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Measurable Riesz spaces

Krasikova I.1, Pliev M.2,3, Popov M.4,5

We study measurable elements of a Riesz space E, i.e. elements e ∈ E \ {0} for which the

Boolean algebra Fe of fragments of e is measurable. In particular, we prove that the set Emeas of all

measurable elements of a Riesz space E with the principal projection property together with zero is

a σ-ideal of E. Another result asserts that, for a Riesz space E with the principal projection property

the following assertions are equivalent.

(1) The Boolean algebra U of bands of E is measurable.

(2) Emeas = E and E satisfies the countable chain condition.

(3) E can be embedded as an order dense subspace of L0(µ) for some probability measure µ.
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1 Introduction

In recent paper [8], the third named author used the term “measurable Riesz space” in

the following sense: a Riesz space E is said to be measurable provided for every e ∈ E+ the

measurable Boolean algebra Fe of fragments of e. Obviously, every Riesz subspace of L0(µ)

for a finite measure µ is measurable. The aim of the present paper is to show that the above

example is quite general. In our proofs, we use and develop a new technique proposed in

recent paper [5].

For familiarly used terminology and notation, we refer the reader to the textbook [2]. An

element x of a Riesz space E is said to be a fragment1 of another element y ∈ E provided

x ⊥ (y − x). We write x ⊑ y to express that x is a fragment of y. It is not hard to see that

⊑ is a partial order on E, called the lateral order, which coincides with the usual order ≤ on

E+. The lateral supremum (or infimum) of a subset G ⊆ E, that is, the supremum (respec-

tively, infimum) with respect to the order ⊑, is denoted by
⋃⋃⋃

G (respectively,
⋂⋂⋂

G). For more

information on the lateral order see [5]. The notation z = x ⊔ y for elements x, y, z of E means

that z = x + y and x ⊥ y. For instance, if x ⊑ y then y = x ⊔ (y − x) is a decomposition to

disjoint fragments. The set Fe of all fragments of an element e ∈ E \ {0} is a Boolean algebra

with respect to the operations of taking the lateral supremum and infimum, zero 0 and unit e

(see [2, Theorem 3.15] for a positive e and [5, Proposition 3.4] for an arbitrary e). Moreover, Fe
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1component, in the terminology of [2].
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is the lateral ideal and the lateral band, generated by e (see [4] for details).

We say that a net (xα)α∈A in a Riesz space E order converges to a limit x ∈ E if there is a net

(yα)α∈A in E such that yα ↓ 0 and |xα − x| ≤ yα for some α0 ∈ A and all α ≥ α0 (write xα
o

−→ x).

Remark that there is another notion of order convergence in the literature, where the index set

of the majorizing net (yα) can be different from A, however for our purposes these two notions

coincide (for laterally increasing nets, on the one hand, and for the notion of order continuity

for regular operators [1, Theorem 1.7], on the other hand).

Recall that a Riesz space E is said to be C-complete if every nonempty laterally bounded

subset G of E has a lateral supremum
⋃⋃⋃

G ∈ E. If a Riesz space E is either Dedekind complete

or laterally complete then E is C-complete [5, Corollary 5.8]. The Banach lattice C[0, 1] is a

C-complete Riesz space which is neither Dedekind complete, nor laterally complete.

We do not know whether there is an atomless example of the kind. Note that some re-

sults on orthogonally additive operators on C-complete Riesz spaces were established in recent

paper [7].

We say that a net (xα)α∈A in a Riesz space E horizontally converges to an element x ∈ E and

x is a horizontal limit of (xα) and write xα
h

−→ x provided (xα) is laterally increasing, that is,

xα ⊑ xβ as α < β, and
⋃⋃⋃

α∈A xα = x (equivalently, xα
o

−→ x). The horizontal closure G
h

(or

horizontal σ-closure G
hσ

) of a subset G of E is defined to be the set of all horizontal limits of nets

(respectively, sequences) from G. A nonempty subset G of E is said to be horizontally closed (or

horizontally σ-closed) if G
h
= G (respectively, G

hσ
= G).

Definition 1. A solid subset of a Riesz space E which is closed under multiplication by scalars

will be called a pre-ideal of E.

Obviously, every ideal of E is a pre-ideal of E. The set-theoretical union of two nontrivial

disjoint ideals of E provides a simple example of a pre-ideal which is not an ideal.

2 Measurable elements and the measurable part of a Riesz space

Recall that a Boolean algebra B is said to be measurable provided B is Dedekind σ-complete

and there is a positive probability measure µ : B → [0, 1], that is, a function possessing the

following properties:

µ(1) = 1;

µ(x) > 0 for all x ∈ B \ {0};

µ(supn xn) = ∑
∞
n=1 µ(xn) for every disjoint sequence (xn)∞

n=1 in B.

Definition 2. Let E be a Riesz space. We say that an element e ∈ E \ {0} is measurable if the

Boolean algebra Fe of all fragments of e is measurable.

Recall that an element e 6= 0 of E is an atom if Fe = {0, e} (actually, the original definition of

an atom differs from the given one, however the definitions are equivalent if E has the principal

projection property [6, Proposition 1.3]).

Definition 3. Given a Riesz space E, by the measurable part of E we mean the set Emeas of all

measurable elements of E together with zero.
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To prove the following statement is an easy exercise.

Proposition 1. Let E be a Riesz space. Then the following assertions hold.

(i) If a is an atom of E then a ∈ Emeas.

(ii) For every x, y ∈ E, if x ∈ Emeas and y ⊑ x then y ∈ Emeas.

(iii) For every x, y ∈ Emeas, if x ⊥ y then x + y ∈ Emeas.

(iv) For every x, y ∈ E with |x| = |y|, the conditions x ∈ Emeas and y ∈ Emeas are equivalent.

Theorem 1. Let E be a Riesz space with the principal projection property. Then Emeas is a

σ-ideal of E.

Although the idea of proof is clear, it needs some technical efforts to prove that Emeas is

solid. In passing, we prove some lemmas which may have an independent interest. The first

one shows that in some cases the order convergence and order closure can be replaced with

the horizontal convergence and horizontal closure.

Lemma 1. Let E be a Riesz space with the principal projection property, I a pre-ideal of E,

(xα)α∈A a net in I and x ∈ E. If 0 ≤ xα ↑ x then there exists a net (yα)α∈A in I with yα
h

−→ x.

Proof. Set uα = (2xα − x)+ and yα = Puα x for all α ∈ A and show that (yα)α∈A possesses the

desired properties. By the definitions, yα ⊑ x for all α ∈ A. Since xα ↑, one has uα ↑ and hence

yα ↑. Observe that uα
o

−→ (2x − x)+ = x. Hence, by [2, Theorem 1.48], yα = Puα x
o

−→ Pxx = x.

Thus, yα
h

−→ x. It remains to show that yα ∈ I for all α. Indeed, for any index α one has

Puα(2xα)− yα = Puα(2xα − x) = P(2xα−x)+
(

(2xα − x)+ − (2xα − x)−
)

= P(2xα−x)+(2xα − x)+ = Puα uα = uα ≥ 0,

which implies |yα| = yα ≤ Puα(2xα) ≤ 2xα ∈ I. Since I is solid, yα ∈ I.

Using [2, Lemma 1.37], we obtain the following consequence of Lemma 1.

Corollary 1. Let E be a Riesz space with the principal projection property and A a pre-ideal of

E. Then the order closure of A equals the horizontal closure of A, and the order σ-closure of

A equals the horizontal σ-closure of A.

Using standard terminology, by a σ-ideal of a Riesz space E we mean a σ-order closed ideal

of E. Below is another consequence of Lemma 1.

Corollary 2. Let I be an ideal of a Riesz space E with the principal projection property. Then

the band generated by I equals the horizontal closure I
h

of I, and the σ-ideal generated by I

equals the horizontal σ-closure I
hσ

of I. Hence, every horizontally closed ideal is a band and

every horizontally σ-closed ideal is a σ-ideal.

Lemma 2. Let I be a pre-ideal of a Riesz space E with the principal projection property. If I is

closed under disjoint sums then I is an ideal.
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Proof. Fix any 0 ≤ x, y ∈ I. It is enough to show that x + y ∈ I. Set u := P(y−x)+(x + y) and

v := x + y − u. Since u ⊑ x + y, one has x + y = u ⊔ v. Our goal is to show that u, v ∈ I.

Observe that (y − x)+ ⊥ (y − x)− implies P(y−x)+(y − x)− = 0. Hence, P(y−x)+(y − x) =

P(y−x)+(y − x)+ = (y − x)+ ≥ 0, which yields P(y−x)+x ≤ P(y−x)+y ≤ y. Therefore,

0 ≤ u = P(y−x)+(x + y) = P(y−x)+x + P(y−x)+y ≤ 2P(y−x)+y ≤ 2y (1)

and analogously,

P(y−x)−(x + y) ≤ 2x. (2)

Then

0 ≤ v = Px+y(x + y)− u
by [1, p. 39]

= P−(y−x)−(x + y)− P(y−x)+∧(y−x)−(x + y)

≤ P−(y−x)−(x + y)
by (2)

≤ 2x.

(3)

Since x, y ∈ I, by (1) and (3) we obtain u, v ∈ I.

Now Corollary 2 and Lemma 2 imply the following lemma.

Lemma 3. Let I be a horizontally closed (or horizontally σ-closed) pre-ideal in a Riesz space E

with the principal projection property, closed under disjoint sums. Then I is a band (respec-

tively, σ-ideal) in E.

Proof of Theorem 1. We prove that B := Emeas satisfies the assumptions of Lemma 3. First we

prove that B is solid. Assume first x ∈ E, e ∈ B and 0 < x ≤ e and prove that x ∈ B. First show

that Fx is Dedekind σ-complete. Given any sequence xn ↑ in Fx, we set en = Pxn e for all n ∈ N.

Obviously, en ↑ in Fe. Since en ∈ Fe and Fe is Dedekind σ-complete, there exists e0 ∈ Fe such

that en ↑ e0.

Show that xn = Pen x for all n ∈ N. Since xn ⊑ x, for every i ∈ N one has x = xn ∨ (x − xn)

and hence x ∧ ixn = (xn ∧ ixn) ∨
(

(x − xn) ∧ ixn

)

= xn ∨ 0 = xn. Therefore, for every n, k, m ∈

N one has

ke ∧ x ∧ kmxn = ke ∧ xn = xn. (4)

Then by [2, Theorem 1.47] and the infinite distributive law, for every n ∈ N

Penx =
∞
∨

k=1

(x ∧ ken) =
∞
∨

k=1

(

x ∧ k
∞
∨

m=1

(e ∧ mxn)
)

=
∞
∨

k=1

∞
∨

m=1

(x ∧ ke ∧ kmxn)
(4)
= xn. (5)

Set x0 = Pe0 x ∈ Fx. Since en ↑ e0, by [2, Theorem 1.48],

xn
(5)
= Penx ↑ Pe0 x = x0.

Now consider the general case, x ∈ E, e ∈ B and 0 < |x| ≤ |e|. Then the conclusion

x ∈ B follows from the above particular case and (iv) of Proposition 1. So, the Dedekind

σ-completeness of Fx is proved.

Let µe : Fe → [0, 1] be a positive probability measure. We define a function µx : Fx → [0, 1]

by setting λ =
(

µe(Px(e))
)−1

and µx(y) = λµe(Py(e)) for all y ∈ Fx and show that µx is a

positive probability measure on Fx. Obviously, µx(x) = 1. Let 0 < y ∈ Fx. Then

Pye =
∞
∨

n=1

(e ∧ ny) ≥ e ∧ y = y > 0
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and hence, µe(Py(e)) > 0. So, the function µx is strictly positive. Now we show the σ-additivity

of µx. Let (xn)∞
n=1 be a disjoint sequence in Fx. Set un =

∨n
k=1 xk for all n ∈ N and u =

∨∞
n=1 xn.

Since un ↑ u, by [2, Theorem 1.48],

µx(un) = λµe

(

Pun(e)
)

↑ λµe

(

Pu(e)
)

= µx(u). (6)

On the other hand,

µx(un) = λµe

(

Pun(e)
)

= λµe

(
n
⊔

k=1

Pxk
(e)

)

=
n

∑
k=1

λµe

(

Pxk
(e)

)

=
n

∑
k=1

µx(xk). (7)

By (6) and (7), ∑
∞
n=1 µx(xn) = µx(u) and the σ-additivity of µx is proved. Thus, x ∈ B and

so, B is solid.

Obviously, B is closed under multiplication by a scalar, and so, B is a pre-ideal. By (iii)

of Proposition 1, B is closed under disjoint sums. It remains to show that B is horizontally

σ-closed. Let x ∈ E, xn ∈ B for n ∈ N and xn
h

−→ x. Show that x ∈ B. Set y1 = x1 and

yn = xn − xn−1 for n > 1. Then (yn)∞
n=1 is a disjoint sequence with x =

⋃⋃⋃

∞
n=1yn and yn ∈ B by

(ii) of Proposition 1. Let for every n ∈ N, µn : Fyn → [0, 1] be a positive probability measure.

Then the formula

µ(z) =
∞

∑
n=1

2−nµn(z∩∩∩ yn), z ∈ Fx

defines a positive probability measure µ : Fx → [0, 1] and so, x ∈ B.

The following simple example shows that the measurable part need not be a band in a

Dedekind complete Banach lattice.

Example 1. Let E = ℓ∞(Γ) for an uncountable set Γ. Then

Emeas =
{

x ∈ ℓ∞(Γ) : |supp x| ≤ ℵ0

}

,

which is not a band of E.

Definition 4. Say that a Riesz space E is

measurable provided all elements of E are measurable, that is, Emeas = E;

strictly measurable provided E has a measurable weak unit.

To show that strict measurability implies measurability, we need the following simple ob-

servation.

Proposition 2. Let E be a Riesz space. Then for every e ∈ E the σ-ideal generated by e equals

the principal band Be generated by e.

Proof. Denote by Xe the σ-ideal generated by e. Obviously, Ee ⊆ Xe ⊆ Be. By [2, Theorem 1.38],

Be = {x ∈ E : |x| ∧ n|e| ↑ |x|}, and hence, every x ∈ Be equals an order limit of a sequence

from Ee, and thus, x ∈ Xe.

As a consequence of Theorem 1 and Proposition 2 we obtain the following statement.
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Proposition 3. Let E be a strictly measurable Riesz space with the principal projection prop-

erty. Then E is measurable.

Example 2. Let E = c0(Γ) for an uncountable set Γ. Then E is measurable but not strictly

measurable.

Recall that a Riesz space is said to have the countable chain condition (CCC, in short) provided

every disjoint set in E is at most countable.

Proposition 4. A strictly measurable Riesz space with the principal projection property pos-

sesses the countable chain condition.

Proof. Let D be a disjoint subset of E and e > 0 be a measurable weak unit of E. For every

d ∈ D we set ed = Pde. Then ed ∈ Fe and ed > 0, because e is a weak unit. Moreover, if d′ 6= d′′

then ed′ ⊥ ed′′ and hence ed′ 6= ed′′ . Being a disjoint subset of the measurable Boolean algebra

Fe, the family (ed)d∈D is at most countable, and so is D.

3 Measurable Riesz spaces with the CCC

Following Fremlin [3], a band B of a Riesz space is said to be complemented provided

B⊥⊥ = B. So, every projection band B (that is, E = B ⊕ B⊥) is complemented. For every

Riesz space E the set U of all complemented bands of E is a Dedekind complete Boolean al-

gebra with respect to B′ ∧U B′′ = B′ ∩ B′′, B′ ∨U B′′ = (B′ + B′′)⊥⊥, 1U = E, 0U = {0},

1U \U B = B⊥, B′ ≤U B′′ ⇔ B′ ⊆ B′′ [3, 352Q]. If a Riesz space is Archimedean (which is

the case in every our statement) then every band of E is complemented [3, 353B]. So, for an

Archimedean Riesz space E we are going to consider the Boolean algebra U of all bands of E,

which is Dedekind complete by the above theorem.

We need the following result on embedding Riesz spaces in L0(B), where B is a Boolean

algebra (for the definition of the Riesz space L0(B) see [3, 364]).

Theorem 2 ([3, 368E]). Let E be an Archimedean Riesz space and U its band Boolean algebra.

Then E can be embedded as an order dense Riesz subspace of L0(U ).

Using Theorem 2, we obtain necessary and sufficient conditions on a Riesz space with the

principal projection property to have measurable Boolean algebra of bands.

Theorem 3. Let E be a Riesz space with the principal projection property. Then the following

assertions are equivalent.

1. The Boolean algebra U of bands of E is measurable.

2. E is measurable and satisfies the CCC.

3. E can be embedded as an order dense subspace of L0(µ) for some probability measure µ.

For the proof we need the following lemma.

Lemma 4. Let E be a C-complete Riesz space with a principal projection property and a weak

unit e > 0. Then every band B of E is a principal band Bτ(B) generated by some unique

fragment τ(B) ⊑ e. Moreover, the defined above function τ : U → Fe preserves disjointness,

where U is the Boolean algebra of bands of E.
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Before the proof we recall that the set-theoretical difference x \\\ y for fragments x, y of an ele-

ment e ∈ E is defined by setting x \\\ y = x∩∩∩ (e − y) and equals x \\\ y = x − x∩∩∩ y (see [5] for the

details).

Proof. Let B ∈ U . Define a vector e∗ ∈ Fe by setting

e∗ =
⋃⋃⋃

(Fe ∩ B) (8)

(the lateral supremum in (8) exists by the C-completeness of E, because the set Fe ∩ B contains

zero and therefore is nonempty, and is laterally bounded from above by e).

Show that B = Be∗ . Suppose x ∈ B and prove that x ∈ Be∗ . With no loss of generality we

may and do assume that x ≥ 0. Since x ∈ E = Be, we have x ∧ ne ↑ x. By [2, Theorem 1.47],

Pxe =
∨∞

m=1(e ∧ mx). Observe that Pxe ∈ Fe ∩ B and by (8), Pxe ≤ e∗. Hence, using the

distributivity law [2, Theorem 1.8], for every n ∈ N we obtain

x ∧ ne =
∞
∨

m=1

(x ∧ ne) =
∞
∨

m=1

(

x ∧ n(e ∧ mx)
)

= x ∧ n
∞
∨

m=1

(e ∧ mx) = x ∧ nPxe ≤ x ∧ ne∗ ∈ Be∗ .

This yields x ∧ ne ↑ x ∈ Be∗ .

Now suppose x ∈ Be∗ and prove that x ∈ B. Again we assume additionally that x ≥ 0. By

the assumptions, x ∧ ne∗ ↑ x. Then x ∧ ne∗ ∈ B and hence, x ∈ B.

Show the uniqueness of the fragment e∗ ⊑ e such that B = Be∗ . Let Bx = By for some

x, y ∈ Fe. If x 6= y then either x∩∩∩ y 6= 0 or y∩∩∩ x 6= 0 [5, Proposition 3.18]. Say, z := x∩∩∩ y 6= 0.

Then z ∈ Bx \ By, a contradiction.

It remains to show that τ preserves disjointness. Let B′, B′′ be disjoint bands of E. In terms

of τ, this means that Bτ(B′) ∩ Bτ(B′′) = B′ ∩ B′′ = {0}. Set z := τ(B′)∩∩∩ τ(B′′). Since x ∈ Bx for

all x ∈ E, we obtain z ∈ Bτ(B′) ∩ Bτ(B′′) = {0}, which yields z = 0, and so τ(B′) and τ(B′′) are

disjoint elements of Fe.2

Corollary 3. Let E be a Dedekind complete Riesz space with a weak unit. Then every band of

E is a principal band.

Corollary 4. Let E be a laterally complete Riesz space. Then every band of E is a principal

band.

Proof. It is enough to prove that every laterally complete Riesz space has a weak unit. The

latter statement is easy to prove by showing that the lateral supremum of any maximal disjoint

set is a weak unit.

Proof of Theorem 3. (1) ⇒ (3) follows from Theorem 2.

(3) ⇒ (2). Let J : E → L0(µ) be an order σ-continuous lattice homomorphism for some

probability measure µ. Since L0(µ) satisfies the CCC, so does E. Show that E is measurable.

Given any e ∈ E+ \ {0} and x ∈ Fe, we set

µ(x) =
µ(supp Jx)

µ(supp Je)
.

2we draw reader’s attention that ∩∩∩ means the lateral supremum in the definition of z, while ∩ means the set-

theoretical intersection in the other places of the paragraph.
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It is immediate that µ : Fe → [0, 1] is a probability measure. So, e is measurable.

(2) ⇒ (1). Let D be a maximal disjoint subset of E, which is at most countable by the

assumption. Let (ad)d∈D be numbers ad > 0 with ∑d∈D ad = 1. Given any d ∈ D, let

µd : Fd → [0, 1] be a positive probability measure. Then we define a positive probability mea-

sure µ : U → [0, 1] by setting

µ(B) = ∑
d∈D

µd

(

τd(B ∩ Bd)
)

, B ∈ U , (9)

where t = τd(B ∩ Bd) is the element of Fd such that B ∩ Bd = Bt (see Lemma 4). We omit a

straightforward demonstration that (9) defines a positive probability measure.

Acknowledgements

Marat Pliev was supported by the Russian Foundation for Basic Research (grant number

17-51-12064).

References

[1] Abramovich Yu., Sirotkin G. On order convergence of nets. Positivity 2005, 9 (3), 287–292. doi:10.1007/s11117-

004-7543-x

[2] Aliprantis C.D., Burkinshaw O. Positive Operators. Springer, Dordrecht, 2006.

[3] Fremlin D.H. Measure Theory. Vol. 3. Measure algebras. Torres Fremlin, Colchester, 2004.
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— Т.13, №1. — C. 81–88.

Ми дослiджуємо вимiрнi елементи векторної ґратки E, тобто такi елементи e ∈ E \ {0}, для

яких булева алгебра Fe фрагментiв елемента e є вимiрною. Зокрема, ми доводимо, що множи-

на Emeas всiх вимiрних елементiв векторної ґратки E, що має головну проективну властивiсть,

разом iз нулем утворює σ-iдеал в E. Iнший результат стверджує, що для довiльної векторної

ґратки E з головною проективною властивiстю наступнi умови еквiвалентнi.

(1) Булева алгебра U всiх смуг в E є вимiрною.

(2) Emeas = E та E задовольняє умову злiченностi ланцюгiв.

(3) Векторна ґратка E iзоморфно вкладається, як порядково щiльна пiдґратка векторної

ґратки L0(µ) для деякої ймовiрнiсної мiри µ.

Ключовi слова i фрази: векторна ґратка, булева алгебра смуг.


