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Special formulas involving polygonal numbers and Horadam
numbers

Adegoke K., Frontczak R.2, Goy T.>™

Some convolution-type identities involving polygonal numbers and Horadam numbers are de-
rived. The method of proof is to properly relate the generating functions to each other. Additionally,
we prove a general non-convolutional result involving these number families and discuss some of
the consequences.
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1 Introduction and motivation

The nth polygonal (or figurate) number of order (or rank) r is given by [4]

— % —(r—
P}’(tr):(r Z)nz(r 4)n:n—|—(r—2)<n>, n>0 r>2

The order r can be interpreted as the number of sides of a regular polygon represented as dots
in the plane. We have Po(r) =0, Pl(r) =1, and Pz(r) = r for all r > 2. Many of the sequences
from the polygonal family are indexed in the The On-Line Encyclopedia of Integer Sequences
(OEIS) [17], the first few terms of which are given in the table below.

OEIS

number
6 1015|121 | 28 | 36 | 45 | 55 | A000217
9 1625|136 | 49 | 64 | 81 | 100 | A000290

12122135 |51 | 70 | 92 | 117 | 145 | A000326
1528 |45 |66 | 91 | 120 | 153 | 190 | A000384

18 |34 | 55 | 81 | 112 | 148 | 189 | 235 | A000566
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The triangular numbers P,§3) will be denoted by T;,. One immediately observes the follow-
ing relations n + 2T,,_1 = Pr(,4), n+3T, 1 = ,SS), and in general Pr(,r) =n+ (r—2)T,_1. The
last equation shows that every polygonal number can be expressed in terms of a triangular

number. Also, for positive integers n and m, we have the identity
Pé:zmH =n+m+1+r—2)nm+ (r —2)(Ty + Tw),

where we have used the identity T), 1, = T, + Tj,, + nm.
Polygonal numbers satisfy the following recurrence relation [4]:

p), —2p\) _p{) 4 r—2 (1)

In [3] some summation formulas for polygonal numbers are derived. For some other inter-
esting properties of P,Sr) we refer the reader to [2,9,11,15,18].
Recall that the general Horadam sequence {w, } = {wy,(a,b; p,q)} is a second order linear
recurrence
Wy = pWy—1 — qWn-—2, n=2,
with nonzero constant p, g and initial values wy = a, w; = b. The sequence {w,} can be
extended to negative subscripts according to

1
W—yn = —5(own+1 —W_py2), n > 1.

This important sequence is named after Alwyn Horadam, who studied their properties in
the mid-sixties of the last century [12-14]. The Horadam sequence became a popular research
object due to its obvious connections to many famous number sequences, for instance, the Fi-
bonacci sequence F, = wy(0,1;1, —1), the sequence of Lucas numbers L, = w,(2,1;1, —1), the
Pell sequence P, = wy(0,1;2, —1), the Jacobsthal sequence J, = w,(0,1;1, —2), the Mersenne
sequence M, = w,(0,1;3,2).

The Binet formula of {w,} in the non-degenerated case, p2 —4q >0,1is

wy = Aa" + Bﬁn, (2)

where

b— aﬁ’ B - b,
«—p «—p
sothata+ B =p,a—p = +/p?>—4q,and aff = g.

Two special cases of the Horadam sequence are the Lucas sequences of the first kind,
{un(p,9)} = {wn(0,1;p,q)}, and of the second kind, {v,(p,q)} = {w.(2,p;p,q)}. It follows
from (2) that

o

_ PV 4 g b= pP—4q,
2 4

2 4

At — B
Up = (x—g' Un:“n‘i‘ﬁn'
A.F. Horadam [12] has shown that
Wy = (ﬂp — b)un — H¥n—1 Wn , Uy = _@/ O—n = %
(bun — aquy_1)q" q" q

Now, we prove a result conjugate to (2), for later use.

Lemma 1. For any integer n,

Ax" —BB" = Wnt1 — %n—1 3)

VPr—4q
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Proof. Let Q = A" — BpB". Then
aQ = Aa"t —Bgp"!,  BQ = Aqa"! —Bp".

Subtraction of the second of the above formulas from the first one, taking (2) into consideration
gives (3). 0

The goal of this article is to derive convolution-type identities involving polygonal num-
bers and Horadam numbers. For the most part, the method of proof is to properly relate the
generating functions to each other. This idea has been applied successfully to similar problems
in [1,5-8]. Additionally, we prove a general non-convolutional result involving these number
families and discuss some of the consequences.

2 Convolutions: the linear case

In this section, we deal with sums involving polygonal numbers and Horadam numbers.
First we give the partial sum of the polygonal numbers, required in the sequel.

Lemma 2. Letn and r be integers such thatn > 0 and r > 2. Then

() (r)
o, ET zn+1 (Pn+1 —zP, ) 22 (1—z")
Y Pz = 5 (r—2) ——==. (4)
k=0 (1-2) (1-2)
Proof. Multiply through the recurrence relation (see (1))
Pk(+)2 2PI£+)1 PIEY)‘H_z
by zF and sum each term over k to obtain
n n n 1— Zn—i—l
Zplfi)zzkzzzplffglzk—Zpk(r)zk+(r_2)71_z , )
k=0 k=0 k=0
in which, by shifting the index, we have
n n n
() 1p(r) ), (N k1§ pk (r)
Yy Pl = > Z p +z” Py +2"P), and ) Pl =) PUZ+ 2P
k=0 k=0 k=0
Using the above formulas in (5) gives the stated identity. O

Theorem 1. Foreachn > 0 and x € C, we have

n

;((3 px) r(z+)2 + (g2 _3)P1§+)1 k+P() ) wy
—0

= aP(J23 + (b —ap)xP ,522 X 2w, 0 4 (px — 1) Mw, .

Proof. It is known from [13,16], that the generating function of the Horadam sequence is

+(b—ap)z
X_: N 1 — pz+qz2’ ©)

Dropping terms proportional to z" in (4), in the limit as n approaches infinity, we find the
generating function of polygonal numbers (see also [4]) as follows

v (r=3)2%+z
—ZPn z ——(1_2)3 .
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From (6) we obtain

a+(b—ap)xz _ 2 2
Wi (xz) =1—pxz +gx°z°.
Hence,
a+ (b—ap)xz CANe (2 a\e2 3 (1 N3
Wi (x2) + (px —3)z— (qx* —3)z" —z° = (1 —2)°.
This gives

a+ (b—ap)xz+ ((px —3)z — (qx* — 3)z*> — 2) Wy (xz) _ (- 3)z% +z
Wi (xz) G(z)

or, equivalently,

aG(z) + (b — ap)xzG(z) — zWy (xz) — (r — 3)z* Wi (x2)
= (3 — px)zW; (x2)G(z) + (gx* — 3)2°W; (x2)G(z) + 22W; (x2)G(z).

Now, it is easy (but lengthy) to expand both sides of the equation in power series in z using
Cauchy’s rule for the multiplication of two power series

(e 9] n

(o] oo
Z ayz" - Z bz = Z agb, i z".
n=0 n=0 n=0k=0
The identity follows upon comparing the coefficients of z"* and straightforwardly manipu-
lating the relations. We leave the details to the interested reader. O

Corollary 1. Let F, be the n-th Fibonacci number. Then the following identity holds true

- (r) 2yp(") () \E ¢k — ¢p® 2 1
Z (38— )P o = B+xT)P L+ P )Fx* = XP,/,— X"T2F, 0+ (x — 1) Fpypqx™
k=1

Setting x = £1 and r = 2, simplifying and using some well-known facts about Fibonacci
numbers we can rediscover the following summation identities:

n
Y kEy =Fi3—n-2,
k=1

i(_l)kklsnfk =2F, — L, — (_1)n(n — 2).
k=1

Similarly, with x = +1 and r = 3 we can derive the following triangular-Fibonacci formulas

n

Z TxFy—k = Fnys — Tui2 — 2,
k=1

n

Z(_l)kaFn—k =4F;, 1 — Fn+2 - (_1)H(Tn+2 - 4")'
k=1

Still another example is

n
Z kan—k = S5Fy42+ 3F41 — (n + 2)2 —4.
k=1
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3 Convolutions: the quadratic case

In this section, using the same idea, we prove a convolution-type identity with squared
Horadam numbers and polygonal numbers. To do so, we need the generating function W(z)
of the sequence {w?},,>¢. It is known from [13, 16], that

© A + Bz + Cz2
_ 2 k
Wa(z) = ,;Owkz T 1_Dz+ER2_[

with A = 42, B :bz—az(pz—q), C:q(b—ap)z, D= pz—q, E :q(pz—q), F :q3.
This yields to the next theorem.

Theorem 2. For eachn > 0 and x € C, we have

+(1—F3)P\))

Y *w?((3—Dx)P\), , + (Ex* —3)PV")

n+2—k n+1-k
k=0
= APTSQ3 + BXP;EQZ - Cx2P1521 — X", + (Dx — r)x" Wl .

Proof. Relating the generating functions as in the previous proof results in the following func-
tional equation
A+ Bz+C22+ ((Dx —3)z — (Ex* —3)22 + (Fx* = 1)2°) Wy (xz)  (r—3)22 4z
W (xz) N G(z)

or, equivalently,
AG(z) + BxzG(z) + Cx*z2G(z) — zWy(xz) — (r — 3)22Wa(x2)
= (3 — Dx)zWa(x2)G(z) + (Ex?* — 3)22Wa(x2)G(2) + (1 — Fx®)22 Wy (x2)G(2).

The rest of the proof is as before and is an application of Cauchy’s multiplication rule. O

Corollary 2. If F, is the n-th Fibonacci number, then we have for eachn > 0 and x € C :
S k2 (") 2y p(7) 3yp(7)
kzlx F((3—-2x)P, ), —(B+2x")P,),  + (14+x°)P")

= xP’SQZ - xzpﬂl —X"P2E2 (20 —r)x"TIFR

We proceed with some summation formulas, which can be derived from the corollary for
different values of r:

=0 o 1=(=1)" D00 ar2ar2 o m
Y kF;_ =F; — Y K*F;_,=2F;, —3F; —n—(-1)"2. 7)
k=1 k=1
1 2n+1 3
Y TeFy = FuiFuz — =, — — (-1)"]. (8)
k=1
The Lucas version of (7) and (8) are
& 4n—3 — (—=1)" L
Skt =t MU SR b Lo 2 -3,
k=1 k=1

4n? —2n —3 — (—=1)"
1 :

n
Y Tl = Lon1 +
k=1
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4 A non-convolutional result

S

Lemma 3. For integers s and t, let the function f(z) be defined by f(z) = ;. Let m be

_z
(1-2)
an integer. Then
t
z° kgo (_1)kqu(lt<)vm(sfk)zk
fla"z) + f(B"z) = (1—omz +q"22)f*

t
fanz) - pgrz) 25 T Wi
JrE—4g (- omz+gqu)

Proof. Straightforward algebraic manipulation, utilizing the binomial theorem and the basic
properties of the Lucas sequences. U

n
Lemma 4. Let h(z) have the representation h(z) = Y Yyz*k for certain sequences { Xy}, { Y}
k=c
and integers ¢ and n. Let m and i be any integers. Then

Xn: wmxk+iYksz =Y (h(a™z) +h(B"z)) + Wit1 — qWi1 (h(a"z) —h(B"z)) . 9)

= 2 2\/p* —4q

Proof. Since
Ax'h(a"z) =) Y Aa Xtz X BB'h(B"z) =) Y B Xitiz Xk,
k=c k=c
we have, using the Binet formula (2),
n . .
Y Vit 2 = Ba'h(az) + BEh(B"z). (10)
k=c

Denote the right-hand side of (10) by R. Then

R = (w; — B )h(a"z) + BB'h(B"z) = w;h(a"z) — BE (h(a™z) — h(B"z)) . (11)
On the other hand,
R = Aa'h(a"z) + (w; — AaYh(B"z) = w;h(B"z) + Aa' (h(a™z) — h(B"z)). (12)

Addition of (11) and (12) produces

Thus,

R =3 (a"2) +h(p"2)) + = et (ha"2) ~ H(B"2)),

and using this in (10), we obtain the identity of the theorem. O
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Theorem 3. Letm, i be any integers and d,,(x) = 1 — v, x + " x%. Let n and r be integers such
thatn > 0 andr > 2. Then

n () n+1 (r) n+2
)k wi (X01({om}) = P/L " oa({om}) + Py 2" PPos({om})
L il x -5 a0

r—2)x? Um}) — n+2 Um
(=Dl =2 (o))
(i1 — qwi_1) (xtfl({um}) n+1x”+1 2 ({um}) + P2 203 ({1 })

2 d2 (x)

m

r — 2)x%04 ({1, r— "+2(7 Uy,
+( )d%(ig{ Do ( ) 5{ )

_|_

where

o1({sm}) = sm —29"s0x +q"smx?,  2({sm}) = Sp(ur1) = 20" SmnX + 47"y 1) X

03({Sm}> = Sm(n+2) — qusm(nJrl)x + qzmsmnxzr

(74({sm}) = Som — 3™ smx + 307" sox* — ¢°"Ms_ x>,
({SM}) m(n+2) 3qmsm(n+1)x + 3q2msmﬂx2 - qgmsm(n—l)x

Proof. Write the partial sum of the polygonal numbers (see (4)) as

Z P = fi(x) = PV fo(x) + PV Fa(x) + (r = 2)fa(x) — (r —2)f5(x),

3

n+1 n+2 n+2

where f1(x) = o fa(x) = — s fa(0) = @, filx) = i and fi(x) = — g,
The identity now follows from (9) with X =k and Y = k( ), upon application of Lemma 3
to each f(x). O

An interesting special case of Theorem 3 that concerns the Lucas sequences of the first kind
is the following assertion.

Corollary 3. Let m be any integer. Let n and r be integers such thatn > 0,r > 2. Then

2 i P 2 X(um — q"umx*) Pr(ztglxn+1(um(ﬂ+l) = 24" Un X + 47"ty (y—1)6%)
mk T (1= vmx + q"x2)2 (1 — vpx + g"x?)?

va )xn+2(um(n+2) = 20" (1) X + 47" i x?)
(1 —vpx + g"x2)?
(r —2)x% (ugm — 39 tmx + g* M x>)
(1 —vpx + qmx?)3
(1’ - 2)xn+2(um(n+2) - 3qmum(n+1)x + 3q2mum”x2 - q3mum(n_1)x3)
(1 — vpx + g"x?)3 '

+

In particular, at r = 2 and m = 1, we have

Z kugx* = x(1 = gx?) _ (1 + )" (1 — 2qunx + g*11y1X)
¢ (1 —px +qx2)? (1 — px + gx2)?
nxﬂ+2(un+2 _ 2qun+1x + qzuan)

* (1= px +qx2)?

4
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giving the generating function of {nu,},>o as

= o x(1—gx?)
; G Q)

The Fibonacci version of Corollary 3 is obtained by settingm =1, p =land g = —1.

Corollary 4. Let n and r be integers such thatn > 0 and r > 2. Then

x(14+x2) PO x"(Fyy 4 2Fx + F, 122)

n
IngPk SR G (1—x—x2)2
PX 2 (Fyn + 2Fpanx + Fux)  (r — 2)22(1 4 3x + 2°)
(1—x—x2)2 (1—x—x2)3
(r — 2)x™*2(Fyy0 + 3F,41x + 3F,x> + F,_1x°)
(1—x—x2)3 '

By dropping terms proportional to x” from the right hand side of Corollary 4, we find the
generating function of the product of Fibonacci numbers and polygonal numbers:

Xz r — x2 X x3
UL QUL M SE SR

Setting x = 1 in Corollary 4 gives the partial sum of the product of Fibonacci numbers and
polygonal numbers:

n
Y P =12—5r— PU) Fyis 4+ PV Fuya+ (r = 2)Fuys, (13)
while with x = —1 we obtain the alternating partial sum of the product of Fibonacci numbers

and polygonal numbers:

Z 1 FP) = 4 =304 (=1)" (PY) Fys + P Fua — (r — 2)F,4). (14)

The Pell versions of (13) and (14) are

1 3r 1 r—2

Z Pkpk(r) =2- Z - 5 <P,§21Pn+1 - Pr(zr)PnJrZ - 2 (Pn+1 + Pn+2))/
k=1

! r—2 r
Y (~1)kpp) = %(PHHPM 1+ PP = S (P = Pa)) — 5
k=1

5 Concluding comments

Variants of the above convolutional results including sums with only even and odd sub-
scripted Horadam numbers can also be derived using our approach. All that is needed are the
respective generating functions. The linear case is easy. In the quadratic case, these functions
have been derived in [1].

Lemma 5. The generating functions for squared odd (even) subscripted Horadam numbers
are given by
A1+ Biz+ CZ?
— 2 no_ 1 1 1
2) n;ow%“z 1— Doz + Eo22 — Fo2®’
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00 2

w(?) = L wh' = g Y
where A1 = b?, By = q(a®p?q — 2abp> + 2abpq + 2b*p* — 2b%q), C1 = q*(ap — b)?, Ay = a2,
By = (aq —bp)* — a*(p* — q)(p* —34), C2 = (ap* —bp —aq)*q*>, Do = (p*> — q)(p* — 379),
Eo = ¢*(p* — q9)(p* — 3q), Fo = ¢°.

These functions can be related to G(z) as shown in the main body of the text, producing
additional results of the same type.

Another natural question is, if the above results can be extended to an arbitrary power w
with k > 3. The answer is yes, at least in principle. A.F. Horadam himself derived a formula
for the generating functions for powers of {wy, },>0 in 1965 [13]. Specifically, he showed that if

Wi(z) = ¥ whkz", k > 1, then

n=0
o= (S £ () (25 0 o

i=0

However, as was pointed out in [16], the algebraic complexity of Wi (z) increases very
quickly with k. Therefore, the general treatment with k > 3 will become elaborate and is
not pursued further.

On a final note we wish to remark on the very general nature of Lemma 4. The lemma
suggests that any arbitrary function that has a power series representation gives rise to a
Horadam series identity. We give an illustration of Lemma 4, using the harmonic numbers.
The harmonic numbers are defined by H, = i 1. These numbers find application in various

k=1
areas of number theory and computer science. A standard reference for their basic properties

is the book [10]. The generating function of the harmonic numbers is

> In(1—-z
h(Z) = Z Hka = —% .
k=1

Choosing Xy = k, Yy = Hi, ¢ = 0, and n = o in Lemma 4, we find, after some algebra, the
generating function of the product of harmonic numbers and Horadam numbers with indices
in arithmetic progression, namely,
> UmX w;
(1= o) ) b = (557 —1) FIn1 = o+ 47)
n Umxwir/p* —4q In 1-B"x\  wiy1 —qwi <vmx _ 1) In 1—p"x
4 1—amx 2«/}72—417 2 1—amx

- %umxln(l — Omx + q"x%).
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BcraHOBAEHI AesTKi TOTOXXHOCTI THITY 3TOPTKM, IIO BKAIOUAIOTh 6araTOKyTHi umcaa Ta umcaa ['o-
parama. OcHOBHA iAesT AOBEAEHHSI ITOASITA€ Y BUKOPMCTaHHI AeSIKMX (pyHKITIOHAABHMX CIIiBBiAHO-
IIIeHb, OTPMMAHMX 3 BUKOPMCTAHHSIM reHepaTpyC 060X YMCAOBMX IIOCAIAOBHOCTEIL.

Kntouosi cnoea i ppasu: mocairoBHiCTb [opasaMa, 6araToKyTHI UMCAd, TPUKYTHI UMCAQ, ITIOCAIAOB-
HicTh DiboHAYUI, TeHepaTpuCca, peKypeHTHe BiAHOIIEHHS.



