO CTOCYIOThCSI LIbOTO HATIPSIM-
KY AOCAiAKeHb.

Kntouosi cnosa i ppasu: MyAbTMMHOXMHA, IepeCcTaHOBKaA.



