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Measurable Riesz spaces

Krasikova L.}, Pliev M.23, Popov M.4°

We study measurable elements of a Riesz space E, i.e. elements e € E\ {0} for which the
Boolean algebra §, of fragments of e is measurable. In particular, we prove that the set Epeas of all
measurable elements of a Riesz space E with the principal projection property together with zero is
a o-ideal of E. Another result asserts that, for a Riesz space E with the principal projection property
the following assertions are equivalent.

(1) The Boolean algebra U of bands of E is measurable.

(2) Emeas = E and E satisfies the countable chain condition.

(3) E can be embedded as an order dense subspace of Ly(u) for some probability measure .
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1 Introduction

In recent paper [8], the third named author used the term “measurable Riesz space” in
the following sense: a Riesz space E is said to be measurable provided for every e € ET the
measurable Boolean algebra §, of fragments of e. Obviously, every Riesz subspace of Lo(y)
for a finite measure y is measurable. The aim of the present paper is to show that the above
example is quite general. In our proofs, we use and develop a new technique proposed in
recent paper [5].

For familiarly used terminology and notation, we refer the reader to the textbook [2]. An
element x of a Riesz space E is said to be a fragment! of another element y € E provided
x L (y—x). We write x C y to express that x is a fragment of y. It is not hard to see that
C is a partial order on E, called the lateral order, which coincides with the usual order < on
ET. The lateral supremum (or infimum) of a subset G C E, that is, the supremum (respec-
tively, infimum) with respect to the order C, is denoted by |J G (respectively, (1 G). For more
information on the lateral order see [5]. The notation z = x LI y for elements x, y, z of E means
thatz = x +y and x L y. For instance, if x C y then y = x U (y — x) is a decomposition to
disjoint fragments. The set §, of all fragments of an element e € E \ {0} is a Boolean algebra
with respect to the operations of taking the lateral supremum and infimum, zero 0 and unit e
(see [2, Theorem 3.15] for a positive e and [5, Proposition 3.4] for an arbitrary e). Moreover, §.
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is the lateral ideal and the lateral band, generated by e (see [4] for details).

We say that a net (x),ec4 in a Riesz space E order converges to a limit x € E if there is a net
(Ya)wea In E such thaty, | 0and |x, — x| < y, for some ay € Aand all « > g (write x, 5 x).
Remark that there is another notion of order convergence in the literature, where the index set
of the majorizing net (y,) can be different from A, however for our purposes these two notions
coincide (for laterally increasing nets, on the one hand, and for the notion of order continuity
for regular operators [1, Theorem 1.7], on the other hand).

Recall that a Riesz space E is said to be C-complete if every nonempty laterally bounded
subset G of E has a lateral supremum |J G € E. If a Riesz space E is either Dedekind complete
or laterally complete then E is C-complete [5, Corollary 5.8]. The Banach lattice C[0,1] is a
C-complete Riesz space which is neither Dedekind complete, nor laterally complete.

We do not know whether there is an atomless example of the kind. Note that some re-
sults on orthogonally additive operators on C-complete Riesz spaces were established in recent
paper [7].

We say that a net (x4 )4e4 in a Riesz space E horizontally converges to an element x € E and

x is a horizontal limit of (x,) and write x, I x provided (xy) is laterally increasing, that is,
xo £ xgasa < B, and Upea Xxo = x (equivalently, x, —+ x). The horizontal closure G (or

horizontal o-closure Cha) of a subset G of E is defined to be the set of all horizontal limits of nets
(respectively, sequences) from G. A nonempty subset G of E is said to be horizontally closed (or

horizontally o-closed) if éh = G (respectively, Eha = G).

Definition 1. A solid subset of a Riesz space E which is closed under multiplication by scalars
will be called a pre-ideal of E.

Obviously, every ideal of E is a pre-ideal of E. The set-theoretical union of two nontrivial
disjoint ideals of E provides a simple example of a pre-ideal which is not an ideal.

2 Measurable elements and the measurable part of a Riesz space

Recall that a Boolean algebra B is said to be measurable provided B is Dedekind o-complete
and there is a positive probability measure y: B — [0,1], that is, a function possessing the
following properties:

w1 =1
u(x) > 0forallx € B\ {0};
u(sup, x) = Yq H(xn) for every disjoint sequence (x,)5 ; in B.

Definition 2. Let E be a Riesz space. We say that an element e € E \ {0} is measurable if the
Boolean algebra §, of all fragments of e is measurable.

Recall that an element e # 0 of E is an atom if §. = {0, e} (actually, the original definition of
an atom differs from the given one, however the definitions are equivalent if E has the principal
projection property [6, Proposition 1.3]).

Definition 3. Given a Riesz space E, by the measurable part of E we mean the set Eneas Of all
measurable elements of E together with zero.
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To prove the following statement is an easy exercise.
Proposition 1. Let E be a Riesz space. Then the following assertions hold.
(i) Ifa is an atom of E then a € Epeas.
(ii) Forevery x,y € E, if x € Emeas andy C x then y € Epeas.
(iii) For every x,Y € Emeas, if x L y then x +y € Epneas.
(iv) Forevery x,y € E with |x| = |y|, the conditions x € Emeas and y € Emeas are equivalent.

Theorem 1. Let E be a Riesz space with the principal projection property. Then Emeas is a
o-ideal of E.

Although the idea of proof is clear, it needs some technical efforts to prove that Enmeas is
solid. In passing, we prove some lemmas which may have an independent interest. The first
one shows that in some cases the order convergence and order closure can be replaced with
the horizontal convergence and horizontal closure.

Lemma 1. Let E be a Riesz space with the principal projection property, I a pre-ideal of E,

(Xa)wea anetinl and x € E. If0 < x, T x then there exists a net (Y )y in I with y, LN

Proof. Set uy = (2x, — x)* and y, = Py, x for all « € A and show that (y4)sca possesses the
desired properties. By the definitions, y, C x for all &« € A. Since x, 1, one has u, 1 and hence
Yo T. Observe that 1, LN (2x — x)* = x. Hence, by [2, Theorem 1.48], y, = Py, x 25 Pex = x.

Thus, v, L> x. It remains to show that y, € I for all . Indeed, for any index a one has

Py, (2x4) = Yo = Pu, (%0 — X) = Poy,— )+ ((2%0 — x)T = (204 — x)7)
= P(Zxa—x)+(2xlx - x)+ = Puautx =1uy, >0,

which implies |yx| = Yo < Py, (2x4) < 2x, € I. Since I is solid, y, € I. O
Using [2, Lemma 1.37], we obtain the following consequence of Lemma 1.

Corollary 1. Let E be a Riesz space with the principal projection property and A a pre-ideal of
E. Then the order closure of A equals the horizontal closure of A, and the order o-closure of
A equals the horizontal o-closure of A.

Using standard terminology, by a o-ideal of a Riesz space E we mean a c-order closed ideal
of E. Below is another consequence of Lemma 1.

Corollary 2. Let I be an ideal of a Riesz space E with the principal projection property. Then
the band generated by I equals the horizontal closure T" of I, and the o-ideal generated by 1

equals the horizontal o-closure T of I. Hence, every horizontally closed ideal is a band and
every horizontally c-closed ideal is a o-ideal.

Lemma 2. Let I be a pre-ideal of a Riesz space E with the principal projection property. If I is
closed under disjoint sums then I is an ideal.
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Proof. Fixany 0 < x,y € I. It is enough to show that x +y € I. Setu := P(,_,)+(x +y) and
v:=x+y—u Sinceu T x+y, one has x +y = uUov. Our goal is to show that u,v € I.
Observe that (y —x)™ L (y —x)~ implies P,_,)+(y — x)~ = 0. Hence, P,_,+(y —x) =
Piy_xy+(y —x)" = (y —x)" > 0, which yields P(,_,)+x < Py, _,)+y < y. Therefore,

(y—x)
0<u= P(y,x)+(x +y) = Py _xy+x + Py x)+y < 2P _yy+y < 2y (1)
and analogously,
P(yfx)*(x_ky) < 2x. 2)
Then
by [1,p.39]
0<v= Px+y(x+y) —u = Pf(yfx)*(x"i_y) _P(yfxﬁ/\(yfx)*(x_'—y) 3)
by (2)
< P,(y,x)—(x —|—y) < 2x.
Since x,y € I, by (1) and (3) we obtain u,v € I. O

Now Corollary 2 and Lemma 2 imply the following lemma.

Lemma 3. Let I be a horizontally closed (or horizontally c-closed) pre-ideal in a Riesz space E
with the principal projection property, closed under disjoint sums. Then I is a band (respec-
tively, c-ideal) in E.

Proof of Theorem 1. We prove that B := Eneas satisfies the assumptions of Lemma 3. First we
prove that B is solid. Assume first x € E, e € Band 0 < x < e and prove that x € B. First show
that § is Dedekind o-complete. Given any sequence x, 1 in §x, we set e, = Py, e foralln € IN.
Obviously, e, 1 in §.. Since ¢, € F. and §, is Dedekind o-complete, there exists ey € F. such
thate, 1 eg.

Show that x,, = P, x for all n € IN. Since x,, C x, for every i € N one has x = x, V (x — x)
and hence x A ix, = (x, Nix,) V ((x — X)) A ixn) = x, V0 = x,,. Therefore, for every n,k,m €
IN one has

ke ANx Nkmx, = ke \ x, = xy,. 4)

Then by [2, Theorem 1.47] and the infinite distributive law, for every n € IN

P, x = @(x/\ke,ﬁ = C}(x/\k <; (e/\mxn)> = <; <; (x A\ ke N\ kmxy,) (i)xn. (5)
k=1

k=1 m=1 k=1m=1
Set xg = Peyx € §x. Since e, T eg, by [2, Theorem 1.48],

Xn © P, x T Peyx = xo.
Now consider the general case, x € E, e € Band 0 < |x| < [e]. Then the conclusion
x € B follows from the above particular case and (iv) of Proposition 1. So, the Dedekind
o-completeness of §y is proved.
Let ye: §. — [0,1] be a positive probability measure. We define a function i, : §x — [0,1]
by setting A = (ye(Px(e)))f1 and py(y) = Ape(Py(e)) for all y € Fx and show that jiy is a
positive probability measure on §y. Obviously, yyx(x) = 1. Let 0 < y € §y. Then

Pje=\/(eAny) >eny=y>0
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and hence, p.(Py(e)) > 0. So, the function y, is strictly positive. Now we show the r-additivity
of py. Let (x,)_; be a disjoint sequence in Fx. Set u, = \/}_; xx foralln € Nand u = \/;_; x,.
Since uy, 1 u, by [2, Theorem 1.48],

px(Un) = Apte (Pun(e)) T Adte (Pu(e)) = px(u). (6)
On the other hand,
patn) = Mie(Puy (@) = Ate( L] P (@) = Y Ape (P (@) = Y sl @)
k=1 k=1 k=1

By (6) and (7), Y571 #x(xn) = pix(u) and the o-additivity of py is proved. Thus, x € B and
so, B is solid.

Obviously, B is closed under multiplication by a scalar, and so, B is a pre-ideal. By (iii)
of Proposition 1, B is closed under disjoint sums. It remains to show that B is horizontally

o-closed. Letx € E, x, € Bforn € IN and x, L> x. Show that x € B. Set y; = x; and
Yn = Xy — Xu_1 for n > 1. Then (y,)S_; is a disjoint sequence with x = US5_;y» and y, € B by
(ii) of Proposition 1. Let for every n € N, p,,: §y, — [0,1] be a positive probability measure.
Then the formula

u(z) = Z 27" (zNyn), z € Fx

n=1

defines a positive probability measure y: §x — [0, 1] and so, x € B. O

The following simple example shows that the measurable part need not be a band in a
Dedekind complete Banach lattice.

Example 1. Let E = (s (') for an uncountable setT'. Then
Emeas = {X € loo(T): |supp x| < No},
which is not a band of E.
Definition 4. Say that a Riesz space E is
measurable provided all elements of E are measurable, that is, Emeas = E;
strictly measurable provided E has a measurable weak unit.

To show that strict measurability implies measurability, we need the following simple ob-
servation.

Proposition 2. Let E be a Riesz space. Then for every e € E the o-ideal generated by e equals
the principal band B, generated by e.

Proof. Denote by X, the c-ideal generated by e. Obviously, E, C X, C B,. By [2, Theorem 1.38],
B, = {x € E: |x| Anle| T |x|}, and hence, every x € B, equals an order limit of a sequence
from E,, and thus, x € X,. O

As a consequence of Theorem 1 and Proposition 2 we obtain the following statement.
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Proposition 3. Let E be a strictly measurable Riesz space with the principal projection prop-
erty. Then E is measurable.

Example 2. Let E = ¢o(T') for an uncountable set T. Then E is measurable but not strictly
measurable.

Recall that a Riesz space is said to have the countable chain condition (CCC, in short) provided
every disjoint set in E is at most countable.

Proposition 4. A strictly measurable Riesz space with the principal projection property pos-
sesses the countable chain condition.

Proof. Let D be a disjoint subset of E and e > 0 be a measurable weak unit of E. For every
d € D wesete; = Pje. Theney € F. and ey > 0, because e is a weak unit. Moreover, if d’ # d”
then ey L e;r and hence ey # eyr. Being a disjoint subset of the measurable Boolean algebra
Te, the family (e;) 4ep is at most countable, and so is D. O

3 Measurable Riesz spaces with the CCC

Following Fremlin [3], a band B of a Riesz space is said to be complemented provided
Bt = B. So, every projection band B (that is, E = B @ B') is complemented. For every
Riesz space E the set U/ of all complemented bands of E is a Dedekind complete Boolean al-
gebra with respect to B’ Ayy B” = B'NB", B' vy B" = (B'+B")*, 1, = E, 0,y = {0},
1 \u B = B+, B’ <y B” & B’ C B” [3,352Q]. If a Riesz space is Archimedean (which is
the case in every our statement) then every band of E is complemented [3, 353B]. So, for an
Archimedean Riesz space E we are going to consider the Boolean algebra U/ of all bands of E,
which is Dedekind complete by the above theorem.

We need the following result on embedding Riesz spaces in Lo(B), where B is a Boolean
algebra (for the definition of the Riesz space Lo (B) see [3, 364]).

Theorem 2 ([3, 368E]). Let E be an Archimedean Riesz space and U its band Boolean algebra.
Then E can be embedded as an order dense Riesz subspace of Ly(U).

Using Theorem 2, we obtain necessary and sufficient conditions on a Riesz space with the
principal projection property to have measurable Boolean algebra of bands.

Theorem 3. Let E be a Riesz space with the principal projection property. Then the following
assertions are equivalent.

1. The Boolean algebra U of bands of E is measurable.

2. E is measurable and satisfies the CCC.

3. E can be embedded as an order dense subspace of Ly(y) for some probability measure ji.
For the proof we need the following lemma.

Lemma 4. Let E be a C-complete Riesz space with a principal projection property and a weak
unit e > 0. Then every band B of E is a principal band B, ) generated by some unique
fragment T(B) T e. Moreover, the defined above function T: U — §. preserves disjointness,
where U is the Boolean algebra of bands of E.
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Before the proof we recall that the set-theoretical difference x \ y for fragments x, y of an ele-
ment ¢ € E is defined by setting x \ ¥ = xN (e — y) and equals x \ y = x — x Ny (see [5] for the
details).

Proof. Let B € U. Define a vector e* € §, by setting

e* =J(@.NB) (8)

(the lateral supremum in (8) exists by the C-completeness of E, because the set §, N B contains
zero and therefore is nonempty, and is laterally bounded from above by e).

Show that B = B,:. Suppose x € B and prove that x € B,«. With no loss of generality we
may and do assume that x > 0. Since x € E = B,, we have x Ane 1 x. By [2, Theorem 1.47],
Pre = \/;,_1(e Amx). Observe that Pre € F.N B and by (8), Pre < e*. Hence, using the
distributivity law [2, Theorem 1.8], for every n € IN we obtain

(e.9) (09) (09)
xAne=\/ (xAne)=\/ (xAn(eAmx)) =xAn\/ (e Amx)=xAnPe < xAne* € Be.
m=1 m=1 m=1

This yields x A ne T x € Be+.

Now suppose x € B,+ and prove that x € B. Again we assume additionally that x > 0. By
the assumptions, x A ne* 1 x. Then x A ne* € B and hence, x € B.

Show the uniqueness of the fragment e* C e such that B = B,+. Let By = By for some
x,y € Fe. If x # y then either xNy # 0 or yN x # 0 [5, Proposition 3.18]. Say, z := xNy # 0.
Then z € B, \ By, a contradiction.

It remains to show that T preserves disjointness. Let B/, B” be disjoint bands of E. In terms
of 7, this means that By gy N B(gr) = B'N B"” = {0}. Set z := 7(B') N T(B"). Since x € By for
all x € E, we obtain z € Br(g N By(r) = {0}, which yields z = 0, and so 7(B’) and 7(B") are
disjoint elements of 5.2 O

Corollary 3. Let E be a Dedekind complete Riesz space with a weak unit. Then every band of
E is a principal band.

Corollary 4. Let E be a laterally complete Riesz space. Then every band of E is a principal
band.

Proof. It is enough to prove that every laterally complete Riesz space has a weak unit. The
latter statement is easy to prove by showing that the lateral supremum of any maximal disjoint
set is a weak unit. O

Proof of Theorem 3. (1) = (3) follows from Theorem 2.

(3) = (2). Let J: E — Lo(i) be an order o-continuous lattice homomorphism for some
probability measure p. Since Lo(p) satisfies the CCC, so does E. Show that E is measurable.
Givenany e € ET \ {0} and x € F,, we set

Sy — HEUpPpP JX)
H) u(supp Je) -

2we draw reader’s attention that N means the lateral supremum in the definition of z, while N means the set-
theoretical intersection in the other places of the paragraph.
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It is immediate that 77: §, — [0, 1] is a probability measure. So, e is measurable.

(2) = (1). Let D be a maximal disjoint subset of E, which is at most countable by the
assumption. Let (a4)4ep be numbers a; > 0 with Y ycpa; = 1. Given any d € D, let
ta: 84 — [0, 1] be a positive probability measure. Then we define a positive probability mea-
sure y: U — [0,1] by setting

u(B) =Y ma(w(BNBy)), Bel, 9)

deD
where t = 1;(B N By) is the element of §,; such that BN B; = B; (see Lemma 4). We omit a
straightforward demonstration that (9) defines a positive probability measure. O
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Mu pA0cAiAXy€eMO BUMIpHI eAeMeHTH BeKTOpHOI rpaTku E, To6To Taxi enementue € E \ {0}, ars
sKux 6yaeBa aarebpa §. dparMeHTiB eAeMeHTa € € BUMipHO0. 30Kpema, MY AOBOAVIMO, IIT0 MHOXMI-
Ha Epeas BCIX BUMIpHMX €A€MEHTiB BeKTOPHOI I'paTKy E, 1110 Mae rOAOBHY POEKTMUBHY BAACTUBICTD,
pas3oM i3 HyAeM YTBOpIoe o-iaean B E. [HIIMI pe3yAbTaT CTBEPAXKYE, IIO AAsI AOBIABHOI BEKTOPHOI
rpaTky E 3 rOAOBHOO ITPOEKTMBHOIO BAACTUBICTIO HACTYIIHI YMOBM €KBiBAACHTHI.

(1) Byaesa aare6pa U Bcix cmyT B E € BumMipHOIO.

(2) Emeas = E Ta E 3aA0BOABHSIE YMOBY 3AiU€HHOCTI AQHIIFOTIB.

(3) BexTopHa rpatka E i30MOpdHO BKAAAAETHCS, SIK IOPSIAKOBO IIiABHA MIATpaTKa BEKTOPHOI
rparku Lo(p) AAST AesIKOL MOBIpHICHOI Mipu J.

Kntouosi cnosa i ¢ppasu: BeKTOpHa I'paTka, 6yaeBa aarebpa CMyT.



