Carpathian Math. Publ. 2021, **13** (2), 413–425 doi:10.15330/cmp.13.2.413-425

Properties of analytic solutions of three similar differential equations of the second order

Sheremeta M.M., Trukhan Yu.S.[™]

An analytic univalent in $\mathbb{D}=\{z\colon |z|<1\}$ function f(z) is said to be convex if $f(\mathbb{D})$ is a convex domain. It is well known that the condition $\operatorname{Re}\{1+zf''(z)/f'(z)\}>0$, $z\in\mathbb{D}$, is necessary and sufficient for the convexity of f. The function f is said to be close-to-convex in \mathbb{D} if there exists a convex in \mathbb{D} function Φ such that $\operatorname{Re}(f'(z)/\Phi'(z))>0$, $z\in\mathbb{D}$.

S.M. Shah indicated conditions on real parameters β_0 , β_1 , γ_0 , γ_1 , γ_2 of the differential equation $z^2w'' + (\beta_0z^2 + \beta_1z)w' + (\gamma_0z^2 + \gamma_1z + \gamma_2)w = 0$, under which there exists an entire transcendental solution f such that f and all its derivatives are close-to-convex in \mathbb{D} .

Let $0 < R \le +\infty$, $\mathbb{D}_R = \{z : |z| < R\}$ and l be a positive continuous function on [0,R), which satisfies (R-r)l(r) > C, C = const > 1. An analytic in \mathbb{D}_R function f is said to be of bounded l-index if there exists $N \in \mathbb{Z}_+$ such that for all $n \in \mathbb{Z}_+$ and $z \in \mathbb{D}_R$

$$\frac{|f^{(n)}(z)|}{n!l^n(|z|)} \le \max\bigg\{\frac{|f^{(k)}(z)|}{k!l^k(|z|)}:\ 0 \le k \le N\bigg\}.$$

Here we investigate close-to-convexity and the boundedness of the l-index for analytic in $\mathbb D$ solutions of three analogues of Shah differential equation: $z(z-1)w'' + \beta zw' + \gamma w = 0$, $(z-1)^2w'' + \beta zw' + \gamma w = 0$ and $(1-z)^3w'' + \beta(1-z)w' + \gamma w = 0$. Despite the similarity of these equations, their solutions have different properties.

Key words and phrases: close-to-convexity, l-index, differential equation.

Ivan Franko National University of Lviv, 1 Universytetska str., 79000, Lviv, Ukraine

□ Corresponding author

 $E\text{-mail: m.m.} sheremeta@gmail.com\,(Sheremeta\,M.M.), \,\, yurkotrukhan@gmail.com\,(Trukhan\,Yu.S.)$

Introduction

An analytic univalent in $\mathbb{D} = \{z : |z| < 1\}$ function

$$f(z) = \sum_{n=0}^{\infty} f_n z^n \tag{1}$$

is said to be convex if $f(\mathbb{D})$ is a convex domain. It is well known [4, p. 203] that the condition Re $\{1+zf''(z)/f'(z)\} > 0$, $z \in \mathbb{D}$, is necessary and sufficient for the convexity of f. By W. Kaplan [6], the function f is said to be close-to-convex in \mathbb{D} (see also [4, p. 583]) if there exists a convex in \mathbb{D} function Φ such that Re $(f'(z)/\Phi'(z)) > 0$, $z \in \mathbb{D}$. Close-to-convex function f has a characteristic property that the complement G of the domain $f(\mathbb{D})$ can be filled with rays which start from ∂G and lie in G. Every close-to-convex in \mathbb{D} function f is univalent in \mathbb{D} and, therefore, $f'(0) \neq 0$. Hence it follows that the function f is close-to-convex

in D if and only if the function

$$g(z) = z + \sum_{n=2}^{\infty} g_n z^n \tag{2}$$

is close-to-convex in \mathbb{D} , where $g_n = f_n/f_1$. We remark also, that the function (2) is said to be starlike in \mathbb{D} , if $f(\mathbb{D})$ is starlike domain regarding the origin. It is clear, that every starlike function is close-to-convex.

S.M. Shah [8] indicated conditions on real parameters β_0 , β_1 , γ_0 , γ_1 , γ_2 of the differential equation

$$z^{2}w'' + (\beta_{0}z^{2} + \beta_{1}z)w' + (\gamma_{0}z^{2} + \gamma_{1}z + \gamma_{2})w = 0,$$
(3)

under which there exists an entire transcendental solution (1) such that f and all its derivatives are close-to-convex in \mathbb{D} . In particular he obtained the following result.

Theorem 1. If $-1 \le \beta_0 < 0$, $\beta_1 > 0$ and $\beta_1 + \gamma_2 = \gamma_0 = \gamma_1 = 0$, then the equation (3) has an entire solution (2) such that all the derivatives $g^{(n)}$, $n \ge 0$, are close-to-convex in $\mathbb D$ and $\ln M_g(r) = (1 + o(1))|\beta_0|r$ as $r \to +\infty$, where $M_g(r) = \max\{|g(z)| : |z| = r\}$.

The investigations are continued in papers [13–18]. In particular in the case of complex parameters β_0 , β_1 , γ_0 , γ_1 , γ_2 in [17] it is proved, that if $\gamma_0 = \gamma_1 = \beta_1 + \gamma_2 = 0$, $\beta_0 \neq 0$, $|\beta_1| < 2$ and $2|\beta_1| < (2-|\beta_1|) \ln 2$, then the equation (3) has an entire solution (2) such that all derivatives $g^{(n)}$, $n \geq 0$, are starlike, thus close-to-convex in $\mathbb D$ and $\ln M_g(r) = (1+o(1))|\beta_0|r$ as $r \to +\infty$. An analogue of this proposition for convex functions is obtained in [18], where it is proved, that if $\gamma_0 = \gamma_1 = \beta_1 + \gamma_2 = 0$, $\beta_0 \neq 0$, $|\beta_1| < 2$ and $4|\beta_1| < (2-|\beta_1|) \ln 2$, then the equation (3) has an entire solution (2) such that all derivatives $g^{(n)}$, $n \geq 0$, are convex in $\mathbb D$. We remark that in this case the differential equation (3) has the form

$$z^{2}w'' + (\beta_{0}z^{2} + \beta_{1}z)w' + \gamma_{2}w = 0, \quad \gamma_{2} = -\beta_{1}.$$
(4)

Let $0 < R \le +\infty$, $\mathbb{D}_R = \{z : |z| < R\}$ and l be a positive continuous function on [0, R), which satisfies $l(r) > \beta/(R-r)$, $\beta = \text{const} > 1$. An analytic in \mathbb{D}_R function f is said to be of bounded l-index [9] if there exists $N \in \mathbb{Z}_+$ such that for all $n \in \mathbb{Z}_+$ and $z \in \mathbb{D}_R$

$$\frac{|f^{(n)}(z)|}{n!l^n(|z|)} \le \max\left\{\frac{|f^{(k)}(z)|}{k!l^k(|z|)}: \ 0 \le k \le N\right\}. \tag{5}$$

The least such integer is called the l-index of f and is denoted by N(f; l).

If there exists $N \in \mathbb{Z}_+$ such that (5) holds for all $n \in \mathbb{Z}_+$ and for all $z \in G \subset \mathbb{D}_R$, then the function f is said to be of bounded l-index on (or in) G, and the l-index is denoted by N(f; l, G). The l-index boundedness of entire solutions of the equation (3) for certain conditions on parameters β_0 , β_1 , γ_0 , γ_1 , γ_2 are studied in [19–24].

Some results from [13–24] are published also in monograph [10].

Here we investigate the properties of analytic in \mathbb{D} solutions of the following analogues of the differential equation (4):

DE₁:
$$z(z-1)w'' + \beta zw' + \gamma w = 0$$
,
DE₂: $(z-1)^2 w'' + \beta zw' + \gamma w = 0$,
DE₃: $(1-z)^3 w'' + \beta (1-z)w' + \gamma w = 0$.

1 Close-to-convexity and growth

Clearly, an analytic in \mathbb{D} function (1) is a solution of DE_1 if and only if

$$z^{2} \sum_{n=2}^{\infty} n(n-1) f_{n} z^{n-2} - z \sum_{n=2}^{\infty} n(n-1) f_{n} z^{n-2} + \beta z \sum_{n=1}^{\infty} n f_{n} z^{n-1} + \gamma \sum_{n=0}^{\infty} f_{n} z^{n} \equiv 0,$$

that is

$$\sum_{n=2}^{\infty} n(n-1)f_n z^n - \sum_{n=1}^{\infty} n(n+1)f_{n+1} z^n + \sum_{n=1}^{\infty} \beta n f_n z^n + \sum_{n=0}^{\infty} \gamma f_n z^n \equiv 0,$$

whence $\gamma f_0 = 0$ and

$$f_{n+1} = \frac{n(n+\beta-1) + \gamma}{n(n+1)} f_n, \quad n \ge 1.$$
 (6)

We choose $f_0 = 0$ and $f_1 = 1$. Then the solution of DE₁ has the form

$$f(z) = z + \sum_{n=2}^{\infty} f_n z^n, \tag{7}$$

where the coefficients f_n for $n \ge 2$ are defined by recurrent formula (6).

For the investigation of the close-to-convexity of solution (7) we need the following result of J.F. Alexander [1] (see also [5, p. 9]).

Lemma 1. If the coefficients of the function (2) satisfy the condition

$$1 \ge 2g_2 \ge \cdots \ge kg_k \ge (k+1)g_{k+1} \ge \cdots > 0$$
,

then the function g is close-to-convex in \mathbb{D} .

For the use of Lemma 1 it is needed the positiveness of coefficients f_n , and therefore, as in [8], we consider the real parameters β and γ . Since $f_0=0$, $f_1=1$, from (6) we have $2f_2=\beta+\gamma$ and, therefore, $1\geq 2f_2>0$ if and only if $0<\beta+\gamma\leq 1$.

Theorem 2. If $-1 \le \beta \le 1$ and $0 < \beta + \gamma \le 1$, then DE_1 has an analytic close-to-convex in $\mathbb D$ solution (7), for which $M_f(r) \asymp 1$ $(r \uparrow 1)$ if $\beta < 1$ and $M_f(r) \asymp 1/(1-r)$ $(r \uparrow 1)$ if $\beta = 1$.

Proof. Since $\beta \ge -1$, the sequence $(n(n+\beta-1)+\gamma)$ is nondecreasing, thus we have $n(n+\beta-1)+\gamma \ge \beta+\gamma>0$ for all $n\ge 1$, and since $\beta\le 1$, we have $n(n+\beta-1)+\gamma\le n^2$ for all $n\ge 2$. Therefore, (6) implies $f_n>0$ for all $n\ge 2$ and

$$(n+1)f_{n+1} = \frac{n(n+\beta-1)+\gamma}{n^2}nf_n \le nf_n.$$

From (6) it follows also that $f_{n+1} = (1 + o(1))f_n$ as $n \to \infty$, that is the radius of the convergence of (7) is equal to 1. Therefore, in view of Lemma 1 the first part of the theorem is proved.

Further, since $f_1 = 1$, (6) implies

$$f_{n+1} = \prod_{j=1}^{n} \frac{j(j+\beta-1)+\gamma}{j(j+1)}, \quad n \ge 1,$$

whence

$$\ln f_{n+1} = \sum_{j=1}^{n} \ln \left(1 + \frac{j(j+\beta-1) + \gamma - j(j+1)}{j(j+1)} \right) = \sum_{j=1}^{n} \ln \left(1 + \frac{\beta-2}{j+1} + \frac{\gamma}{j(j+1)} \right)$$

$$= \sum_{j=1}^{n} \left(\frac{\beta-2}{j+1} + \frac{\gamma}{j(j+1)} - \frac{(\beta-2)^2}{2(j+1)^2} - \frac{(\beta-2)\gamma}{j(j+1)^2} - \frac{\gamma^2}{2j^2(j+1)^2} + \dots \right)$$

$$= \sum_{j=1}^{n} \frac{\beta-2}{j+1} + O(1) = (\beta-2) \ln (n+1) + O(1), \quad n \to \infty,$$

i.e. $f_n \approx n^{\beta-2}$ as $n \to \infty$. Therefore, if $\beta < 1$, then f(r) = O(1) as $r \uparrow 1$ and if $\beta = 1$, then $f(r) \approx \ln(1/(1-r))$ as $r \uparrow 1$. Since $M_f(r) = f(r)$, the proof of Theorem 2 is completed.

We remark that if $\beta = 1$ and $\gamma = 0$, then DE₁ has the form (z-1)w'' + w' = 0 and has the solution $f(z) = \ln(1/(1-z))$ such that f(0) = 0 and f'(0) = 1. This function is convex and, thus, close-to-convex in \mathbb{D} .

Now, consider DE₂. At first, we remark that if $\gamma = 0$, then $w''/w' = -\beta/(z-1) - -\beta/(z-1)^2$. General solution of this equation has the form

$$w(z) = \int \frac{C_1}{(z-1)^{\beta}} \exp\left\{\frac{\beta}{z-1}\right\} dz + C_2, \quad C_1 \neq 0.$$

We remark also that every close-to-convex in $\mathbb D$ function (1) is univalent in $\mathbb D$ and, therefore, by the Bieberbach conjecture proved in [3] $|f_n| \le n|f_1|$ for all $n \ge 1$, i.e. $M_f(r) = O((1-r)^{-2})$ as $r \uparrow 1$. For every C_1 and C_2 the growth rate of w(z) is essentially faster, i.e. DE_2 does not have close-to-convex solution in $\mathbb D$.

We will search a solution of DE₂ in the form

$$f(z) = F\left(\frac{1}{1-z}\right) = \sum_{n=0}^{\infty} \frac{F_n}{(1-z)^n}.$$
 (8)

Clearly, (8) satisfies DE₂ if and only if

$$\sum_{n=1}^{\infty} \frac{n(n+1)F_n}{(1-z)^n} - \beta \sum_{n=1}^{\infty} \frac{nF_n}{(1-z)^n} + \beta \sum_{n=1}^{\infty} \frac{nF_n}{(1-z)^{n+1}} + \gamma \sum_{n=0}^{\infty} \frac{F_n}{(1-z)^n} \equiv 0,$$

that is

$$\sum_{n=1}^{\infty} \frac{(n(n+1-\beta)+\gamma)F_n}{(1-z)^n} + \gamma F_0 + \sum_{n=2}^{\infty} \frac{\beta(n-1)F_{n-1}}{(1-z)^n} \equiv 0,$$

whence $\gamma F_0 = 0$, $(2 - \beta + \gamma)F_1 = 0$ and $(n(n + 1 - \beta) + \gamma)F_n + \beta(n - 1)F_{n-1} = 0$ for $n \ge 2$. As above, we choose $F_0 = 0$ and $F_1 = 1$. Then $2 - \beta + \gamma = 0$,

$$F_n = \frac{-\beta(n-1)}{n(n+1-\beta) + \gamma} F_{n-1}, \quad n \ge 2$$
 (9)

and

$$F(t) = t + \sum_{n=2}^{\infty} F_n t^n, \quad t = \varrho e^{i\theta}. \tag{10}$$

Theorem 3. If $-1 \le \beta < 0$ and $2 - \beta + \gamma = 0$, then DE_2 has an analytic in $\mathbb D$ solution (8) such that $\ln M_f(r) = (1 + o(1))|\beta|/(1 - r)$ as $r \uparrow 1$ and the function F of the form (10) is entire close-to-convex in $\mathbb D$.

Proof. Clearly the function f(z) = F(1/(1-z)) satisfies DE₂ if and only if

$$\frac{1}{(1-z)^2}F''\left(\frac{1}{1-z}\right) + \left(\frac{\beta}{(1-z)^2} + \frac{2-\beta}{1-z}\right)F'\left(\frac{1}{1-z}\right) + \gamma F\left(\frac{1}{1-z}\right) \equiv 0,$$

i.e. F is a solution of the differential equation $t^2w'' + (\beta t^2 + (2-\beta)t)w' + \gamma w = 0$. If we put $\beta_0 = \beta$, $\beta_1 = 2 - \beta$ and $\gamma_2 = \gamma$, then we get the differential equation (4) and also $-1 \le \beta_0 < 0$, $\beta_1 > 0$ and $\beta_1 + \gamma_2 = \gamma_0 = \gamma_1 = 0$. Therefore (see the proof of Theorem 1 in [8]), the function (10) is entire and close-to-convex in $\mathbb D$ and $\lim_{r \to \infty} M_F(\varrho) = (1 + o(1))|\beta|\varrho$ as $\varrho \to +\infty$. Since $M_F(\varrho) = F(\varrho)$ and $M_f(r) = f(r) = F(1/(1-r))$, Theorem 3 is proved.

Finally, we will search a solution of DE_3 also in the form (8). Clearly, (8) satisfies DE_3 if and only if

$$\sum_{n=0}^{\infty} \frac{(n+1)(n+2)F_{n+1}}{(1-z)^n} + \beta \sum_{n=1}^{\infty} \frac{nF_n}{(1-z)^n} + \gamma \sum_{n=0}^{\infty} \frac{F_n}{(1-z)^n} \equiv 0,$$

whence $2F_1 + \gamma F_0 = 0$ and $(n+1)(n+2)F_{n+1} + (\beta n + \gamma)F_n = 0$ for $n \ge 1$. If we choose $F_1 = 1$, then $F_0 = -2/\gamma$, that is

$$F(t) = -2/\gamma + t + \sum_{n=2}^{\infty} F_n t^n.$$
 (11)

This function is close-to-convex if and only if the function (10) is close-to-convex, where

$$F_{n+1} = -\frac{\beta n + \gamma}{(n+1)(n+2)} F_n, \quad n \ge 1.$$
 (12)

Theorem 4. If $\beta < 0$, $\gamma < 0$ and $|\beta| + |\gamma| \le 3$, then DE_3 has an analytic in $\mathbb D$ solution (8) such that $\ln M_f(r) = (1 + o(1))|\beta|/(1 - r)$ as $r \uparrow 1$ and the function F of the form (10) is entire close-to-convex in $\mathbb D$.

Proof. From the conditions $\beta < 0$, $\gamma < 0$ and $|\beta| + |\gamma| \le 3$ it follows that

$$0 < -\frac{\beta n + \gamma}{n(n+2)} \le 1.$$

Therefore, from (12) we obtain

$$(n+1)F_{n+1}=-\frac{\beta n+\gamma}{n(n+2)}nF_n\leq nF_n,\quad n\geq 1,$$

and by Lemma 1 the function F is close-to-convex in \mathbb{D} .

Let $\mu_F(\varrho) = \max\{|F_n|\varrho^n : n \ge 0\}$ be the maximal term of series (11) and $\nu_F(\varrho) = \max\{n : |F_n|\varrho^n = \mu_F(\varrho)\}$ be its central index. We put $\varrho_n = |F_n|/|F_{n+1}| = (n+1)(n+2)/(|\beta|n+|\gamma|)$. Since $\varrho_n \uparrow +\infty$ as $n \to \infty$, we have [7, p. 13] $\nu_F(\varrho) = n$ for $\varrho_n \le \varrho < \varrho_{n+1}$. Hence it follows that

$$\frac{(\nu_F(\varrho)+1)(\nu_F(\varrho)+2)}{|\beta|\nu_F(\varrho)+|\gamma|}=(1+o(1))\varrho,$$

i.e. $\nu_F(\varrho) = (1 + o(1))|\beta|\varrho$ as $\varrho \to +\infty$. Since [7, p. 13]

$$\ln \mu_F(\varrho) = \ln \mu_F(\varrho_0) + \int_{\varrho_0}^{\varrho} \nu_F(x) \, d\ln x,$$

hence it follows that $\ln \mu_F(\varrho) = (1 + o(1))|\beta|\varrho$ as $\varrho \to +\infty$ and [7, p. 17] $\ln M_F(\varrho) = (1 + o(1))|\beta|\varrho$ as $\varrho \to +\infty$. Thus, $\ln M_f(r) = (1 + o(1))|\beta|/(1 - r)$ as $r \uparrow 1$.

2 *l*-index boundedness

We will use the following lemma from [11].

Lemma 2. Let a function f defined by (1) be analytic in the closed disk $\overline{\mathbb{D}}_R = \{z : |z| \leq R\}$, $j = \min\{n \geq 0 : f_n \neq 0\}$ and

$$\sum_{n=1}^{\infty} \frac{(n+j)!}{n!j!} \frac{|f_{n+j}|}{|f_j|} R^n \le a_j(R) < 1.$$

Then $N(f; l, \mathbb{D}_R) = j$ with $l(|z|) = K_j(R)/(R - |z|)$, where

$$K_j(R) = \max \left\{ 1, \frac{1 + a_j(R)}{(1+j)(1-a_j(R))} \right\}.$$

Hence for the function (2) it follows that if

$$\sum_{n=1}^{\infty} (n+1)|g_{n+1}|R^n \le a(R) < 1, \tag{13}$$

then

$$\frac{|f^{(n)}(z)|}{n!} \left(\frac{1 - a(R)}{1 + a(R)}(R - |z|)\right)^n \le \max\left\{\frac{|f'(z)|}{1!} \frac{1 - a(R)}{1 + a(R)}(R - |z|), |f(z)|\right\}$$

for all $z \in \mathbb{D}_R$ and n > 2.

If $0 < \eta < 1$ and $z \in \mathbb{D}_{\eta R}$, then $R - |z| \ge (1 - \eta)R$ and the last inequality implies $N(f, l; \mathbb{D}_{\eta R}) \le 1$ with $l(|z|) = (1 + a(R))/((1 - a(R))(1 - \eta)R)$, because if $N(f, l_*, G) \le N$ and $l^*(r) \le l_*(r)$, then [9, p. 23] $N(f, l^*, G) \le N$. Therefore, the following lemma is true.

Lemma 3. If a function (2) is analytic in $\overline{\mathbb{D}}_R$ and (13) holds, then $N(f,l;\mathbb{D}_{\eta R}) \leq 1$ with $l(|z|) \equiv (1 + a(R))/((1 - \eta)R(1 - a(R)))$.

At first we apply Lemma 3 to the solution of DE₁. By the conditions of Theorem 2 from (6) it follows that for $R \in (0, 1/2)$

$$\sum_{n=1}^{\infty} (n+1)|f_{n+1}|R^{n} = \sum_{n=1}^{\infty} \frac{n(n+\beta-1)+\gamma}{n} f_{n}R^{n} = (\beta+\gamma)R + R \sum_{n=2}^{\infty} \frac{n(n+\beta-1)+\gamma}{n^{2}} n f_{n}R^{n-1}$$

$$= (\beta+\gamma)R + R \sum_{n=1}^{\infty} \frac{(n+1)n+n\beta+\beta+\gamma}{(n+1)^{2}} (n+1)|f_{n+1}|R^{n}$$

$$\leq R + R \sum_{n=1}^{\infty} \frac{(n+1)n+n+1}{(n+1)^{2}} (n+1)|f_{n+1}|R^{n} = R + R \sum_{n=1}^{\infty} (n+1)|f_{n+1}|R^{n},$$

whence

$$\sum_{n=1}^{\infty} (n+1)|f_{n+1}|R^n \le a(R) = \frac{R}{1-R} < 1.$$

Therefore, by Lemma 3 the following proposition is true.

Proposition 1. By the conditions of Theorem 2 for a solution (7) of the equation DE_1 we have $N(f,l;\mathbb{D}_{\eta R}) \leq 1$ with $l(|z|) \equiv 1/((1-\eta)R(1-2R))$ for arbitrary $R \in (0,1/2)$ and $\eta \in (0,1)$.

Since f satisfies DE₁, we have

$$z(z-1)f''(z) + \beta z f'(z) + \gamma f(z) \equiv 0.$$
(14)

From the conditions $-1 \le \beta \le 1$ and $0 < \beta + \gamma \le 1$ it follows that $-1 < \gamma \le 2$. Therefore, for $1 > |z| \ge \eta R$, $R \in (0, 1/2)$, $\eta \in (0, 1)$, from (14) we obtain

$$(1-|z|)|f''(z)| \le |\beta||f'(z)| + \frac{|\gamma|}{|z|}|f(z)| \le |f'(z)| + \frac{2}{\eta R}|f(z)|,$$

and if $A \ge (2 + \eta R)/(2\eta R) > 1$, then

$$\frac{|f''(z)|}{2!} \left(\frac{1-|z|}{A}\right)^{2} \leq \frac{|f'(z)|}{1!} \left(\frac{1-|z|}{A}\right) \frac{1}{2A} + \frac{1}{A^{2}\eta R} |f(z)| \\
\leq \max\left\{\frac{|f'(z)|}{1!} \left(\frac{1-|z|}{A}\right), |f(z)|\right\}.$$
(15)

Now we differentiate (14) $n \ge 1$ times. Then

$$z(z-1)f^{(n+2)}(z) + ((2n+\beta)z - n)f^{(n+1)}(z) + (n(n+\beta-1) + \gamma)f^{(n)}(z) \equiv 0,$$

whence for $|z| \ge \eta R$, $|\beta| \le 1$, $-1 < \gamma \le 2$ we obtain

$$\frac{|f^{(n+2)}(z)|}{(n+2)!} \left(\frac{1-|z|}{A}\right)^{n+2} \leq \frac{(2n+|\beta|)\eta R + n}{A(n+2)\eta R} \frac{|f^{(n+1)}(z)|}{(n+1)!} \left(\frac{1-|z|}{A}\right)^{n+1} \\
+ \frac{n(n-1) + n|\beta| + |\gamma|}{A^2(n+2)(n+1)\eta R} \frac{|f^{(n)}(z)|}{n!} \left(\frac{1-|z|}{A}\right)^n \\
\leq \frac{(2n+1)\eta R + n}{A(n+2)\eta R} \frac{|f^{(n+1)}(z)|}{(n+1)!} \left(\frac{1-|z|}{A}\right)^{n+1} \\
+ \frac{n^2 + 2}{A(n+2)(n+1)\eta R} \frac{|f^{(n)}(z)|}{n!} \left(\frac{1-|z|}{A}\right)^n \\
\leq \frac{2}{A\eta R} \frac{|f^{(n+1)}(z)|}{(n+1)!} \left(\frac{1-|z|}{A}\right)^{n+1} + \frac{1}{A\eta R} \frac{|f^{(n)}(z)|}{n!} \left(\frac{1-|z|}{A}\right)^n \\
\leq \frac{3}{A\eta R} \max \left\{ \frac{|f^{(n+1)}(z)|}{(n+1)!} \left(\frac{1-|z|}{A}\right)^{n+1}, \frac{|f^{(n)}(z)|}{n!} \left(\frac{1-|z|}{A}\right)^n \right\} \\
\leq \max \left\{ \frac{|f^{(n+1)}(z)|}{(n+1)!} \left(\frac{1-|z|}{A}\right)^{n+1}, \frac{|f^{(n)}(z)|}{n!} \left(\frac{1-|z|}{A}\right)^n \right\}$$

provided $A \ge 3/\eta R$. Since the inequality $A \ge 3/\eta R$ implies $A \ge (2 + \eta R)/(2\eta R)$, from (15) and (16) by the condition $A \ge 3/\eta R$ we obtain

$$\frac{|f^{(k)}(z)|}{k!} \left(\frac{1-|z|}{A}\right)^k \le \max\left\{\frac{|f'(z)|}{1!} \left(\frac{1-|z|}{A}\right), |f(z)|\right\}$$

for all $k \geq 2$. Therefore, the following proposition is true.

Proposition 2. By the conditions of Theorem 2 for the solution (7) of the equation DE_1 we have $N(f, l; \mathbb{D} \setminus \mathbb{D}_{\eta R}) \le 1$ with $l(|z|) = 3/(\eta R(1-|z|))$ for arbitrary $R \in (0, 1/2)$ and $\eta \in (0, 1)$.

Uniting Propositions 1 and 2 we get the following theorem.

Theorem 5. By the conditions of Theorem 2 the solution (7) of DE_1 is of bounded l-index $N(f;l,\mathbb{D}) \leq 1$ with

$$l(|z|) = \max\left\{\frac{3}{\eta R(1-|z|)}, \frac{1}{(1-\eta)R(1-2R)}\right\}$$

for arbitrary $R \in (0, 1/2)$ and $\eta \in (0, 1)$.

If we choose $\eta=1/2$ and R=1/3, then $3/(\eta R)=1/((1-\eta)R(1-2R))=18$, and Theorem 5 implies the following corollary.

Corollary 1. By the conditions of Theorem 2 the solution (7) of DE_1 is of bounded l-index $N(f; l, \mathbb{D}) \leq 1$ with l(|z|) = 18/(1-|z|).

Now we consider DE₂. For the solution f of DE₂ we have

$$(1-z)^2 f''(z) + \beta z f'(z) + \gamma f(z) \equiv 0.$$
 (17)

We put $l(|z|) = A/(1-|z|)^2$. If $-1 \le \beta < 0$ and $2-\beta+\gamma = 0$, then for all $z \in \mathbb{D}$ and A > 3/2 from (17) we obtain

$$\frac{|f''(z)|}{2!l^{2}(|z|)} \leq \frac{|\beta||z|}{(1-|z|)^{2}2l(|z|)} \frac{|f'(z)|}{1!l(|z|)} + \frac{3}{(1-|z|)^{2}2l^{2}(|z|)} |f(z)| \leq \frac{1}{2A} \frac{|f'(z)|}{1!l(|z|)} + \frac{3}{2A^{2}} |f(z)| \\
\leq \left(\frac{1}{2A} + \frac{3}{2A^{2}}\right) \max\left\{\frac{|f'(z)|}{1!l(|z|)}, |f(z)|\right\} \leq \max\left\{\frac{|f'(z)|}{1!l(|z|)}, |f(z)|\right\}. \tag{18}$$

For n > 1 from (17) we have

$$(1-z)^2 f^{(n+2)}(z) - (2n(1-z) - \beta z) f^{(n+1)}(z) + (n(n-1+\beta) + \gamma) f^{(n)}(z) \equiv 0,$$

whence

$$|f^{(n+2)}(z)| \le \left| \frac{2n(1-z) - \beta z}{(1-z)^2} \right| |f^{(n+1)}(z)| + \left| \frac{n(n-1+\beta) + \gamma}{(1-z)^2} \right| |f^{(n)}(z)|,$$

then for all $z \in \mathbb{D}$ and $A \ge 1 + \sqrt{2}$

$$\frac{|f^{(n+2)}(z)|}{(n+2)!l^{n+2}(|z|)} \leq \frac{2n+1}{(1-|z|)^{2}(n+2)l(|z|)} \frac{|f^{(n+1)}(z)|}{(n+1)!l^{n+1}(|z|)} + \frac{n^{2}+3}{(1-|z|)^{2}(n+2)(n+1)l^{2}(|z|)} \frac{|f^{(n)}(z)|}{n!l^{n}(|z|)} \leq \frac{2}{A} \frac{|f^{(n+1)}(z)|}{(n+1)!l^{n+1}(|z|)} + \frac{1}{A^{2}} \frac{|f^{(n)}(z)|}{n!l^{n}(|z|)} \leq \max \left\{ \frac{|f^{(n+1)}(z)|}{(n+1)!l^{n+1}(|z|)}, \frac{|f^{(n)}(z)|}{n!l^{n}(|z|)} \right\}.$$
(19)

In view of (18) and (19) the following theorem is true.

Theorem 6. By the conditions of Theorem 3 the solution (8) of DE_2 is of bounded l-index $N(f,l) \le 1$ with $l(|z|) = (1+\sqrt{2})/(1-|z|)^2$.

Finally, for the solution of DE₃ we have

$$(1-z)^3 f''(z) + \beta (1-z)f'(z) + \gamma f(z) \equiv 0, \tag{20}$$

whence for all $z \in \mathbb{D}$ and $l(|z|) = A/(1-|z|)^2$, $A \ge 3/2$, by the conditions $\beta < 0$, $\gamma < 0$ and $|\beta| + |\gamma| \le 3$ we obtain

$$\frac{|f''(z)|}{2!l^{2}(|z|)} \leq \frac{|\beta|}{2l(|z|)(1-|z|)^{2}} \frac{|f'(z)|}{1!l(|z|)} + \frac{|\gamma|}{2(1-|z|)^{3}l^{2}(|z|)} |f(z)|
\leq \left(\frac{|\beta|}{2A} + \frac{|\gamma|}{2A^{2}}\right) \max\left\{\frac{|f'(z)|}{1!l(|z|)}, |f(z)|\right\} \leq \max\left\{\frac{|f'(z)|}{1!l(|z|)}, |f(z)|\right\}.$$
(21)

From (20) it follows that $(1-z)^3 f'''(z) - (3(1-z)^2 - \beta(1-z))f''(z) + (\gamma - \beta)f'(z) \equiv 0$, whence for all $z \in \mathbb{D}$ with $l(|z|) = A/(1-|z|)^2$, $A \ge 5/2$, we obtain

$$\frac{|f'''(z)|}{3!l^{3}(|z|)} \leq \left(\frac{3}{1-|z|} + \frac{|\beta|}{(1-|z|)^{2}}\right) \frac{1}{3l(|z|)} \frac{|f''(z)|}{2!l^{2}(|z|)} + \frac{|\gamma| + |\beta|}{(1-|z|)^{3}} \frac{1}{6l^{2}(|z|)} \frac{|f'(z)|}{1!l(|z|)} \\
\leq \frac{2}{A} \frac{|f''(z)|}{2!l^{2}(|z|)} + \frac{1}{2A^{2}} \frac{|f'(z)|}{1!l(|z|)} \leq \max\left\{\frac{|f''(z)|}{2!l^{2}(|z|)}, \frac{|f'(z)|}{1!l(|z|)}\right\}.$$
(22)

Finally, for $n \ge 2$ from (20) we have

$$(1-z)^{3} f^{(n+2)}(z) - (3n(1-z)^{2} - \beta(1-z)) f^{(n+1)}(z)$$

+ $(3n(n-1)(1-z) - n\beta + \gamma) f^{(n)}(z) + n(n-1)(n-2) f^{(n-1)}(z) \equiv 0,$

whence for all $z \in \mathbb{D}$ with $l(|z|) = A/(1-|z|)^2$, $A \ge 4$, we obtain

$$\frac{|f^{(n+2)}(z)|}{(n+2)!l^{n+2}(|z|)} \leq \left(\frac{3n}{1-|z|} + \frac{|\beta|}{(1-|z|)^2}\right) \frac{1}{(n+2)l(|z|)} \frac{|f^{(n+1)}(z)|}{(n+1)!l^{n+1}(|z|)} \\
+ \left(\frac{3n(n-1)}{(1-|z|)^2} + \frac{n|\beta| + |\gamma|}{(1-|z|)^3}\right) \frac{1}{(n+2)(n+1)l^2(|z|)} \frac{|f^{(n)}(z)|}{n!l^n(|z|)} \\
+ \frac{n(n-1)(n-2)}{(1-|z|)^3} \frac{1}{(n+2)(n+1)nl^3(|z|)} \frac{|f^{(n-1)}(z)|}{(n-1)!l^{n-1}(|z|)} \\
\leq \frac{3}{A} \frac{|f^{(n+1)}(z)|}{(n+1)!l^{n+1}(|z|)} + \frac{3}{A^2} \frac{|f^{(n)}(z)|}{n!l^n(|z|)} + \frac{1}{A^3} \frac{|f^{(n-1)}(z)|}{(n-1)!l^{n-1}(|z|)} \\
\leq \left(\frac{3}{4} + \frac{3}{16} + \frac{1}{64}\right) \max\left\{\frac{|f^{(j)}(z)|}{j!l^j(|z|)} : n-1 \leq j \leq n+1\right\}.$$
(23)

In view of (21), (22), and (23) the following theorem is true.

Theorem 7. By the conditions of Theorem 4 the solution (8) of DE_3 is of bounded l-index $N(f,l) \le 1$ with $l(|z|) = 4/(1-|z|)^2$.

It is known [2, 12] that for an entire function F the function $f(z) = F(q/(1-z)^n)$ is of bounded l-index in $\mathbb D$ with $l(|z|) \equiv \beta/(1-|z|)^{n+1}$, $\beta > 1$, if and only if F is of bounded index in $\mathbb C$. Since the function $F(z) = e^z$ is of bounded index in $\mathbb C$, hence it follows that the function $f_0(z) = \exp\{q/(1-z)\}$, $0 < q \le 1$, is of bounded l-index in $\mathbb D$ with $l(|z|) \equiv \beta/(1-|z|)^2$, $\beta > 1$. We remark that the function f_0 satisfies the differential equation $(1-z)^3w'' - q(1-z)w' - 2qw = 0$, i.e. f_0 satisfies DE_3 with $\beta = -q < 0$ and $\gamma = -2q < 0$. Since $|\beta| + |\gamma| \le 3$, by Theorem 7 the function f_0 is of bounded l-index $N(f_0, l) \le 1$ with $l(|z|) = 4/(1-|z|)^2$.

3 Addition

Here we investigate the l-index boundedness of the entire function (10) and (11) with the coefficients satisfying (9) and (12) respectively.

If $-1 \le \beta < 0$ and $2 - \beta + \gamma = 0$, then for $R \in (0, 20/13)$ in view of (9) we have

$$\begin{split} \sum_{n=1}^{\infty} (n+1)|F_{n+1}|R^n &= R \sum_{n=1}^{\infty} \frac{(n+1)|\beta|n}{(n+1)(n+2+|\beta|)-2-|\beta|} F_n R^{n-1} \\ &= R \frac{2|\beta|}{2(3+|\beta|)-2-|\beta|} + R \sum_{n=1}^{\infty} \frac{|\beta|(n+1)(n+2)}{(n+2)(n+3+|\beta|)-2-|\beta|} F_{n+1} R^n \\ &\leq \frac{2R}{5} + R \sum_{n=1}^{\infty} \frac{(n+2)(n+1)F_{n+1}R^n}{(n+2)(n+4)-3} \leq \frac{2R}{5} + \sum_{n=1}^{\infty} \frac{R}{4} (n+1)|F_{n+1}|R^n, \end{split}$$

whence

$$\sum_{n=1}^{\infty} (n+1)|F_{n+1}|R^n \le a(R) = \frac{8R}{5(4-R)} < 1.$$

Therefore, by Lemma 3 for the function (10) for arbitrary $R \in (0,20/13)$ and $\eta \in (0,1)$ $N(F,l;\mathbb{D}_{\eta R}) \leq 1$ with $l(|z|) \equiv (20+3R)/((1-\eta)R(20-13R))$.

Since

$$z^{2}F''(z) + (\beta z^{2} + (2 - \beta)z)F'(z) + \gamma F(z) \equiv 0, \quad \gamma = \beta - 2,$$
(24)

for $|z| \ge \eta R$ and $A \ge 1 + 3/(\eta R) \ge 1/(\eta R)$ we have

$$\frac{|F''(z)|}{2!A^{2}} \leq \frac{\eta R + 3}{2A\eta R} \frac{|F'(z)|}{1!A} + \frac{3}{(\eta R)^{2}2A^{2}} |F(z)| \leq \frac{\eta R + 3}{2A\eta R} \frac{|F'(z)|}{1!A} + \frac{3}{2A\eta R} |F(z)|
\leq \frac{\eta R + 6}{2A\eta R} \max\left\{\frac{|F'(z)|}{1!A}, |F(z)|\right\} \leq \max\left\{\frac{|F'(z)|}{1!A}, |F(z)|\right\}.$$
(25)

From (24) it follows that $z^2F'''(z) + (\beta z^2 + (4-\beta)z)F''(z) + (2\beta z + 2 - \beta + \gamma)F'(z) \equiv 0$, that is in view of the condition $2 - \beta + \gamma = 0$ we have $zF'''(z) + (\beta z + 4 - \beta)F''(z) + 2\beta F'(z) \equiv 0$, whence for $|z| \geq \eta R$ and $A \geq 1 + 3/(\eta R)$

$$\frac{|F'''(z)|}{3!A^3} \le \frac{\eta R + 5}{3A\eta R} \frac{|F''(z)|}{2!A^2} + \frac{1}{3A^2\eta R} \frac{|F'(z)|}{1!A} \le \max\left\{\frac{|F''(z)|}{2!A^2}, \frac{|F'(z)|}{1!A}\right\}. \tag{26}$$

Now we differentiate (24) n > 2 times. Then

$$z^{2}F^{(n+2)}(z) + (\beta z^{2} + (2n+2-\beta)z)F^{(n+1)}(z) + (n(2\beta z + n + 1 - \beta) + \gamma)F^{(n)}(z) + \beta n(n-1)F^{(n-1)}(z) \equiv 0,$$

whence for $|z| \ge \eta R$ and $A \ge 1 + 3/\eta R$

$$\frac{|F^{(n+2)}(z)|}{(n+2)!A^{n+2}} \leq \frac{\eta R + 2n + 3}{(n+2)A\eta R} \frac{|F^{(n+1)}(z)|}{(n+1)!A^{n+1}} + \frac{2n\eta R + n(n+2) + 3}{(n+2)(n+1)(A\eta R)^{2}} \frac{|F^{(n)}(z)|}{n!A^{n}} + \frac{n(n-1)}{(n+2)(n+1)nA^{3}(\eta R)^{2}} \frac{|F^{(n-1)}(z)|}{(n-1)!A^{n-1}} \leq \frac{1}{A\eta R} \left(\frac{\eta R + 2n + 3}{n+2} + \frac{2n\eta R + n(n+2) + 3}{(n+2)(n+1)} + \frac{n-1}{(n+2)(n+1)} \right) \times \max_{n-1 \leq j \leq n+1} \frac{|F^{(j)}(z)|}{j!A^{j}} \leq \max_{n-1 \leq j \leq n+1} \frac{|F^{(j)}(z)|}{j!A^{j}} \leq \max_{n-1 \leq j \leq n+1} \frac{|F^{(j)}(z)|}{j!A^{j}}.$$
(27)

From (25), (26), (27) for all $k \ge 2$, $|z| \ge \eta R$ and $A = 1 + 3/\eta R$ we obtain

$$\frac{|F^{(k)}(z)|}{k!A^k} \le \max\left\{\frac{|F'(z)|}{1!A}, |F(z)|\right\}$$

and, therefore, for the function (10) we have $N(F, l; \mathbb{C} \setminus \mathbb{D}_{\eta R}) \leq 1$ with $l(|z|) \equiv (\eta R + 3)/(\eta R)$ for arbitrary $R \in (0, 20/13)$ and $\eta \in (0, 1)$.

Thus, we get the following statement.

Proposition 3. By the conditions of Theorem 3 the function (10) with the coefficients satisfying (9) for arbitrary $R \in (0, 20/13)$ and $\eta \in (0, 1)$ is of bounded l-index $N(F, l) \leq 1$ with $l(|z|) \equiv \max\{(20+3R)/((1-\eta)R(20-13R)), (\eta R+3)/(\eta R)\}.$

If we choose R=1 and $\eta=1/2$, then from Proposition 3 we obtain that by the conditions of Theorem 3 the function (10) with the coefficients satisfying (9) is of bounded l-index $N(F,l) \le 1$ with $l(|z|) \equiv 7$.

Finally, we consider the function (11) with the coefficients satisfying (12). Since $F_0 = -2/\gamma \neq 0$ Lemma 2 implies the following lemma.

Lemma 4. If a function (11) is analytic in $\overline{\mathbb{D}}_{\eta R}$ and

$$\sum_{n=1}^{\infty} \frac{|F_n|}{|F_0|} R^n \le a_0(R) < 1,$$

then $N(F; l, \mathbb{D}_{\eta R}) = 0$ with $l(|z|) \equiv (1 + a_0(R)) / ((1 - a_0(R))R(1 - \eta)), 0 < \eta < 1$.

If $\beta < 0$, $\gamma < 0$ and $|\beta| + |\gamma| \le 3$, then from (12) we obtain

$$\sum_{n=1}^{\infty} |F_n| R^n = R \sum_{n=1}^{\infty} \frac{|\beta|(n-1) + |\gamma|}{n(n+1)} |F_{n-1}| R^{n-1}$$

$$= R \frac{|\gamma|}{2} |F_0| + R \sum_{n=1}^{\infty} \frac{|\beta|n + |\gamma|}{(n+1)(n+2)} |F_n| R^n \le \frac{3R|F_0|}{2} + \frac{R}{2} \sum_{n=1}^{\infty} |F_n| R^n,$$

whence for $R \in (0, 1/2)$

$$\sum_{n=1}^{\infty} \frac{|F_n|}{|F_0|} R^n \le a_0(R) = \frac{3R}{2 - R} < 1$$

and, therefore, by Lemma 4 for function (11) we have $N(F, l; \mathbb{D}_{\eta R}) = 0$ with

$$l(|z|) \equiv \frac{1+R}{(1-2R)R(1-\eta)}$$

for arbitrary $R \in (0, 1/2)$ and $\eta \in (0, 1)$.

Since the function f(z) = F(1/(1-z)) satisfies DE₃, the function F satisfies the differential equation $tw'' + (\beta t + 2)w' + \gamma w = 0$, i.e.

$$zF''(z) + (\beta z + 2)F'(z) + \gamma F(z) \equiv 0.$$
 (28)

Hence for $|z| \ge \eta R$ and $A \ge 2/\eta R > 1$ in view of the conditions $|\beta| + |\gamma| \le 3$ and $\eta R \in (0,1/2)$ we obtain

$$\frac{|F''(z)|}{2!A^2} \le \frac{|\beta|\eta R + 2}{2A\eta R} \frac{|F'(z)|}{1!A} + \frac{|\gamma|}{2A^2\eta R} |F(z)| \le \max\left\{\frac{|F'(z)|}{1!A}, |F(z)|\right\},\tag{29}$$

since

$$\frac{|\beta|}{2A} + \frac{1}{A\eta R} + \frac{|\gamma|}{2A^2\eta R} \le \frac{|\beta|\eta R}{4} + \frac{1}{2} + \frac{|\gamma|\eta R}{8} \le \frac{|\beta|}{8} + \frac{|\gamma|}{16} + \frac{1}{2} \le \frac{(|\beta| + |\gamma|) + |\beta|}{16} + \frac{1}{2} \le \frac{7}{8}.$$

If we differentiate (28) $n \ge 1$ times, then we get $tF^{(n+2)}(t) + (\beta t + n + 2)F^{(n+1)}(t) + (n\beta + \gamma)F^{(n)}(t) \equiv 0$, whence for $|z| \ge \eta R$ and $A \ge 2/(\eta R) > 1$

$$\frac{|F^{(n+2)}(t)|}{(n+2)!A^{n+2}} \le \left(\frac{|\beta|}{(n+2)A} + \frac{1}{A\eta R}\right) \frac{|F^{(n+1)}(t)|}{(n+1)!A^{n+1}} + \frac{n|\beta| + |\gamma|}{(n+2)(n+1)A^{2}\eta R} \frac{|F^{(n)}(t)|}{n!A^{n}} \\
\le \left(\frac{1}{4} + \frac{1}{2} + \frac{1}{16}\right) \max_{1 \le j \le n+1} \frac{|F^{(j)}(t)|}{j!A^{j}} \le \max_{1 \le j \le n+1} \frac{|F^{(j)}(t)|}{j!A^{j}}.$$
(30)

From (29) and (30) it follows that for function (11) we have $N(F, l; \mathbb{C} \setminus \mathbb{D}_{\eta R}) \leq 1$ with $l(|z|) \equiv 2/\eta R$ for arbitrary $R \in (0, 1/2)$ and $\eta \in (0, 1)$.

Thus, we get the following statement.

Proposition 4. By the conditions of Theorem 3 the function (11) with coefficients satisfying (12) is of bounded l-index $N(F, l) \le 1$ with

$$l(|z|) \equiv \max\left\{\frac{1+R}{(1-2R)R(1-\eta)}, \frac{2}{\eta R}\right\}$$

for arbitrary $R \in (0, 1/2)$ and $\eta \in (0, 1)$.

If we choose R=1/5 and $\eta=1/2$, then from Proposition 4 we get that by the conditions of Theorem 4 the function (11) with the coefficients satisfying (12) is of bounded l-index $N(F,l) \le 1$ with $l(|z|) \equiv 20$.

References

- [1] Alexander J.F. Functions which map the interior of the unit circle upon simple regions. Ann. of Math. 1915, 17 (1), 12–22. doi:10.2307/2007212
- [2] Bandura A.I., Sheremeta M.M. Bounded l-index and l-M-index and compositions of analytic functions. Mat. Stud. 2017, **48** (2), 180–188. doi:10.15330/ms.48.2.180-188
- [3] De Branges L. *A proof of the Bieberbach conjecture*. Acta Math. 1985, **154** (1-2), 137–152. doi:10.1007/BF02392821
- [4] Golusin G.M. Geometric theory of functions of a complex variable. Amer. Math. Soc., Providence, RI, 1969.
- [5] Goodman A.W. Univalent function. Vol. II. Mariner Pub. Co., Tampa, FL, 1983.
- [6] Kaplan W. Close-to-convex schlicht functions. Michigan Math. J. 1952, 1 (2), 169–185. doi:10.1307/mmj/1028988895
- [7] Pólya G., Szegö G. Aufgaben und Lehrsätze aus der analysis. Bd. II. Springer-Verlag, Berlin, 1964.
- [8] Shah S.M. Univalence of a function f and its successive derivatives when f satisfies a differential equation, II. J. Math. Anal. Appl. 1989, 142 (2), 422–430. doi:10.1016/0022-247X(89)90011-5
- [9] Sheremeta M.M. Analytic functions of bounded index. VNTL Publ., Lviv, 1999.
- [10] Sheremeta M.M. Geometric properties of analytic solutions of differential equations. Publ. I.E. Chyzhykov, Lviv, 2019.
- [11] Sheremeta M.M., Trukhan Yu.S. Properties of the solutions of the Gauss equation. Mat. Stud. 2014, 41 (2), 157–167.
- [12] Sheremeta M.M. *On the l-index boundedness of some compositions of functions.* Mat. Stud. 2017, **47** (2), 207–210. doi:10.15330/ms.47.2.207-210
- [13] Sheremeta Z.M. *Close-to-convexity of entire solutions of a differential equation*. Mat. Metody Fiz.-Mekh. Polya 1999, **42** (3), 31–35. (in Ukrainian)
- [14] Sheremeta Z.M. On properties of entire solutions of a differential equation. Diff. Equ. 2000, 36 (8), 1155–1161. doi:10.1007/BF02754183

- [15] Sheremeta Z.M. On entire solutions of a differential equation. Mat. stud. 2000, 14 (1), 54-58.
- [16] Sheremeta Z.M. *On the close-to-convexity of entire solutions of a differential equation.* Visnyk of the Lviv Univ. Ser. Mech. Math. 2000, 57, 88–91. (in Ukrainian)
- [17] Sheremeta Z.M., Sheremeta M.M. Closeness to convexity for entire solutions of a differential equation. Diff. Equ. 2002, **38** (4), 496–501. doi:10.1023/A:1016355531151
- [18] Sheremeta Z.M., Sheremeta M.M. *Convexity of entire solutions of a differential equation*. Mat. Metody Fiz.-Mekh. Polya 2004, 47 (2), 181–185. (in Ukrainian)
- [19] Sheremeta Z.M. Index boundedness of entire solutions of a differential equation. Mat. Stud. 2003, 19 (2), 208–212.
- [20] Sheremeta Z.M. *On the l-index boundedness of entire solutions of a differential equation.* Visnyk of the Lviv Univ. Ser. Mech. Math. 2004. **63**, 148–151. (in Ukrainian)
- [21] Sheremeta Z.M. *Properties of derivatives of an entire solution of a differential equation*. Mat. Metody Fiz.-Mekh. Polya 2006, **49** (2), 80–85. (in Ukrainian)
- [22] Sheremeta Z.M., Sheremeta M.M. *Properties of entire solutions of differential equations*. Ukrainian Math. J. 2006, **58** (12), 1924–1934. doi:10.1007/s11253-006-0177-3 (translation of Ukrain. Mat. Zh. 2006, **58** (12), 1693–1703.)
- [23] Sheremeta Z.M., Sheremeta M.M. *On the l-index boundedness of entire solutions of a differential equation.* Dopov. Nats. Akad. Nauk Ukr. 2007, **2**, 31–36. (in Ukrainian)
- [24] Zabolotskyy M.V., Sheremeta Z.M. *On the l-index boundedness of entire solutions of a differential equation.* Mat. Metody Fiz.-Mekh. Polya 2004, **47** (2), 181–185. (in Ukrainian)

Received 17.12.2020 Revised 25.02.2020

Шеремета М.М., Трухан Ю.С. Властивості аналітичних розв'язків трьох подібних диференціальних рівнянь другого порядку // Карпатські матем. публ. — 2021. — Т.13, №2. — С. 413–425.

Однолиста аналітична в $\mathbb{D}=\{z: |z|<1\}$ функція f(z) називається опуклою, якщо $f(\mathbb{D})$ — опукла область. Добре відомо, що умова $\operatorname{Re}\{1+zf''(z)/f'(z)\}>0, z\in\mathbb{D}$, є необхідною і достатньою для опуклості f. Функція f називається близькою до опуклої в \mathbb{D} , якщо існує опукла в \mathbb{D} функція Φ така, що $\operatorname{Re}(f'(z)/\Phi'(z))>0, z\in\mathbb{D}$.

С.М. Шах вказав умови на дійсні параметри β_0 , β_1 , γ_0 , γ_1 , γ_2 диференціального рівняння $z^2w'' + (\beta_0z^2 + \beta_1z)w' + (\gamma_0z^2 + \gamma_1z + \gamma_2)w = 0$, за яких існує цілий трансцендентний розв'язок f такий, що f і всі його похідні є близькими до опуклих в $\mathbb D$.

Нехай $0 < R \le +\infty$, $\mathbb{D}_R = \{z: |z| < R\}$ і l — додатна неперервна функція на [0,R) така, що (R-r)l(r) > C, $C = \mathrm{const} > 1$. Аналітична в \mathbb{D}_R функція f називається обмеженого l-індексу, якщо існує $N \in \mathbb{Z}_+$ таке, що

$$\frac{|f^{(n)}(z)|}{n!l^n(|z|)} \le \max\left\{\frac{|f^{(k)}(z)|}{k!l^k(|z|)}: \ 0 \le k \le N\right\}$$

для всіх $n \in \mathbb{Z}_+$ і $z \in \mathbb{D}_R$.

Досліджено близькість до опуклості та обмеженість l-індексу для аналітичних в $\mathbb D$ розв'язків трьох аналогічних Шаху диференціальних рівнянь: $z(z-1)w'' + \beta zw' + \gamma w = 0$, $(z-1)^2w'' + \beta zw' + \gamma w = 0$ і $(1-z)^3w'' + \beta(1-z)w' + \gamma w = 0$. Незважаючи на подібність цих рівнянь, їх розв'язки мають різні властивості.

Ключові слова і фрази: близькість до опуклості, l-індекс, диференціальне рівняння.