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inclusions in Banach spaces
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We show the existence result of a mild solution for a semilinear functional differential inclusion,
with viability, governed by a family of linear operators. We consider the case when the constraint is
moving.
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Introduction

Let E be a separable Banach space with the norm || - ||. For a segment I in R, we de-
note by C(I,E) the Banach space of continuous functions from I to E equipped with the
norm ||x(-)||e := sup {|[x(t)|| : t € I}. For a positive number a, we put C; := C([—4,0],E)
and for any t € [0,T], T > 0, we define the operator T(t) from C([—a, T],E) to C, with
(T()(x(:)))(s) := (T(D)x)(s) = x(t +5), 5 € [a,0].

In this paper, we shall prove the existence of solutions to the following semilinear functional
differential inclusion

x(t) € A(t)x(t) + F(t, T(t)x) a.e.on [0,1],
x(s) = ¢(s), Vse[—a,Q0], (1)
x(t) € C(t), Vtelo,t],

where F is a multifunction with closed values, measurable with respect to the first argument
and Lipschitz continuous with respect to the second argument, C is a multifunction with lo-
cally closed graph, {A(t) : t € [0, T]} is a family of densely defined linear operators and ¢ is a
given function in C,.

O. Carja and LI Vrabie [5] have studied the problem x(t) € Ax(t) + F(x(t)), where F is
a nonempty, closed, convex, and bounded valued mapping which is weakly-weakly upper
semi-continuous. They have obtained a necessary and sufficient condition for the viability of
a set K. In [4], O. Carjd, M. Necula and LI. Vrabie have proved another result for the same
problem above.

Q. Dong and G. Li [8] have established the existence of solutions for (1) in the case, when
A(t) = A, F is a Carathéodory single valued-map and C :]a, b[— 2F is a set valued-map with
closed values and such that, for each ty €]a,b[ and x € C(tp), there exist ¥ > 0 and T €]tg, b|
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such that B(x,r) N C(t) is nonempty for all t € [ty, 7], and the mapping t — B(x,r) N D(t) is
closed on [y, T].

V. Lupulescu and M. Necula, in [9], have established the existence of solutions for (1), when
A(t) = A, C(t) = C and F is integrably bounded, measurable with respect to the first argu-
ment and Lipschitz continuous with respect to the second argument. The authors have used
the following tangential condition

hgrg+ inf%e(S(h)q)(O) + /;HI S(t+h—s)F(s, ¢)ds, C) =0, VY(t¢) € ab[xKy,
where e(+, -) denotes the Hausdorff’s excess and S(-) is the Cp-semigroup generated by A.

It remains to notice that many viability results for (1), in the case A = 0, have been proved
in the papers [1,2] and the references therein.

This work extends results, which are presented in [1,2,8,9]. Indeed, we get an existence
result, in a separable Banach space, for semilinear functional differential inclusions with a
constraint, which depends on time. The right-hand side verifies the weaker hypotheses. As
is known, viability problems need tangential conditions. For the problem (1), we shall use a
tangency condition, which is weaker than that used in [9].

The paper is organized as follows. In Section 1, we recall some preliminary facts that we
need in the sequel. In Section 2, we prove the existence of solutions for (1).

1 Notations and Preliminaries

For measurability purpose, E is endowed with the o-algebra B(E) of Borel subsets for the
strong topology and [0, 1] is endowed with Lebesgue measure and the o-algebra of Lebesgue
measurable subsets. For x € Eand r > 0, let B(x,r) := {y € E : ||y — x|| < r} be the open
ball centered at x with radius r and B(x, r) be its closure and put B = B(0,1). For ¢(-) € C,,
let By(¢(+),7) := {9() € Ca : [|¢(-) — ¥()|lo < r} and let B,(¢(-),7) be its closure. For
x € E and for nonempty subsets A, B of E, we denote d(x, A) := inf{|ly — x|| : y € A},
e(A,B) := sup{dp(x) : x € A} and H(A, B) := max{e(A,B), e¢(B,A)}. We note L(E) the
space of bounded linear operators on E. For any set-valued map F, we denote Gr(F) its graph.
A multifunction is said to be measurable if its graph is measurable. For more details on mea-
surability theory, we refer the reader to [7]. Now, let {A(t) : D(A(t)) — E, t € R"} be a
family of defined linear operators on E, where D(A(t)) is the domain of A(t). We assume that
foreach s € R" and x € E, there is a unique solution v : [s, +00[— E for the evolution equation

v'(t) = A(t)u(t), te[s, +oo,

v(s) = x.

()

In this case an operator T(-, -) can be defined as
T:A={(ts) €R*:0<s <t} — L(E), T(ts)(x)=0o(t),

where v is the unique solution of (2). The operator T (-, -) is called the evolution operator gener-
ated by the family {A(t) : + € RT™}. It is clair that each operator T(:,-) satisfies
T(s,s) = Igand T(t,r)T(r,s) = T(t,s) forall 0 < s < r < t. Along this work, we con-
sider an evolution operator T(:,-), generated by a family {A(¢) : + € R} of defined linear
operator on E, which satisfies
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@ ITEs) e <L V(Es) €A,

(ii) (¢,s) — T(t,s) is continuous.

Definition. By a mild solution of semilinear functional differential inclusion (1), we mean a
continuous function x(-) : [—a, ] — E such that x(-) = ¢ on [—a,0] and

t
x(t) = T(t,0)9(0) + [ T(t,s)f(s)ds, Ve[0T,
where f is an integrable function such that f(t) € F(t, T(t)x), for almost every t € [0, T].
Let us recall the following Lemmas that will be used in the sequel.

Lemma 1 ([10]). Let G : [a,b] — 2F be a measurable multifunction and y(-) : [a,b] — E a
measurable function. Then for any positive measurable functionr(-) : [a,b] — R, there exists
a measurable selection g(-) of G such that for almost all t € [a, b]

18(#) =y ()| < d(y(t), G(t)) +r(b).
Lemma 2 ([3]). Let < be a given preorder on the nonempty set B and let ¢ : B — R U {+o0}
be an increasing function. Suppose that each increasing sequence in B is majorated in B. Then,
for each xy € B, there exists x1 € B such that xy < x1 and ¢(x1) = ¢(x) if x; < x.

The above function ¢, in [3], is supposed to be finite and bounded from above, but this
restriction can be removed by replacing ¢ by the function x +— arctan ¢(x) (see [6]).
In this paper, we shall use the following hypotheses.

(H1) C : [0,1] — 2F is a set-valued map with locally closed graph and K : [0,1] — C, is a
set-valued map defined by K(t) = {¢ € C,: ¢(0) € C(t)}.

(H2) F: Gr(K) — 2F is a set-valued map with nonempty closed values satisfying:

(i) t — F(t, 1) is measurable,
(ii) there existsa functionm(-) € L'([0,1],R") such thatforallt € [0,1]and ¢, ¢ € K(t)
H(E(t, ), E(t,¢)) <m(t)[[p — ¢lle,
(iii) there exist g(-), p(-) € L}([0,1], R*) such that forall t € [0,1] and ¢ € K(t)

IE(t )|l == sup |yl <g(t) +p(t)[[¢]le-
yeE(ty)

(H3) (Tangential condition) For all measurable functionv(-) : [0,1] — E, forallp > 0,t € [0, 1]
and ¢ € K(t), there exists f € S;,(1) such that

1 t+h
lim inf —d<T(t +h,£)Y(0) + / T(t+h,s)f(s)ds, C(t + h)) =0,
h—0t+ h t

where S, (1) is the set of all f € L'([0,1], E) such that f(s) € F(s,¢) forall s € [0,1]
and ||f(s) —v(s)|| < d(v(s),F(s,¢)) + p for almost all s € [0, 1].
Remark. We should point out that, if F satisfies the condition (H2), by Lemma 1, the set S, , (¥)
is nonempty.
We shall prove the following theorem.

Theorem. If assumptions (H1)-(H3) are satisfied, then for all ¢ € KC(0), there exist T > 0 and
amap x(-) € C([—a, 7], E) such that x(-) is a mild solution of (1).
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2 Proof of the main result

Let ¢ € K(0) and set xyg = ¢(0). Since Gr(C) is locally closed, there exists r > 0 such that
Gr(C) N B((0,xp), ) is closed. For ¢ > 0 put

71(€) := sup {P €l0e] : [lo(t) — (k)| <& [IT(tr,51) = T(t2,82)ll g (p) <€

and '/ S)(lolleo +7))ds| <e, if [t —t] <p and |51 — 57| < p}

Let 74, » > 0 be such that

sup ||T(t,0)xo — xo|| + a7 +/ $)+p(s)(|@llee +7))ds < = and / t)dt < 1. (3)

0<t<ny

Put T = inf{1y, &, (1/2)5(r/2),7/2,1}. Forall 0 < e < aand v(-) € L([0,1], E), set B(g, v(-))
the set of all 3-tuple (f,x,0),, where d €]0,7], f(-) € LY([0,d,E), x(:) : [~a,d] — Eisa
continuous function and 6(-) : [0, d[— [0, d] is a step function such that:

(i) f(t) € F(t,T(O(t))x), 0 < t—06(t) < (1/4)n(e/4), x(0(t)) € C(0(t)) and T(6(t))x €
Ba(g,r) forallt € [0,d],

(ii) x(d) € C(d), T(d)x € Ba(g,r), x(-) = ¢(-) on [—a,0] and x(t) € B(xq,r/2) for all
te€0,d],

i) () — o(t)]| < d(o(t), F(t, T(0(£))x)) + ¢ for almost all ¢ € [0,d],
(iv) forallt € [0,d]
x(F) — T(t,0)xo — /0 T(t,5)f(s) ds

< te.

Proposition. If assumptions (H1)-(H3) are satisfied, then for all 0 < ¢ < a, and v(-) €
LY([0,1], E), there exists at least one (f,x,0), € B(g,v(-)).

Proof. Let 0 < e < a and v(-) € L!([0,1],E) be fixed. Put x(t) = ¢(t) Vt € [—a,0]. By the
tangential condition, there exist fy € Sy¢(¢) and hy €]0,inf{7, (1/4)1(e/4)}], such that

< (ho,0) xO+/ T(ho,s)fo(s) ds, C(h0)> <
ho

Then there exists yy € C(hg) such that

N | o

<e.

ho
Yo — T(ho, 0)x0 — /0 T(ho,s) fo(s) ds

1
ho
Set
1 ho
Up = ho <y0 — T(ho,0)x — /0 T (ho,s)fo(s) ds).
We get
yo = T(ho,0)x0 + houo + / T(ho, s)fo(s) ds
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Set dy = hg and
xo(t) = T(t,0)x0 + tug + /Ot T(t,s)fo(s)ds Yt € [0,dp.
Remark that, for all ¢ € [0, do]
Jro0) ~ xoll < IT(4,0)30 — x| +hoa + [ (s(5) + p(6)l gl

< sup |T(,00x0 — xoll +doa-+ [ (3(6) + pls)([lglls +1))és <

0<t<dy

N =~

then xo(t) € B(xo, ) forall t € [0,dp]. Also, for all t € [0, dy]

< te.

xo(t) — T(t,0)x0 — /0 Tt 8) fo(s) ds

Now, let s € [—a,0]. If s < —d, we have

IT(do)x(s) — @(s)[| = l[x(s +do) — @(s)|| = [l@(s +do) — @(s)|| <1,
because dy < %17(%) If s > —dy, one has

IT(do)x(s) — @(s)[| = llx(s +do) — @(s)[| < l|lx(s +do) — @(O)[| + [lo(s) — @(0)]| < % + % =7,

because 2|s| < 77(r/2) and x(s + do) € B(xp,7/2). From the above, we conclude that T(dg)x €
Ba(¢,7). Next, set 6y(t) = 0 forall t € [0,dg]. It is clair that (fo, x0,600)4, € B(e, v(-)). Hence
B(e,v(-)) # @. Now, consider the following preorder:

(f1,%1,01)a, = (f2,x2,02)a, & d1 <do,  f1 = faljoay,y %1 = %2l04,]/

and 61 = 02/, Let ¢ : B(e,v(-)) — R be the function defined by ¢((f,x,0)s) = d,
V(f,x,0); € B(ev(-)). By definition, ¢ is increasing on B(e, v(-)). On the other hand, if
((fi,xi,0i)a,)ien is an increasing sequence in B(e, v(-)), we construct a majorant (f, x,0); of
((firxi,0:)a,)ien as follows: d = lim;d;, f(t) = fi(t), 0(t) = 6;(t) forall t € [0,d;[, x(-) = ¢()

n [—a,0], x(t) = x;(t) for all t € [0,d;]. We claim that (f,x,0); € B(e,v(-)). Indeed, for all
i € N, we have x(d;) = x;(d;) € C(d;). Then (d;, x(d;)) € Gr(C) N B((0,xq),7), foralli € IN.
Since Gr(C) N B((0, x0), ) is closed, we conclude that (d, x(d)) € Gr(C) N B((0,xp), 7). By the
same argument, we get x(d) € B(xo,7/2). For (iv), it is clair that

x() — T(t,0)x0 — /OtT(t,s)f(s)ds <te, Vitel[od].

In addition, by the fact that the function T(-, -) is continuous, one has

d

x(d) — T(d, 0)xo — /0 T(d,s)f(s)ds||.

lim =
i—+o0

d;
x(d;) — T(d;, 0)xo — /O T(d;,s)f(s) ds

Hence, we get
d

x(d) — T(d,0)xp — /0 T(d,s)f(s) ds

The other assertions are obvious. Next, for applying Lemma 2, we need the following claim.

< de.
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Claim 1. Forall (f,x,0)4 € B(e,v(-)) withd < 7, there exists (f, %,0); € B(e,v(-)) such that
(f,x,0)a = (f,%,0)7and ¢((f,x,0)a) < ¢((f,%,0),).

Proof. Let (f,x,0); € B(e,v(-)) withd < 7. For T(d)x € K(d), by the tangential condition,
there exist f € S, (T (d)x) and h €]0,inf{t —d, (1/4)n(e/4)}], such that

1
h

N[ m

( (d+ 1, d)x / T(d + h,s)f(s) ds, C(d+h)>§

Then there exists y; € C(d + h) such that

1 d+h ~
1 = T(@+h,d)x(d) —/d T(d+h,s)f(s)ds|| <.

Set
Uy = % <y1 ~T(d+h,d)x(d) — /;M T(d +h,s)f(s) ds> .

We have
d+h

Y1 = T(d + I, d)x(d) + huy +/ T(d + h, ) f(s) ds
Next, setd =d +h,
%(t) =T(t,d)x(d) + (t —d)ug + /dt T(t,s)f(s)ds, Vteldd].
We define f, 0 and # as follows: f(t) = f(t), 0(t)

forall t € [d,d], x(-) = ¢(-) on [—a,0], x(t)
t € [d,d]. Now, for all t € [d,d ], we have

= 0(t) forall t € [0,d[, f(t) =
x(t) forall t € [0,d] and x(t) = %(t) for all

t

%(t) — T(t,0)x0 — / T(t,5)f(s) ds

0

H T(t,d)x (t—d u1+/ (t,8)f(s)ds — T tO)xo—/OtT(t,s)f(s)ds

~|r td<<d> (0%~ [ <ds>f<>ds) (t — dyu

< Tt d)l|gqpyde + (¢ — d)e < te

and by (3)
J(6) — xoll < [2(6) = T(1,0)x0 — [ T(t,5)7() | + HT(t,o>xo vt [ T(9)f(s) ds
<te+ sup [IT(s,0) )l + [ () + peITEE) I
< sup 1T 00%0 w0l +av + [ (3(5) + p(s)(lglln + 7)) < 5

then %(t) € B(xo,r/2) forall t € [0,d]. Now, lets € [—a,0]. If s < —d, we have

IT(d)x(s) = @(s)I| = %(s +d) = (s)]| = llo(s +d) — p(s)[| < 7.
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If s > —d, one has

IT(d)x(s) = @(s)|| = [[%(s +d) — @(s)|| < [|X(s +d) — @(O)]| + [[@(s) — @(O)]| < 7.
Hence T(d)% € Ba(g, 7). Finally, we conclude that (f,%,0); € Ble,v(-)), (f,x,0)4 = (f,%0);
and ¢((f, x,0)a) < @((f, %,0)7)- O

Now, we are ready to complete the proof of proposition. From Lemma 2, there exists
(f,x,0)0 € Bleo() such that ¢((f,x,60)) = ¢((f,%0);) and (f,x0)s = (f%0)
for all (f,x,0); € B(g (). Moreover, if ¢((f,x,0);) < T, by the Claim 1, there exists
(f,%,0); € B(e,v(-)) such that (f,x,0)s =< (f,%,0);and ¢((f,x,0)s) < ¢((f,%,0);). Hence,

o((f,%,0)4) = . O

In the next, we will prove our theorem. Let (¢,),>1 be a strictly decreasing sequence of

positive scalars such that 0 < ¢, < a foralln > 1 and OZo: en < oo.In view of Proposition,
n=1

we can define inductively sequences (f,(-)),>1 C L'([0, T[, E), (x1(-))u>1 C C([~a, 7], E), and

(6n(-))n>1 € S([0, 7], [0, T[), where S([0, T[,[0,7[) denotes the space of step functions from

[0, T[ into [0, T[ such that:

@) fu(t) € F(t, T(0,(t))xn), x1(04(t)) € C(0n(t)), T(0(t))xn € Ba(,7) and 0 < t — 0, (t) <
(1/4)n(en/4) forallt € [0, T],

(b) xu(7) €

) € C(t), T(t)xn € Ba(e,r) and x,(t) € B(xo,7/2) forall t € [0,7] and x, = @ on
[—a,0],

© [l fusa(t) = FulOIl < dCfu (), E(t, T(Brs1()%n41)) + 1 for almost all £ € [0, 7],

(d) forallt € [0, 7]

xa(t) = T(t,0)xp — /0 "T(t ) fu(s) ds

< gut.

In the rest of this paper, we take 6,,(7) = 7 for all n > 1 and we denote the modulus continuity
of a function ¢ defined on interval I of R by

w(yp, 1, e) :=sup{||p(t) —p(s)|| :s,t €l |s—t|<e}, e>0.
Claim 2. Forallt € [0, T]

1T (6 (£))2n = T(On41(8)) Xnt1lloo < €06 + [|Xn41() = xu()lloos

where

6 =4+ xoll + [ (3(5) + p(s) gl + 1)) ds.
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Proof. First, for t,t' € [0, 7] with0 < ¢ —t < (1/2)n(e,/4), one has

2n1.(8) = X2 ()] <

bra(6) = T — [ T(6)funr(5)ds

tl

+ ' T(t,0)%0+ | T(4,5) fsa () ds — T(F,0)xp — | T s (s) ds

/

Y () = T(,0)x0 — /O T(¢,5) fusn () ds
< 2e,41 + || T(4,0) = T(¢,0) |l (k) [l x0l

+ L1705 ~T) o Wfra Ol ds + [ 1T e Ufrn Ol ds
<2601+ eallvoll +n [ (5(5) + p(e) (gl + 1)) s

+ [ (5(6) 4 p)lplle + 1)
Ssn(3+uxou+/o (565) + Pl + 1) s ).

_|_

Hence,

(01,107, 31(F)) < e (s+ Ixoll+ [ (565 +p<s><n<onoo+r>>ds). @
Now, for all ¢ € [0, 7], we have

IT(0ns1(t))Xn41 — T(6n(t))Xnlloo = P 1041 (Bn1 () +5) = X (0n(£) +5) ||

< sup [ Xug1(Bnr1(f) +5) — 2042 (0n(t) +5)
s€[—a,0]

+ sup [[xXp41(00(t) +5) — x4 (0n(t) +5)||

s€[—a,0]

< (a0 =0t 31(2)) + sup aia(s) = xls)]

s€[—a,T]
< (51 () [-0,0 () + 0 (xua (), 0,7 31 (5)
+ xn+1(-) = 20()l o0
< St en(3+ ol + ) + PNl +17) )

+ X041 (+) — xn () [|eo
< el + ”xn+1('> - xn(')”oo'

Now, from (a) and (c), we deduce for almost all € [0, 7|

fasa(8) = fult)] < H(P(t (60 (1)), Flt T(001())%n51)) + nin

< m(t) I T(6n (1)) xn — T(Our1(t))Xns1)lloo + €nt1 (5)
< ( )8”5+m( )”xn—i-l(') _xn(')Hoo + €n41-
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On the other hand, for all t € [0, T], we have

1)) = 5 (O] < |[%0ea(6) = T(,0)%0 = [ T(6,5)fren(s)ds

-4h@mm+ﬁ%@@mﬂ@%—T@mm—g%@@ﬁ@Ws

+

X () — T(t,0)x0 — /0 T 8) fu(s) ds

sz%+AWmH@wﬁmmws

< Bty + €0 /OTm(s) ds + %n1(-) = % ()l /OTm(s) ds.

Thus (316
en(3+ T
1 () = ()l < 22, L= [Cm(s)ds, ©
Therefore we have, for n < m,
() = (ko < 30 Y ¢

j=n

So the sequence {x,(-)}:" is a Cauchy sequence, then it converges uniformly on [0, 7] to a
function x(-). Since all functions x,(-) agree with ¢ on [—a, 0], we can obviously say that x,(-)
converges uniformly to x(-) on [—a, T], if we extend x(-) in such a way that x(-) = ¢ on [—4,0].
Also, by the following inequality

en(8a (6)) — 2() ]| < (a1, 10,7, 31 (L)) + llea6) = 20,

we deduce that x,(6,(-)) converges uniformly to x(-) on [0,7]. By construction, we have
(0, (t), 20 (0,4(t))) € Gr(C) NB((0,x0),r) for every t € [0, 7], then x(t) € C(t) forall t € [0, T].
Now, we return to the relation (5). By the relation (6), for almost all ¢ € [0, T[, we get

Ifrer) = a0l < en(mle) (54 257 ) +1).

This implies (as above) that { f,(t)}_; is a Cauchy sequence and (f,(t)), converges to f(t) for
almost all t € [0, T[. Further, since

£ < &) +p(H)(ll¢lleo +1)), VEe[0,T],
by (d) and by the dominated convergence theorem, for all ¢ € [0, T], we get

x(t) = lim xp(#) = lim (T(t,O)x0+ /0 Tt 5) fn(s)ds> — T(t,0)x0 + /0 T(L5)f(s)ds.

n—oo n—oo

In the rest, we will show that f(t) € F(t, T(t)x) a.e on [0, 7). First, let t € [0, T]. By (4), we have

1 /e,
T (1) = T(Esallo = _sup_[lx0(6(t) +5) = a(t+ )| < (0, [0, 7), 50 () )

<w(p 00 30(5)) + (w07 20(%))

< %+en<3+ [El +/OT (3(s) +p(s)(|]q)|]oo+r))ds> < e,6.
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Hence || T (0, (t))xn — T(f)Xn||c converges to 0 as n — +oo. Therefore, since the uniform con-
vergence of x,,(-) to x(-) on [—a, T] implies that T(t)x, converges to T(t)x uniformly on [—a, 0],
we deduce that T(0,(t))x, converges to T(t)x in C,. Now, observe that by (a),

d(f(t), F(t, T(t)x)) < H(F(t, T(0n(t))xn), F(t, T(£)x)) + [|£(£) = fu(®)]]
< m(B)[T(6n(£))xn — T(E)x[leo + I f(£) = fu(B)]

for almost all t € [0, 7[. Since the last term converges to 0, we get f(f) € F(t, T(t)x) a.e on [0, T|.
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