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Properties of analytic solutions of three similar differential
equations of the second order

Sheremeta M.M., Trukhan Yu.S.**

An analytic univalentin D = {z : |z| < 1} function f(z) is said to be convex if f(ID) is a convex
domain. It is well known that the condition Re {1+ zf"(z)/f'(z)} > 0, z € DD, is necessary and
sufficient for the convexity of f. The function f is said to be close-to-convex in ID if there exists a
convex in D function ® such that Re (f/(z)/®’(z)) > 0,z € D.

S.M. Shah indicated conditions on real parameters o, 81, Yo, v1, 72 of the differential equation
22w" + (Boz? + B1z)w + (1022 + Y1z + 72)w = 0, under which there exists an entire transcendental
solution f such that f and all its derivatives are close-to-convex in ID.

Let0 < R < 400, Dg = {z: |z| < R} and I be a positive continuous function on [0, R), which
satisfies (R —r)I(r) > C, C = const > 1. An analytic in D function f is said to be of bounded
l-index if there exists N € Z . such that for alln € Z, and z € Dg

@) (1)
T E {kukuzn 0sks N}'

Here we investigate close-to-convexity and the boundedness of the l-index for analytic in
D solutions of three analogues of Shah differential equation: z(z — 1)w” + pzw’ + yw = 0,
(z—1)?w" + Bzw' + qyw = 0 and (1 — z)3w" + B(1 — z)w’ + yw = 0. Despite the similarity of
these equations, their solutions have different properties.
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Introduction

An analytic univalent in D = {z : |z| < 1} function

f(z) = iofnZ” (1)

is said to be convex if f(ID) is a convex domain. It is well known [4, p. 203] that the condition
Re{1+zf"(z)/f'(z)} > 0,z € D, is necessary and sufficient for the convexity of f. By
W. Kaplan [6], the function f is said to be close-to-convex in ID (see also [4, p. 583]) if there
exists a convex in D function ® such that Re (f'(z)/®’(z)) > 0, z € D. Close-to-convex
function f has a characteristic property that the complement G of the domain f(ID) can be
filled with rays which start from dG and lie in G. Every close-to-convex in D function f is
univalent in D and, therefore, f'(0) # 0. Hence it follows that the function f is close-to-convex
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in D if and only if the function

§(z) =z+ ) gu" (2)
n=2

is close-to-convex in ID, where g, = f,/fi. We remark also, that the function (2) is said to
be starlike in ID, if f(ID) is starlike domain regarding the origin. It is clear, that every starlike
function is close-to-convex.

S.M. Shah [8] indicated conditions on real parameters By, B1, Yo, Y1, 72 of the differential
equation

2w + (Boz* + P12)w’ + (1022 + 11z + 12)w = 0, 3)

under which there exists an entire transcendental solution (1) such that f and all its derivatives
are close-to-convex in ID. In particular he obtained the following result.

Theorem 1. If -1 < By < 0, B1 > 0 and B1 + 72 = v0 = 71 = 0, then the equation (3) has
an entire solution (2) such that all the derivatives g(”), n > 0, are close-to-convex in D and
In Mg(r) = (1+0(1))|Bo|r asr — +oo, where My (r) = max{|g(z)| : |z| = r}.

The investigations are continued in papers [13-18]. In particular in the case of complex
parameters Bo, B1, Yo, Y1, 72 in [17] it is proved, thatif yo = ¥ = B1+72 = 0, o # O,
|B1] < 2and 2|B1| < (2 — |B1]) In2, then the equation (3) has an entire solution (2) such that all
derivatives ¢("), n > 0, are starlike, thus close-to-convex in ID and In Mg(r) = (1+0(1))|Bolr
as r — +oco. An analogue of this proposition for convex functions is obtained in [18], where it
is proved, thatif yo =1 =B1+72 =0, Bo # 0, |B1] < 2and 4|B1| < (2 — |B1]) In2, then the
equation (3) has an entire solution (2) such that all derivatives g(”), n > 0, are convex in ID. We
remark that in this case the differential equation (3) has the form

20"+ (Boz® + pr2)w' + 1w =0, 2= —Pr. (4)

Let0 < R < 400, Dg = {z : |z] < R} and I be a positive continuous function on [0, R),

which satisfies I(r) > B/(R —r), B = const > 1. An analytic in D function f is said to be of
bounded I-index [9] if there exists N € Z such that forall n € Z and z € Dg

@ (9]
v <™ Ly < 0 <k <N} ®)

The least such integer is called the I-index of f and is denoted by N(f;1).

If there exists N € Z. such that (5) holds for all n € Z, and for all z € G C Dg, then
the function f is said to be of bounded I-index on (or in) G, and the /-index is denoted by
N(f;1,G). The I-index boundedness of entire solutions of the equation (3) for certain condi-
tions on parameters By, B1, Yo, 71, 72 are studied in [19-24].

Some results from [13-24] are published also in monograph [10].

Here we investigate the properties of analytic in ID solutions of the following analogues of
the differential equation (4):

DE; : z(z — 1)w" + Bzw' + yw =0,
DE;: (z—1)*0" + Bz’ +qw = 0,
DE;: (1—z)%0" +B(1—z)w' +w = 0.
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1 Close-to-convexity and growth

Clearly, an analytic in ID function (1) is a solution of DE; if and only if
7 Y n(n— 1) fuz" 2 -z Y n(n— 1) fuz" 2+ Bz Y onfuZ" oy Y fuz' =
n=2 n=2 n=1 n=0

that is
Z n(n—1)fuz" — Z n(n—+1)f 12" + Z Brfnz" + Z Yz =0,
n=2 n=1 n=1 n=0

whence v fop = 0 and

_nn+p-1)+7o
fn+1— n(n+1) fl’lr n > 1. (6)

We choose fyp = 0 and f; = 1. Then the solution of DE; has the form

f@) =2+ Y fu, %
n=2

where the coefficients f,, for n > 2 are defined by recurrent formula (6).

For the investigation of the close-to-convexity of solution (7) we need the following result
of ].E. Alexander [1] (see also [5, p. 9]).

Lemma 1. If the coefficients of the function (2) satisfy the condition
1>2¢ 2> 2kgp =2 (k+1)gx41 = -+ >0,
then the function g is close-to-convex in D.
For the use of Lemma 1 it is needed the positiveness of coefficients f,, and therefore, as

in [8], we consider the real parameters f and 7. Since fy = 0, fi = 1, from (6) we have
2f, = B+ 7 and, therefore, 1 > 2f, > Oifand only if 0 < B+ ¢ < 1.

Theorem 2. If -1 < B < 1and 0 < B+ <1, then DE; has an analytic close-to-convex in ID
solution (7), for which M¢(r) <1 (r 11) if B <1land M¢(r) <1/(1—7r) (r 1 1) if p=1.

Proof. Since B > —1, the sequence (n(n + p — 1) + ) is nondecreasing, thus we have
nn+B—1)+v>p+vy>0foralln>1,and since § <1, wehave n(n+p—1) + < n?
for all n > 2. Therefore, (6) implies f, > 0 for all n > 2 and

nn+p—1)+

n?

(n+1)fu1 = fn < nfy.

From (6) it follows also that f,11 = (1+0(1))f, as n — oo, that is the radius of the convergence
of (7) is equal to 1. Therefore, in view of Lemma 1 the first part of the theorem is proved.
Further, since f; = 1, (6) implies

jG+P=D+y o
n 7 _1r
fog1 = 1_{ ) n
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whence
) BN =D (B )
o1 = ;1 (H jG+1) ) ];1 <1+]+1+](]+1)>
_ % B-2* B-2y 7
‘§<]+1 T s T )
:Xn:ﬁ— =B-2)In(n+1)+0(1), n— oo,

ie. f, < nP"2asn — oo. Therefore, if B < 1, then f(r) = O(1) asr 1 1 and if B = 1, then
f(r) <In(1/(1 —r))asr 1 1. Since Mf(r) = f(r), the proof of Theorem 2 is completed. O

We remark that if 8 = 1 and v = 0, then DE; has the form (z — 1)w” 4+ @’ = 0 and has the
solution f(z) = In(1/(1 — z)) such that f(0) = 0 and f’(0) = 1. This function is convex and,
thus, close-to-convex in D.

Now, consider DE;. At first, we remark that if v = 0, then w”’/w’ = —/(z—1) —
—B/(z — 1)%. General solution of this equation has the form

w(z):/(Zfll)ﬁexp{zfl}dmcz, Cy #0.

We remark also that every close-to-convex in ID function (1) is univalent in ID and, there-
fore, by the Bieberbach conjecture proved in [3] |fy| < n|fi| for all n > 1, ie. Mf(r) =
= O((1—r)"2)asr 1 1. For every C; and C, the growth rate of w(z) is essentially faster, i.e.
DE, does not have close-to-convex solution in ID.

We will search a solution of DE, in the form

B 1\ & K
f(z)_F<1—z>_E(1—z)"' ®)
Clearly, (8) satisfies DE; if and only if
9] 1’l—|—1 Fn 9] 9] 00 Fn B
n;l (1—2z)r n;ll—z ; 1—z”+1 ’YZ%)(l—z)”_O'

that is

{CUEREL EXI PPN UL SN
whence YFy = 0, (2_— B+v)F =0and (n(n+1— ﬁ)_+ Y)F.+ B(n—1)F,_1 = 0forn > 2.

As above, we choose Fp = 0and F; = 1. Then2 -+ =0,

—p(n—1)
= >
Fl’l Tl(ﬂ—l—l—ﬁ)—I—’)anil, n_z (9)
and -
F(t)=t+ Y Fut", t=ge®. (10)
n=2

Theorem 3. If -1 < f < 0 and 2 — B+ v = 0, then DE, has an analytic in ID solution (8) such
that In M¢(r) = (1+0(1))|B|/(1 —r) asr 1 1 and the function F of the form (10) is entire
close-to-convex in D.
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Proof. Clearly the function f(z) = F(1/(1 — z)) satisfies DE; if and only if

(1—12)2F”<1iz)+<(1f2) +i_§) (1i )+’)/F(1i )EO,

i.e. Fis a solution of the differential equation t*w” + (Bt> + (2 — B)t)w’ + yw = 0. If we put
Bo = B, B1 =2 — B and v, = 7, then we get the differential equation (4) and also —1 < By < 0,
B1 > 0and B + 72 = 70 = 71 = 0. Therefore (see the proof of Theorem 1 in [8]), the function
(10) is entire and close-to-convex in ID and In Mp(0) = (1 +o(1))|Blo as ¢ — +oco. Since
ME(e) = F(o) and My(r) = f(r) = F(1/(1 —r)), Theorem 3 is proved. O

Finally, we will search a solution of DEj also in the form (8). Clearly, (8) satisfies DEj3 if and
only if

= (n+1)(n+2)F

L Y it L

n=0 ( - Z)
whence 2F; + yFy = 0and (n+1)(n + 2)Fn+1 + (,31’1 + ’Y) n= 0 for n > 1 If we choose F; =1,
then Fy = —2/1, that is

F(t) = =2/y+t+ ) Fut". (11)
n=2

This function is close-to-convex if and only if the function (10) is close-to-convex, where

Pty
F > 1. 12
CEDIEP 12
Theorem 4. If B < 0, v < 0 and |B| + |y| < 3, then DE; has an analytic in ID solution (8)
such thatIn Ms(r) = (1+0(1))|B|/(1 —r) asr 1 1 and the function F of the form (10) is entire
close-to-convex in D.

Fn+1 = -

Proof. From the conditions < 0, ¥ < 0 and |B| + |y| < 3 it follows that
pn+

0< — <1
< nn+2) —
Therefore, from (12) we obtain
(n+1)F,.q = ’B( ilzy) nF, <nF, n>1,

and by Lemma 1 the function F is close-to-convex in ID.

Let ur(0) = max{|F,|0" : n > 0} be the maximal term of series (11) and vr(¢) = max{n :
|Fnl0" = pp(o)} be its central index. We put 0, = |Fy|/|Fy1] = (n+1)(n +2)/(|Bln + |7]).
Since 0,, T +00 as n — oo, we have [7, p. 13] ve(0) = n for 0, < 0 < 0,,41. Hence it follows that

(ve(e) + D) (ve(e) +2)
|Blve(e) + |7]

ie. vp(0) = (14 0(1))|B|o as ¢ — +oo. Since [7, p. 13]

= (1+o0(1))e,

Q
Inpp(0) =Inpup(oo) + [ ve(x)dlnx,
Qo0

hence it follows that In up(0) = (1+0(1))|Blo as ¢ — +oco and [7, p. 17] InMp(0) = (1 +
o(1))|Blo as @ ~ -eo. Thus, In My (r) = (1-+0(1)) 6]/(1 1) as 1 1. .
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2 [-index boundedness

We will use the following lemma from [11].

Lemma 2. Let a function f defined by (1) be analytic in the closed disk Dg = {z : |z| < R},
j=min{n >0: f, # 0} and

> fn+]’
(R 1.
L R < <
Then N(f;1,IDr) = j withI(|z]) = K;(R) /(R — |z]), where

‘ ~ max 1+61]‘(R)
Ki(R) = {1'<1+j><1—a]-<1<>>}'

Hence for the function (2) it follows that if

(e 9]

Z (n+1)|gnt1|R" <a(R) <1, (13)

n:

(1) (4 —a n (5 —a
/ n!( ) G"“ZEQ(R_’ZD) Smax{’fl(!)‘1+QE§§(R—\ZD,\J‘(z)]}

forallz € Dg and n > 2.

If0 <y < 1landz € Dyg, then R — |z| > (1 —#)R and the last inequality implies
N(f,I;Dyr) < 1 with I(|z]) = (14+a(R))/((1 —a(R))(1 —#)R), because if N(f,l.,G) < N
and I*(r) < L.(r), then [9, p. 23] N(f,1*,G) < N. Therefore, the following lemma is true.

then

Lemma 3. If a function (2) is analytic in Dg and (13) holds, then N(f,1;D,r) < 1 withl(|z]) =
(14a(R))/((1 = n)R(1 = a(R))).

At first we apply Lemma 3 to the solution of DE;. By the conditions of Theorem 2 from (6)
it follows that for R € (0, 1/2)

in+1]an]R”—Zn<n+ﬁ_1)+7fnR”—(ﬁ+’yR+RZ LRI RS TS

n=1 n=1 n n=2 1,l2
= (n+1)n+np+B+y
=(B+7R+R Z (n+1)2 (n+1)|fus1|R"
n=1
P (n+1)n+n+1 ad
< R RY, CEDELEL ) R = R+ R Y ) R
n= n=1
whence
ad R
Y (n+1)|fua|R" <a(R) = T—g <1t
n=1 -

Therefore, by Lemma 3 the following proposition is true.

Proposition 1. By the conditions of Theorem 2 for a solution (7) of the equation DE; we have
N(f,;Dyr) < 1withl(|z]) =1/((1 —n)R(1 —2R)) for arbitrary R € (0,1/2) and 17 € (0,1).

Since f satisfies DE;, we have

2z~ 1)f(2) + Baf () + 1 (z) = 0. (14)
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From the conditions —1 < f < 1and 0 < B+ v < 1it follows that —1 < 7y < 2. Therefore, for
1> |z| >yR, R € (0,1/2),n € (0, 1), from (14) we obtain

(1= 1zDIf" (=) < BlIf (=) +%|f(z)| <1f(2)] +1%R|f(z)|z
andif A > (24 7R)/(2yR) > 1, then
'@ 1—1z\2 _ (@) 1=z 1 1
2l ( A )S 1 < A >E+A2;7R|f(z)|

< max {LLEL (2B, o .

Now we differentiate (14) n > 1 times. Then
2(z = )" (2) + (20 + B)z =) fU V) (2) + (n(n + p— 1) +7)f" (z) =0,
whence for |z| > #R, |B| <1, —1 < ¢ < 2 we obtain
FU @] 1= lzl\2 _ @0+ |B)nR +n |fUHD(2)] (1 |z[y 7+
(n+2)! < A ) A(n+2)nR (n+1)!( A )
L =1) +nlp| + 7] !f(”)(2)1<1—12\)”
A2(n+2)(n+1)yR  n! A
_ @nt DR+ n|[f0HD ()] 11— |z[\ ]
An+2)yR  (n+1)! ( A )
n’ 42 f ()] (1 2]\
+A(n—|—2)(n+1)17R n! < A ) (16)
2 |fUV@)] 12yt 1 |f )] 1 2]y
SA17R (n+1)!< A ) +A17R n! < A )
F ()] (1= Jz[\ o [f ()] 1= 2]y
SA—;yRmaX{ (n+1)!< A ) Tl ( A )}
F ()] (1= Jzf\ o [f ()] 1= 2]y
Smax{ (n+1)!< A ) T ( A )}

provided A > 3/yR. Since the inequality A > 3/#R implies A > (24 #R)/(2yR), from (15)
and (16) by the condition A > 3/#R we obtain

) (2 — |z /(5 2
7 (1= ) e {1 )

for all k > 2. Therefore, the following proposition is true.

(15)

Proposition 2. By the conditions of Theorem 2 for the solution (7) of the equation DE; we have
N(f,;ID\Dyr) <1 withl(|z]) = 3/(nR(1 — |z|)) for arbitrary R € (0,1/2) and 5 € (0,1).

Uniting Propositions 1 and 2 we get the following theorem.

Theorem 5. By the conditions of Theorem 2 the solution (7) of DE; is of bounded [-index
N(f;1,D) <1 with

(J2]) :max{ 5 L }
7R(1—z[)" (1=7)R(1-2R)
for arbitrary R € (0,1/2) andy € (0,1).
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If we choose 7 = 1/2 and R = 1/3, then 3/(#R) = 1/((1 —n)R(1 —2R)) = 18, and
Theorem 5 implies the following corollary.

Corollary 1. By the conditions of Theorem 2 the solution (7) of DE; is of bounded [-index
N(f;1,D) <1withl(|z]) =18/(1 — |z|).

Now we consider DE;. For the solution f of DE; we have

(1—2)*f"(2) + pf'(z) +7f(2) = 0. (17)

Weputl(|z]) = A/(1—|z])2. If -1 < B < 0and2— B+ = 0, then for all z € D and
A > 3/2 from (17) we obtain

] Bl __|f ()] 3 TG
() < T JelP2() U]y T @ = enzee(en P < za ey T zaz @)

SERNES R 145 P B T

For n > 1 from (17) we have

(1 =22 (") (2) — (2n(1 —2) — B2) f"* D (2) + (n(n = 1+ B) + 1) f " (2) = 0,

whence

(18)

—1+p)+

I B,

‘Zn )) |fn+1()| ’ (1’1

then forallz€ Dand A > 1+ V2

£02)(2) 21 +1 £ (2)
(m+ 22 ([z]) = (L= [2D)2(n + DI([2]) o+ DI (]

?+3 @2 @ g,
(T=Tel2n+2)(n + DP() WP (Jz]) = A ( -+ DI1(])

LY@ FE)] )
e e v g

+

IN

In view of (18) and (19) the following theorem is true.

Theorem 6. By the conditions of Theorem 3 the solution (8) of DE, is of bounded [-index

N(f,1) <1withl(|z]) = (1+v2)/(1—|z|)2
Finally, for the solution of DE3; we have

(1-2°f"(z) + B(1 = 2)f'(z) + 7f(2) =0, (20)

whence for all z € D and I(|z]) = A/(1 —|z|)?, A > 3/2, by the conditions 8 < 0, v < 0 and
|B| + |v| < 3 we obtain

7(2) B Ife) Iy ]
22 () = 21— P 1)) T 20— =)eEqE L)

< <% + ZILAD max{l‘]'fl((é)”),\f(z)]} < max{l‘{;((|z)|’),\f(z)’}

A

(21)
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From (20) it follows that (1 —z)3f"(z) — (3(1 — 2)?> — B(1 — 2))f"(z) + (v — B)f'(z) = 0,
whence for all z € D with [(|z]) = A/ (1 — |z|)?, A > 5/2, we obtain
/" (2) < < ] L f"@L I8l 1 [f'(2)]
31B([l) = \T— [ " (1 [1)2/ 3I([l) 2(Jzl) (1~ [])? 62(]z]) 11{[z]) 22)
c2lral, 1 el (e el
— A202(|z|)  2A21U(|z|) — 212(|z]) " 11()z])
Finally, for n > 2 from (20) we have
(1 =2’ f*D(z) — (3n(1 —2)* = B(1 = 2)) f"* ) (2)
+ @n(n —1)(1—z) —np+7)f"(z) +n(n —1)(n - 2)f""V(z) =0,
whence for all z € D with I(|z]) = A/(1 — |z|)?, A > 4, we obtain
f+2)(z)] 3n 1] 1 fH(z)]
(4 22 (2] <1 " T |z|)2) (n +2)I(Jz]) (n + 1)+ (|z])
(3n(”—1) n|B| +M) 1 f ()]
(1 —lz))> = (A= [z])*/ (n+2)(n +1)P(|z]) ni"(|z])
L nln=1)(n—2) 1 F0 ()
(1—=1z))>  (n+2)(n+D)nl([z[) (n — )1 (|z]) 23)

3
A (n + 1)'1”“(IZ|) AZnin(Jz]) T A% (n — 1)U 1(Jz])

+ +64) X{|{l](|(z|))| : "_1§j§"+1}

\f (2)] . :
Smax{j!ﬁ(!z\) : n—1§]§n+1}.

In view of (21), (22), and (23) the following theorem is true.

O3 e 1 D)

IN

Theorem 7. By the conditions of Theorem 4 the solution (8) of DEj3 is of bounded I-index
N(f,1) <1withl(|z]) =4/(1 — |z])2.

It is known [2, 12] that for an entire function F the function f(z) = F(q/(1 —z)")
is of bounded I-index in ID with I(|z|) = B/(1 — |z|)"*}, B > 1, if and only if F is of bounded
index in C. Since the function F(z) = e* is of bounded index in C, hence it follows that
the function fy(z) = exp{q/(1 —2)}, 0 < g < 1, is of bounded I-index in D with
I(|z]) = B/(1 — |z|)?, B > 1. We remark that the function f; satisfies the differential equation
(1—2z)3w" —q(1 — z)w’ —2qw = 0, i.e. fy satisfies DE3 with p = —g < 0and v = —2q < 0.
Since |B| + |y| < 3, by Theorem 7 the function fj is of bounded I-index N(fy,!) < 1 with
1(J2]) = 4/(1 = J2])2.

3 Addition

Here we investigate the I-index boundedness of the entire function (10) and (11) with the
coefficients satisfying (9) and (12) respectively.
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If-1<B<0and2—pB+ vy =0, thenfor R € (0, 20/13) in view of (9) we have
S 3 (n+1)|Bln

L+ DIFnlR =R Y, o6 24 8] —2 1

218 Bln+)(n+2)
IR -2 TR tRL w2 £ -2
2 (n+2)(n+1)F,.1R"
R; (n+2) n+4)i13

Panfl

Fn—i—an

__+Z (n+1)[Fya|R,

whence
S (n 4+ 1)|Fut|R" < a(R) = — 28 __ <1,
o 5(4 R)
Therefore, by Lemma 3 for the function (10) for arbitrary R € (0,20/13) and € (0,1)

N(F,I;Dyg) < 1with (]z]) = (20 +3R)/((1 — 7)R(20 — 13R)).

Since
22F'(2) + (B2 + 2 = P)2)F'(2) + 7F(2) =0, v=B-2, (24)
for |z] > yRand A > 1+3/(yR) > 1/(nyR) we have
|F"(2)| < R+ 3|F'(z)| 3 < nR+ 3 |F'(2)| 3

Az = 2R 1ia T gREAa O S amr 1A T aagrFE)!

< 20t Smax { L 1ro) | < max {8 oy

From (24) it follows that z2F"' (z) + (Bz? + (4 — B)z)F" (z) + (2Bz +2— B+ 7)F'(z) = 0, that
is in view of the condition 2 — f + ¢ = 0 we have zF"'(z) + (Bz +4 — B)F"(z) + 2BF'(z) =0,
whence for |z] > yRand A > 1+ 3/(yR)

(25)

[F"(z)| _ nR+5|F"(2)| 1 |F(z)] [F"(z)| |F'(2)]
< .
34> = 3ApR 2042 T 3A%R 1A =M\ A2 0 1A (26)
Now we differentiate (24) n > 2 times. Then
22FH2) (2) 4 (B22 + (2n 42 — B)z) F" 1) (2)
+ 2Bz +n+1—B) +7)F"(2) + pn(n—1)F"V(z) = 0,
whence for |z| > yRand A > 1+3/y4R
[FU*2)(z)] _ yR+2n+3 [F"V(z)]  2npR+n(n+2)+3 [F"(z)|
(n+ 2)!A”+2 ~ (n+2)AgR (n+1)1A - (n+2)(n+1)(AyR)?> nlAr
TGRS F ) (a))
(n+2)(n+1)nA3(nR)% (n — 1)1An-1
1 (17R—|—2n—|—3 2npR+n(n+2)+3 n—1 ) 7
— AyR n+2 (n+2)(n+1) (n+2)(n+1) )
()
X max |F_] (Z)|
n—1<j<n+1  jlA]
1 77R+33 IFU)(2)] IFD)(z)|

max — < max :
— AR 12 n—1<j<n+1  JLAl T n-1<j<ny1 AT

From (25), (26), (27) for allk > 2, |z| > yR and A =1+ 3/7R we obtain
F® (2)] [F'(=)]
LS w2 U
fak . S max g IFG)




Properties of analytic solutions of three similar differential equations of the second order 423

and, therefore, for the function (10) we have N(F,[;C\ D,g) < 1 with [(|z]) = (yR+3)/(yR)
for arbitrary R € (0,20/13) and 7 € (0,1).
Thus, we get the following statement.

Proposition 3. By the conditions of Theorem 3 the function (10) with the coefficients satisfy-
ing (9) for arbitrary R € (0,20/13) and n € (0, 1) is of bounded I-index N(F,I) < 1 with
I(|z]) = max{(20+3R)/((1 —)R(20 — 13R)), (/R +3)/(yR)}.

If we choose R = 1 and # = 1/2, then from Proposition 3 we obtain that by the condi-
tions of Theorem 3 the function (10) with the coefficients satisfying (9) is of bounded I-index
N(F,1) <1withl(|z]) =7.

Finally, we consider the function (11) with the coefficients satisfying (12). Since Fy =
—2/7 # 0 Lemma 2 implies the following lemma.

Lemma 4. If a function (11) is analytic in Eq r and

then N(F;1,D,g) = 0 with I(|z]) = (1 +ag(R))/((1 — ag(R))R(1 —17)),0 < 7 < 1.

ap(R) <1,

0 |

If B <0,v <0and |B| + |v| < 3, then from (12) we obtain

S + 7l -
E, R" = R |IB| ) E. Rnl
D
|7| o Bl + 7] n 3R|Fo| "
= R—|F|+R F,|R F,|R",
2 Rl +R L Gy gy IR < "2 Z' |
whence for R € (0,1/2)
|Fnl ron 3R
R R)=——<1
Z\F! W(R) =5—F <

n=1

and, therefore, by Lemma 4 for function (11) we have N(F, [;ID,r) = 0 with

1+R

Hl=l) (1—2R)R(1 — 1)

for arbitrary R € (0,1/2) and € (0,1).
Since the function f(z) = F(1/(1 — z)) satisfies DE3, the function F satisfies the differential
equation tw” + (Bt +2)w’ +yw =0, i.e.

zF"(z) + (Bz + 2)F'(z) + vF(z) = 0. (28)

Hence for |z] > yR and A > 2/7R > 1 in view of the conditions |B| + |y| < 3 and
7R € (0,1/2) we obtain

[F"(z)| _ |BInR +2|F'(z)] kel |F'(z)]
21 A2 < 2A7R 1A +2A217R|F(Z)| < max 1A JNE(Z)] ¢, (29)

since

I, 1 bl IBR 1 R (B 11 (B

1 1 1_7
2A  AnmR 2A217R 4 2 8 1 2~ 16 2~

OO
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If we differentiate (28) n > 1 times, then we get tF"+2)(t) + (Bt 4+ n 4+ 2)F"+1)(¢)
+ (1B + v)F"(t) = 0, whence for |z| > yRand A >2/(yR) > 1

[FU 2] _ ( gl 1 ) [Fr (1)) nlBl + 7| [FU (#)]
(n+2)IA"+2 = \(n+2)A AR/ (n+1)!A"*1 ~ (n+2)(n+1)A2yR n!A" 30)
11 1 [FO) (1) [FO) (1)
<[4+ 4 = — < ‘
<(3ta+ 16> ndjemel AT S adjemi A

From (29) and (30) it follows that for function (11) we have N(F,;C \ Dygr) < 1 with
I(|z]) = 2/4R for arbitrary R € (0,1/2) and 57 € (0,1).
Thus, we get the following statement.

Proposition 4. By the conditions of Theorem 3 the function (11) with coefficients satisfying
(12) is of bounded I-index N (F,1) < 1 with

B 1+R 2
I(|z]) = max{(l —2R)R(1 — 17)'77_R}

for arbitrary R € (0,1/2) andy € (0,1).
If we choose R = 1/5 and 1 = 1/2, then from Proposition 4 we get that by the condi-

tions of Theorem 4 the function (11) with the coefficients satisfying (12) is of bounded I-index
N(F,1) < 1 with I(|z]) = 20.
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Oanoaucra aHaaiTmuna B D = {z : |z] < 1} dyHkuis f(z) HasMBaETHCSI OIYKAOIO, SIKIIIO
f(ID) — onykaa obaactb. Aobpe Biaomo, mo ymosa Re {1 +zf"(z)/f(z)} > 0,z € D, e Heobxi-
AHOIO 1 AOCTaTHBOIO AASI OIYKAOCTi f. DYHKIIS f HasMBaeTbCs OAM3BKOIO A0 OIMyKAOi B ID, siKio
icaye onykaa B D dynxkuist @ Taka, mwo Re (f'(z)/®'(z)) >0,z € D.

C.M. Illax Bxa3aB yMOBM Ha AilicHi mapametpu o, B1, Yo, Y1, Y2 A¥dpepeHIliaAbHOTO PiBHSHHS
22" + (Boz? + B1z)w' + (70z* + 11z + 72)w = 0, 3a AKMX iCHy€ LiAMIT TPAHCLIEHASHTHMI PO3B’ 30K
f Taxwi, wio f i Bei vtoro MoXiaHI € 6AMIBKMMM AO OIyKAMX B ID.

Hexait0 < R < 400, Dg = {z: |z| < R} il — poaaTHa HenepepsHa dyHKuis Ha [0, R) Taka, 110
(R—7)I(r) > C,C = const > 1. ArariTnuna B IDg dyHKUis f HasMBa€eThCST 06MEXEHOTrO [-iHAEKCY,
aKmo icaye N € Z 4 Taxe, o

@] (1)
nil(la]) = {kukuzo 0sks N}

AMsiBcixn € Zy iz € Dg.

AOCAIAXKEHO 6AM3BKICTD A0 OIYKAOCTI Ta 0bMeXXeHicThb /-iHAekcy AAsl aHaAiTMUHMX B ID pos-
B's13KiB TpbhoX aHaroriunmx Illaxy amdpepertiarsumx pissiHb: z(z — 1)w” + Bzw’ + yw = O,
(z—1)%wW" + Bzw' +qw = 0i (1 —z)%0"” + B(1 — z)w’ + yw = 0. Hespaxarouu Ha MOAIGHICTH
LIMX PiBHSIHD, IX PO3B’SI3KM MaIOTh Pi3Hi BAACTMBOCTI.

Kntouosi cnosa i ¢ppasu: 6AM3BKICTH AO OIYKAOCTI, [-iHAEKC, AMid>epeHITiaAbHe PiBHSIHHS.



