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On k-Fibonacci balancing and k-Fibonacci
Lucas-balancing numbers

Rihane S.E.

The balancing number n and the balancer r are solution of the Diophantine equation
142+ +(n-1)=m+1)+n+2)+---+ (n+r).

It is well known that if n is balancing number, then 812 + 1 is a perfect square and its positive

square root is called a Lucas-balancing number. For an integer k > 2, let (P,Sk))n be the k-generalized
Fibonacci sequence, which starts with 0,...,0,1,1 (k terms) and each term afterwards is the sum
of the k preceding terms. The purpose of this paper is to show that 1, 6930 are the only balancing
numbers and 1, 3 are the only Lucas-balancing numbers, which are a term of k-generalized Fibonacci
sequence. This generalizes the result from [Fibonacci Quart. 2004, 42 (4), 330-340].

Key words and phrases: k-generalized Fibonacci numbers, balancing numbers, Lucas-balancing
numbers, linear form in logarithms, reduction method.
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1 Introduction

The first definition of balancing numbers is essentially due to R.P. Finkelstein [8], although
he called them numerical centers. A positive integer 7 is called balancing number if

14244+ n-1)=n+1)+n+2)+---+(n+r)

holds for some positive integer r. Then r is called balancer corresponding to the balancing
number n. The n-th term of the sequence of balancing numbers is denoted by B,,. A. Behera
and G.K. Panda [2] proved that the balancing numbers fulfill the recurrence relation

BO = 1, B1 = 6, Bn = 6Bn,1 — Bn—Z forall n > 2.

It is well known that if n is a balancing number, then 812+ 1isa perfect square, and the
positive square root of 8n% + 1 is called a Lucas-balancing number which is denoted by C,
(see [13]). The Lucas-balancing numbers C, satisfy the recurrence relation

CO = 1, Cl = 3, Cn = 6Cn_1 — Cn72 forall n > 2.

The balancing and Lucas-balancing numbers are indexed in The On-Line Encyclopedia of Integer
Sequences (OEIS) as A001109 and A001541, respectively.

YAK 511.176
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The Fibonacci sequence (F,),> is given by
Fp=0 F =1 F,=F, 1+F, , forall n>2.

It is the sequence A000045 in OEIS.

A balancing number is called Fibonacci balancing number if it is a Fibonacci number (see [9]).
In [9], K. Liptai has shown that 1 is the only Fibonacci balancing number.

Let k > 2 be an integer. We consider a generalization of Fibonacci sequence called the

k-generalized Fibonacci sequence F,Sk) defined as

F,Sk) _ F;Sk—)l + F,Ek,)z 4t Fé’i)k forall n > 2,

with the initial conditions Fik()k—2) = Fik()k—3) =... = ék) =0and Fl(k) = 1. If k = 2, we obtain
the classical Fibonacci sequence. Below we present the values of these numbers for the first
few values of k and n > 1. Note that the underlying terms are balancing or Lucas-balancing

numbers.

k  Name First non-zero terms

2 Fibonacci 1,1,2,3,5,8,13,21,34,55, 89, 144, 233, 377, 610, . ..

3 Tribonacci 1,1,2,4,7 13,24, 44, 81, 149, 274, 504, 927, 1705, 3136, ...

4 Tetranacci 1,1,2,4,8,15,29,56,108, 208, 401, 773, 1490, 2872, 5536, ...
5 Pentanacci 1,1,2,4,8, 16,31, 61,120, 236, 464, 912, 1793, 3525, 6930, . ..
6 Hexanacci 1,1,2,4,8,16,32,63,125,248,492,976, 1936, 3840, 7617, . ..

7 Heptanacci 1,1,2,4,8,16,32, 64,127, 253, 504, 1004, 2000, 3984, 7936, . ..
8 Octanaccd 1,1,2,4,8,16,32, 64,128, 255, 509, 1016, 2028, 4048, 8080, ...
9 Nonanacci 1,1,2,4,8,16,32, 64,128, 256, 511, 1021, 2040, 4076, 8144, . ..
10 Decanacci 1,1,2,4,8,16,32, 64, 128, 256, 512, 1023, 2045, 4088, 8172, . ..

We say that a balancing number (Lucas-balancing number) is k-Fibonacci balancing number
(k-Fibonacci Lucas-balancing number) if it is k-Fibonacci number too. The aim of the present
work is to determine all the k-Fibonacci balancing and k-Fibonacci Lucas-balancing numbers.
We prove the following results.

Theorem 1. 1 and 6930 are the only k-Fibonacci balancing number. Moreover, all the solutions
of the Diophantine equation

EY = By, (1)
are given by (n,k,m) = (1,k,0), (2,k,0), (15,5, 6).

Theorem 2. 1 and 3 are the only k-Fibonacci Lucas-balancing number. Moreover, all the solu-
tions of the Diophantine equation

EY = Cy )
are given by (n,k,m) = (1,k,0), (2,k,0), (4,2,1).

Our proofs of Theorems 1 and 2 are mainly based on linear forms in logarithms of algebraic
numbers and a reduction algorithm originaly introduced by A. Baker and H. Davenport in [1].
Here, we use a version due to A. Dujella and A. Pethd in [7, Lemma 5 (a)].
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2 Premilmeries and known results

This section is devoted to collect a few definitions, notations and theorems, which will be
used in the rest of this work.

21 Linear forms in logarithms

For any non-zero algebraic number 1 of degree d over Q, whose minimal polynomial over
Z is al—[}izl <X — q(f)), we denote by

d
h(n) = ! log |a| + Zlogmax{l, |17(j)|}
d fa
the usual absolute logarithmic height of #. In particular, if # = p/q is a rational number
with ged(p,q) = 1 and g > 0, then h(y) = logmax{|p|,q}. The following properties of
the logarithmic height function k(- ), which will be used in the next sections without special
reference, are also known:

h(n+v) < h(n) +h(y) +log2,
h(py™) < h(n) +h(v), (3)
h(n®) = |[s|h(y), s€Z. (4)

The main approach to show Theorems 1 and 2 is the Baker’s theory about lower bounds for
linear forms in logarithms. In [10], E.M. Matveev proved the following theorem.

Theorem 3 ([10]). Lety,...,1s be a real algebraic numbers and let by, . . ., bs be nonzero ratio-
nal integer numbers. Let di be the degree of the number field Q(#1, ..., 1s) over Q. Define

::17§J1~--17£’S—1.
If T # 0, then
IT| > exp(—1.4-30°"3s*2d2 (1 +logdy)(1 +1logB)A; - - - As),
where A; = max{dkh(1), |log#|,0.16} forj =1,...,s,and B > max{|b1|,..., |bs|}.
2.2 The de Weger reduction algorithm

Here, we present a variant of the reduction method of Baker and Davenport due to
de Weger [14].
Let 91, %2, B € R be given and let x1, x, € Z be unknowns. Let

A= ,3 —+ x1191 + x2192. (5)
Set X = max{|x1|, |x2|}. Let Xp, Y be positive. Assume that
[A] < cexp(—pY) (6)
and
Y < X < X, )

where ¢, p be positive constants.

When B = 0in (5), we get A = x101 + xp8%. Put @ = —¢,/0,. We assume that x; and x;
are coprime. Let the continued fraction expansion of ¢ be given by [ag, 41,42, . ..], and let the
kth convergent of & be py/qi fork =0,1,2,... . We may assume without loss of generality that
|01] < |02| and that x; > 0. We have the following results.



262 Rihane S.E.

Lemma 1 ([14, Lemma 3.1]). If (6) and (7) hold for x1,x, with X > 1 and B = 0, then
(—x2,x1) = (pr, qx) for an index k that satisfies

log(1 + Xo+/5)
log <—1+2\/5>

Lemma 2 ([14, Lemma 3.2]). Let A = maxo<i<y, x+1- If (6) and (7) hold for x1, x» with X > 1
and = 0, then

k< -1+ =Y.

1 c(A—|—2)> 1 1 <c(A+2)X0>
Y < =lo <7 + Zlog X < ~log [ AT =/20
|9, 0 8 0 8 |05

When g # 0in (5), put ¢ = —¢;/%, and ¢ = B/0,. Then we have 19% = ¢ —x10+ xp. Let
p/q be a convergent of ¢ with g > Xj. For a real number x we let

|x|| = min{|x —n|:n € Z}
be the distance from x to the nearest integer. We have the following result.

Lemma 3 ([14, Lemma 3.3]). Suppose that || q¢ |> %. Then, the solutions of (6) and (7)
satisty

1 7*c )
Y < =lo .
08 <\192\X0

2.3 The balancing and Lucas-balancing sequence

Letd := (3+24/2) and ¢ := (3 —21/2) be the roots of the characteristic equation x> — 6x + 1
of both the balancing and Lucas-balancing sequences, the Binet formulas

n

-6

B, = 8
and .
"+

Cn = ) (9)

hold for all nonnegative integer n’s. Furthermore, the inequalities

&' 1< B, < 6" (10)
and

5" < Cy < 5" (11)
hold forall n > 1.

2.4 Properties of k-generalized Fibonacci sequence

In this subsection, we recall some facts and properties of the k-generalized Fibonacci se-
quence which will be used later. The characteristic polynomial of the k-generalized Fibonacci
numbers (F,gk))n is

Ye(x) =aF =1 - -1
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¥y (x) is irreducible over Q[x]| and has just one root a(k) outside the unit circle (see, for exam-
ple, [11,12,15]). It is real and positive, so it satisfies a(k) > 1. The other root are strictly inside
the unit circle. Furthermore, in [15] D.A. Wolfram showed that

2(1-27%) <a(k) <2 forall k>2. (12)

To simplify the notation, in general, we omit the dependence on k of ¢. For s > 2, let

x—1
S = e a2y

In [6], G.P.B. Dresden, Z. Du gave the Binet-type formula

k
r = Y fe(a)al ™,
iz

where «; are the zeros of ¥ (x), and proved that

_ 1
Fn(k) — fr(a)a’ 1‘ <3 (13)
hold for all n > k — 2. Furthermore, it was showed in [3] that
OCn_Z S F}’(lk) S 067’1—1 (14)

hold forall n > 1.

In [4],]]J. Bravo, C.A. Gémez and F. Luca proved that 1/2 < f;(a) < 3/4 and |f(a;)| < 1,
2 <i <k, hold. So, the number f;(«) is not an algebraic integer. In addition, they proved that
the logarithmic height of f satisfies

h(fe(a)) <log(k+1)+1log4 forall k> 2. (15)
Finally, in [5, pp. 542, 543] the authors proved that for all n > k + 2 we have

B 1
AV =272(140), where [g] < 5y as)

3 k-Fibonacci balancing numbers
This section is devoted to show Theorem 1.
3.1 An inequality for n and m versus k

If2 <n < k+1, we have F,gk) = 2"2 and since 1 is the only perfect power in the balancing
sequence, we deduce that equation (1) has only the solution (n,k,m) = (2,k,0) in this range.

The fact that Fl(k) = Z(k) imply that (1,k,0) is also a solution of the Diophantine equation (1).
From now, we assume that n > k 4 2. Further we may suppose that k > 3 because that case
k = 2 is already studied.

Using inequalities (14) and (10), we get from equation (1) that

0(”72 < (5m71 and 5m72 < 0("71.
The above inequalities give
log « log a
— < < — .
(n—2) <log5> +1<m< (n—-1) <log5> +2
Using the fact that 7/4 < a < 2 for all k > 3 (see (12)), we deduce that
03n—0.6 <m<04n+1.7. (17)
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Lemma 4. If (n,k,m) is a solution in integers of equation (1) withk > 3 and n > k + 2, then
the inequalities 2.4m < n < 6.8 - 10°°k* log® k hold.

Proof. From equation (1), estimate (13) and identity (8), we have
St 1

4421 2 4/2
If we multiply through by 41/26~"" we arrive at

fie(a)a" !

IT1| < 3.957", (18)

where T'; = (4v/2f(a))a" 167 — 1.
With the aim of applying Theorem 3 we choose

(n,br) == (4V2Fe(@), 1), (q,b2) = (@n—1),  (3,b3) = (6, —m).

For this choice, the field K := Q(«,/2) contains n1,M2, 13 and has dx < 2k. Since
h(n2) = (loga)/k < (log2)/k and h(n3) = (logd)/2, we deduce that

max{2kh(n2), [lognz|,0.16} = 2log2:= A

and
max{2kh(13), |log 73| ,0.16} = klogd := As.

On the other hand, by using the estimate (15) and the proprieties (3) together with (4), it follows
that forall k > 3

h(n) < h(fi(a)) +h(4V2) < log(k+ 1) + log4 + log(4v/2) < 4.2logk.

Thus, we obtain
max{2kh (1), [logm|,0.16} < 8.4klogk := A;.

The fact that 0.4n + 1.7 < n hold for all n > 5 and the inequality (17), imply that we can
take B := n.

Before applying Theorem 3, we need to check thatI'y # 0. Indeed, if we assume thatI'; = 0,
we get that

_ﬁa—n 1
fk(“)—4\/§ -

and so fx(a) would be an algebraic integer, contradicting some thing previously mentioned.
Thus, I'1 # 0. Therefore, by Theorem 3, it result

IT1| > exp (-1.432 -10M (2K)2(1 + log(2k))(1 + log 1) (8.4k log k) (21og 2) (k log 5)) . (19
When we compare the lower bound (19) and the upper bound (18) of |I';| we obtain
mlogd —1og3.9 < 1.18 - 10°%k* log k(1 + log 2k) (1 + log 1),

taking into account the facts 1 + log2k < 2.6logk and 1+ logn < 1.7logn which hold for
k > 3 and n > 5, we conclude that m < 3 - 103k* log® klog 1. By the inequality (17), the last

inequality becomes
n

ogn < 10"k* log? k. (20)
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Since the function x — x/ log x is increasing for all x > e, it is easy to check that

X

<T = «x<2TlogT whenever T > 3. (21)
log x

Thus, fixing T := 10k*log®k, inequality (20) together with 32.3 4 4logk + 2loglogk <
34log k, which holds for all k > 2, gives

n < (2-10™k*1log? k) log(10Mk* log? k)
< (2-10"™k*log?k)(32.3 + 4logk + 2loglogk) < 6.8 - 10'5k* log’ k.

Whence the result. U
3.2 Thecase3 < k < 220
In this subsection, we treat the case k € [3,220]. We show the following result.
Lemma 5. The Diophantine equation (1) has no solution, when k € [3,220] and n > k + 2.
Proof. Let us set
Ay =log(T1 +1) = (n —1)loga — mlogd + log(4v2fi()).

Then, (18) can be rewritten as
‘eAl - 1) <395, 22)

Note that A; # 0, since I'1 # 0, so we distinguish the following cases. If A; > 0, then
eM—1>0. Using the fact that x < e* — 1 for all x € R, from (22) we obtain 0 < A; < 3.957 ™.
Now, if A1 < 0, it is easy to see that 3.96~" < 1/2 holds for all m > 4. Thus, from (22) we have
that [eM — 1] < 1/2 and therefore e/l < 2. Since Ay < 0, we have

0 < |Aq] <elMl—1 =M

oM _ 1) < 7.85°M

Hence, in both cases one has

0<|A] <7.867 ™. (23)
In order to apply Lemma 3, we fix
ci=78, pim176, i OBAVW)
log d
9= iggi, 9 := —logd, 0:=loga, P :=log(4V2fi(«)).

For each k € [3,220], we find a good approximation of & and a convergent p,/q, of the contin-
ued fraction of ® such that g, > Xo, where Xy = |6.8 - 10'5k*log® k|, which is an upper bound
of max{n —1,m} from Lemma 4. After doing this, we use Lemma 3 on inequality (23). A

1
computer search with Mathematica revealed that the maximum value of 5 log(g%c/ 92| Xo)

over all k € [3,220] is 45.6224 ..., which according to Lemma 3, is an upper bound on m.
Hence, we deduce that the possible solutions (1, 1, k) of the equation (1) for which k € [3,220]
have m < 45, therefore we use inequalities (17) to obtain n < 151.

Finally, we used Mathematica to compare Fn(k) and By, for the range 5 < n < 151 and

2 < m < 45, with m < n/2.4 and checked that the only solution of the equation (1) is

6930 = B = F{3). 0
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3.3 The case k > 220

In this subsection, we analyze the case k > 220.
Lemma 6. The Diophantine equation (1) has no solution when k > 220 and n > k + 2.

Proof. For k > 220 we have 2.4m < n < 6.8 -10'°k* log3 k < 2K/2, Using (8) and (16), we express
the equation (1) as

~m
n—2 o :2n—2€_ 0
42 42’
by taking absolute value we obtain
u_n O =2 1
— <zt ,
42| 2 4y2
which gives
1.1
’1 — (\@)712%5"1‘ < ZkT, (24)

where we have used the fact 1/(v/2-2") < 0.1/2/2, because n > k + 2. We will apply Theo-
rem 3 to obtain a lower bound to the left-hand side of inequality (24). Choose

t:=3, (11,b):=(V2,-1), (12,b0) :=(2,—n), (y3,b3):=(8,m).

Since 171,172,113 € K := Q(v/2), then dx = 2. The left-hand side of (24) is not zero. Indeed,
if this is zero, we would then get that 6*" is a rational numbers, which is impossible for all
positive integers m.

We can choose B := n, because m < n. On the other hand, since

h(in) =1log(V2), h(y2) =log2, h(i3) = (logd)/2,
we deduce that
max{2h(n), |logni|,0.16} =log2:= A;, max{2h(n), [lognz|,0.16} = 2log2 := A;

and
max{2h(n3), [logns|,0.16} = logé := A3

Therefore, according to Theorem 3 we have
)1 - (\fz)*lz*"cs'“) > exp (~2.81-10logn ), (25)

where we have used the fact that 1 4+ logn < 1.7logn for all n > 5. Comparing of (24) and (25)
gives k < 8.2-102logn.
From Lemma 4 and the fact that 36.5 + 4logk + 3loglogk < 11.8logk for all k > 220, we

obtain
k < 82-102log(6.8 - 10"°k*log” k)
< 8.2-1021og(36.5 + 4logk + 3loglogk) < 9.7 - 103 logk.

Hence, we obtain k < 3.5 - 10'°, and so again from Lemma 4 we get

n<47-10% and m<21-10%. (26)



On k-Fibonacci balancing and k-Fibonacci Lucas-balancing numbers 267

Let A, := mlogé — nlog2 — log(1/2). By a similar method to show the inequality (23), one

2.2
can see that 0 < |Ap| < 7z < 2.2 exp (—0.34k) holds for all k > 220.

Now, we will apply Lemma 3. The inequality (26) implies that we can take Xq := 4.7 - 10%2.
Further, we can choose

_ _ _ _log(v2)
c:=22, o= 0.34, P = _W’
. log2 4 _ log2, ®:=—logd, P :=log(V2).
logé’ ’ '

With the help of Maple, we find that g153 &~ 4.14 - 10%® satisfies the hypotheses of Lemma 3.
Furthermore, according to Lemma 3 we obtain k < 618.
With this new upper bound on k, we get from Lemma 4

n<2-10¥ and m < 84-10%.
Applying again Lemma 3 with X := 2 - 10% and
geo := 2089037648971932599649375001624

in this time, we obtain k < 216, which contradicts our assumption that k > 220. Hence, we
have shown that there are no solutions (1, k, m) to equation (1) with k > 220. O

Thus, the Theorem 1 is proved.

4 k-Fibonacci Lucas-balancing numbers

This section is devoted to prove Theorem 2. The proof of Theorem 2 is similar to that of
Theorem 1. For the sake of completeness, we will give some details.

4.1 An inequality for n and m in terms of k

Since Fl(k) = Fz(k) = 1 = Cp, then we may assume that n > 3. For 3 < n < k+ 1, we have

Fn(k) = 2"-2 but C,, is an odd number for all m > 0, thus we deduce that the Diophantine
equation (2) has no solution when 3 < n < k + 1. From now, we suppose that n > k + 2.
By relations (14), (11) and equation (2) we have

A" 2 <" and Ml <l

log « log «
— <m< — .
(n—2) <log5> <m<(n 1)<10g(5>+1

hence we get

Using the fact that 3/2 < o < 2 for all k > 2 (see (12)), we deduce that
0.2n —05<m<04n+0.7. (27)

Lemma 7. If (n,k, m) is a solution in integers of equation (2) withk > 2 and n > k + 2, then
the inequalities
24m < n < 2.4-10"%k*log® k (28)

hold.
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Proof. By combining (2) with (9) and (13), we obtain

1 oM 118"
n-1_°%Y Il gl B
fr(a)a > < > + > <2
Multiplying both sides by 26~ we get
‘ka(tx)txnflé”” — 1‘ <267 (29)

In order to show inequality (28), we will apply Theorem 3 with the parameters t := 3,

(71,b1) := (2fx(a),1), (n2,b2) := (a,n — 1), (y3,b3) := (6, —m), and T3 := 2f;(a)a" 16" — 1.
From (29), we have that

T3] <257 (30)

For this choice, the field K := Q(a,+/2) contains 71,752,773 and has dx < 2k. As calculated
before, we can choose A; := 2log2 and A3 := klogJd.
On the other hand, using (15) and the proprieties (3) together with (4), we deduce

h(n) < h(2) +h(fr(a)) <log2+log(k+1)+log4 < 4.6logk

for all k > 2. Thus, we obtain max{2kh(#1), |logn;|,0.16} = 9.2klogk := A;. The fact that
0.4n + 0.7 < n hold for all n > 4 and the inequality (17) imply that we may take B := n.
To apply Theorem 3, we need to show that I'3 # 0, if it were, then

5771
filw) = a7,

Hence fi(«) is an algebraic integer, which is impossible. Thus, I's # 0. Therefore, after apply-
ing Theorem 3 and comparing the resulting inequality with inequality (30), we obtain

mlogd —log?2 < 1.3 - 1013k* log k(1 + log 2k) (1 + log n).

Taking into account the facts 1 4 log2k < 3.5logk and 1 + logn < 1.8logn, which hold for
k > 2 and n > 4, we deduce that

m < 4.65-10%k* log® klog n.

From the above inequality together with (27), it comes

n

logn < 2.33-10"%k* log? k. (31)

Using (31) and (21) with T := 2.33 - 101k* log2 k we get

n < 2(2.33-10"k*1og? k) log(2.33 - 10Mk* log® k)
< (4.66-10"k*1og? k)(33.1 + 4logk 4 2loglogk) < 2.4 - 10'%k* log’ k,

where we have used that 33.1 +4logk + 2loglogk < 51logk, which holds forallk > 2. [
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4.2 Thecase2 < k < 230

In this subsection, we study the case k € [2,230]. We prove the following assertion.
Lemma 8. The Diophantine equation (2) has no solution when k € [2,230] and n > k + 2.

Proof. Put Az =log(I's+1) = (n —1)loga — mlogd + log(2fi(«)).
Using a similar method to prove the inequality (23), we prove that

0 < |A3] <40™™ < dexp(—1.76m).

In Lemma 3, we fix

4

cimd4, 5:=176 ¢ = 08ZA®)

logé
9 logél
log «

191 = — log(S, 192 = log“/ ﬁ = log(2fk(“))

For each k € [2,230], we find a good approximation of « and a convergent p,/q, of the contin-
ued fraction of ® such that g, > Xo, where Xy = |2.4 - 10'°k*1og” k|, which is an upper bound
of max{n —1,m} from Lemma 7. After doing this, we use Lemma 3 on inequality (23). A

computer search with Mathematica revealed that the maximum value of E log(gc/ 9| XO)J

over all k € [2,230] is 91.40. . ., which according to Lemma 3, is an upper bound on m. Hence,
we deduce that the possible solutions (m, n, k) of the equation (1) for which k € [2,230] have
m < 91, therefore we use inequalities (17) to obtain n < 457.

Finally, we used Mathematica to compare F,gk) and C,, for the range 4 < n < 222 and
2 < m < 44, with m < n/2.4 and checked that the only solution of the equation (1) is

3=C =P, O
4.3 The case k > 230

In this subsection, we analyze the case k > 230.
Lemma 9. The Diophantine equation (1) has no solution when k > 230 and n > k + 2.

Proof. For k > 230 we have 2.4m < n < 2.4 -10'k* log3 k < 2k/2, By (2), (9) and (16) we obtain

om| 2n2 g
n—2
S N A R
which leads to 13
)1 - 2*<n71>5'71‘ < 573 (32)

where we have used the fact 1/2"1 < 0.3/2%/2 because n > k + 2. We will give a lower
bound to the left-hand side of inequality (32) by using Theorem 3. We choose t := 2, (1, b1) :=
(2, —n+1), (2,b2) := (6,m). We have 51,17, € K := Q(v/2), so dg = 2. If the left-hand side
of (32) is zero, then we get that 0?" ¢ Q, which is a contradiction. Thus, the left-hand side of
(32) is not zero.

The fact that m < n imply that we can choose B := n. On the other hand, since
h(n) =log?2, h(y2) = (logd)/2, it follows that

max{2h(m), [logni|,0.16} = 2log2:= A; and max{2h(12), |lognz|,0.16} =logd := Aj.
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So, Theorem 3 tell us that
1— 2*<”*1>5'"‘ > exp (~2.3-10logn ), (33)

where we have used the fact that 1 +logn < 1.8logn for all n > 4. Comparing (32) and (33),
we obtain k < 6.7 - 101 log n.
By Lemma 7 and using the fact 37.8 4 4logk + 3loglogk < 12logk for all k > 220, we get

k < 67-10"1og(2.4 - 10"k* log® k)
< 6.7-10'%10og(37.8 + 4logk + 3loglogk) < 8.1- 101 logk

Hence, we obtain k < 2.5 - 10'3. Lemma 7 imply
n<28-10" and m<12-107 (34)

Put Ay = mlogd — (n — 1) log2. Using a similar method to prove the inequality (23), we show

2.6
that 0 < |[A4] < *z < 2.6 exp(—0.34 k) holds for all k > 210.

We apply Lemma 1 with ¢ = 2.6, p = 0.34 and X, := 2.8 - 1074, which is an upper bound
on m by (34). Thus, from Lemma 1 we get Y := 356.899840124 . .. . Let

lag,a1,a2,...]:=10,2,1,1,5,3,2,1,22,1,5,38,1,1,1,8,1,3,7,1,5,2,5,2,2,200, . .

be the continued fraction expansion of log2/logd. Since A = maxp<3se ax = 4008, then ac-
cording to Lemma 2 we have

k <

1 2.6-4010-2.8-107*
: 530.
0.34 < ) <

log é

With this new upper bound on k we get by Lemma 7 that n < 4.7 - 10 and m < 2-10%.
We apply again Lemma 2 with X, := 4.7-10%. Hence by Lemma 1, we obtain
Yy = 142.65243 ... and A = 1014 in this time. According to Lemma 2 it comes

k

. .4.7.10%
1 <2.6 1016 -4.7 - 10 ><223,

<034 logd

which contradicts our assumption that k > 230. Thus, we have shown that there are no solu-

tions (1, k, m) to equation (1) with k > 230. O

Thus, the Theorem 2 is proved.
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36aAaHCOBe UMCAO 71 i 6araHCHP 7 € pO3B’sI3KaMM Al0PaHTOBOTO PiBHSIHHS
142+ +(n—-1)=m+1)+n+2)+---+ (n+r).

BiAOMO, IO SIKILIO UMCAO 1 € 36aAaHCOBAHUM, TO 8112 + 1 € TOBHUM KBaApaTOM, KBaApaTHII KOPiHb

3 IKOTO Ha3MBaloTh Atoka-36aAaHCOBAHMM YMCAOM. AAS IIAOTO kK > 2 CIMBOAOM (F,sk))n IIO3HAYMIMO
k-y3saraabHeHy mocaiaoBHICTD DiboHaudi, sika mounHaeThest 3 0,...,0,1, 1 (k uncea), a KOXHe HacTy-
TIHe UMCAO € CyMoIo k momepeaHix. Myt AOBeAM, IO cepea eAeMeHTiB k-y3araAbHeHOI II0CAIAOBHOCT]
®diboHauui eaAvHMMYU 36araHCcOBaHMMM uncAaamu € 1 1 6930, a Aroka-36araHcoBaEMMMU — umcaa 11 3.
OrpumaHi HaMI pe3yAbTaTH y3aTaABHIOIOTH pe3yabTaTi 3 [Fibonacci Quart. 2004, 42 (4), 330-340].

Kontouosi cnosa i ppasu: k-ysararbHeHi umcaa ®iboHauui, 36araHcoBaHi umcaa, Aoka-36araHCco-
BaHi uMcAa, AiHiVHaA dpopMa B AorapudpMax, METOA PeAYKIIiL.



