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Evolution pseudodifferential equations with analytic symbols
in spaces of S type

Horodets’kyi V.V., Martynyuk O.V.

A nonlocal multipoint by time problem for an evolution equation with a pseudodifferential

operator is studied. This operator is treated as an infinite order differentiation operator in gen-

eralized spaces of S type. We consider the case when the initial condition of the problem is an

element of an ultradistributions type space and the nonlocial condition contains pseudodifferential

operators. The solvability of such problem is established, the properties of the fundamental solution

are investigated, the analytical representation of the solution is found.
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Introduction

Pseudodifferential operators (PDO) and equations with pseudodifferential operators are

closely related to important problems of analysis, modern mathematical physics, probabil-

ity theory, fractal theory, quantum field theory etc. The class of pseudodifferential operators

includes differential operators, fractional differentiation and integration operators, convolu-

tions and so on.

A wide class of PDO can be formally represented as A = I−1
σ→x[a(t, x; σ)Ix→σ], {x, σ} ⊂ R,

t > 0, where a is the symbol of the operator A that satisfies certain conditions, I, I−1 are

direct and inverse Fourier or Bessel transform respectively. If the symbol a is an entire even

function of the argument σ, then the evolution equations with the operator A also con-

tain singular differential equations, in particular, the equations with the Bessel operator

Bν = d2/dx2 + (2ν + 1)x−1d/dx, ν > −1/2, which in its structure contains the expression

1/x and is formally represented as Bν = F−1
Bν

[−σ2FBν ], where FBν is the Bessel integral trans-

formation. If a(t, x; σ) ≡ P(t, x; σ), where P is a polynomial of the variable σ for fixed t, x,

which satisfies the condition of “parabolicity”, such equations belong to parabolic equations if

Ix→σ = F is a Fourier transform, or to B-parabolic equations if Ix→σ = FBν
. B-parabolic equa-

tions are degenerated at the boundary and are close in their internal properties to uniformly

parabolic equations.

The theory of linear parabolic and B-parabolic equations with partial derivatives origi-

nates from the study of the thermal conductivity equation. The classical theory of the Cauchy

problem and boundary value problems for such equations and systems of equations is con-

structed in the works of I.G. Petrovsky, S.D. Eidelman, S.D. Ivasyshen, M.I. Matiychuk,
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M.V. Zhitarashu, A. Friedman, S. Teklind, V.O. Solonnikov, I.A. Kipriyanov, V.V. Krekhivskyi

and others. The Cauchy problem with initial data in the spaces of generalized func-

tions such as distributions and ultradistributions was studied by G.Ye. Shilov, B.L. Gurevich,

M.L. Gorbachuk, V.I. Gorbachuk, O.I. Kashpirovsky, S.D. Ivasyshen, Ya.I. Zhytomyrskyi,

V.V Gorodetskyi, V.A. Litovchenko and others.

Many mathematicians have studied the Cauchy problem for evolution equations with PDO,

using different methods and approaches, e.g. M. Nagase, R. Shinkai, C. Tsutsumi, M.A. Shu-

bin, M. Taylor, L. Hermander, A.N. Kochubey, S.D. Eidelman, Y.A. Dubinsky, B.Y. Ptashnyk,

M.I. Matiychuk, M.I. Konarovska etc. Important results on the solvability of the Cauchy prob-

lem in different functional spaces are obtained. In this case, the initial functions often have

features at one or more points and allow regularization in certain spaces of generalized func-

tions such as Sobolev-Schwartz distributions, ultradistributions, hyperfunctions and others.

Thus, the Cauchy problem for these equations has a natural formulation in the classes of gen-

eralized functions of finite and infinite orders.

In this paper, we investigate the problem, which can be understood as a generalization of

the Cauchy problem, when the initial condition u(t, ·)|t=0 = f is replaced by the condition

m

∑
k=0

αkBku(t, ·)
∣∣
t=tk

= f ,

where t0 = 0, {t1, . . . , tm} ⊂ (0, T], 0 < t1 < t2 < · · · < tm ≤ T, {α0, α1, . . . , αm} ⊂ R, m ∈ N

are fixed numbers, B0, B1 . . . , Bm are pseudodifferential operators built on certain functions

(symbols) g0, g1, . . . , gm (if α0 = 1, α1 = . . . = αm = 0, B0 = I is the identity operator, then we

obviously have a Cauchy problem). This condition is interpreted in the classical sense or in the

weak sense if f is a generalized function, i.e. as a limit relation

m

∑
k=0

αk lim
t→tk

〈Bku(t, ·), ϕ〉 = 〈 f , ϕ〉

for an arbitrary function ϕ from the test space (here 〈 f , ·〉 denotes the action of the functional

f on the test function). This problem refers to nonlocal multipoint by time problems for par-

tial differential equations. A detailed review of works on nonlocal problems for differential-

operator equations and partial differential equations is given in [9]. Nonlocal by time prob-

lems, in turn, refer to nonlocal boundary value problems that arise when modeling many

processes and problems of practice (see, for example, [1, 2, 14, 18]). Such problems include

problems that are studied, for example, in the papers [16, 17].

At present, the nonlocal multipoint time problem has not been studied in the case of evo-

lution equations with PDO operating in spaces of type S, the symbols of which are functions

that allow analytic extension into the whole complex plane and satisfy a certain condition of

“parabolic”, and the function f in the corresponding condition is an element of space of type

S′ that is topologically dual of the space of type S.

Note that spaces of type S are often used in the study of the problems of uniqueness classes

and classes of correctness of a Cauchy problem for partial differential equations and consist

of infinitely differentiable on R functions, whose behavior on the real axis are characterized

by mkn = supx∈R
|xk ϕ(n)(x)|, {k, n} ⊂ Z+, where the double sequence {mkn} satisfies certain

conditions. I.M. Gelfand and G.E. Shilov (see [4]) investigated the case mkn = kkαnnβ, α, β > 0;
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spaces of type S in this case are denoted by the symbol S
β
α and consist of infinitely differentiable

functions on R, which together with all their derivatives decrease as |x| → +∞ faster than

exp{−a|x|1/α}, a > 0, x ∈ R.

In the works [5, 6, 10–12, 15], it is established that spaces of type S and S′ are natural sets of

initial data of a Cauchy problem for wide classes of equations with partial derivatives of finite

and infinite orders, where the solutions are entire functions by space variables. For example,

for the heat equation ∂u/∂t = ∂2u/∂x2 the fundamental solution of Cauchy problem is the

function G(t, x) = (2
√

πt)−1 exp{−x2/(ut)}, t > 0, which as a function of x is an element of

space S1/2
1/2 (see [12, p. 46]), that refers to spaces of S type.

In this article, we investigate the nonlocal multipoint by time problem for the equation

∂u/∂t = Agu, (t, x) ∈ (0, T] × R in S type spaces, which is constructed by sequences

mkn = akbn, that defined by certain conditions. Here Ag is pseudodifferential operator in S

type spaces with analytical symbol g, which can also be understood as an operator of differen-

tiation of “infinite order”:

Ag = F−1
σ→x[g(σ)Fx→σ ] =

∞

∑
k=0

ck(id/dx)k ,

function g is a symbol of operator Ag, which satisfyies certain conditions that generalize the

known condition of “parabolic” for parabolic pseudodifferential equations.

In Section 1, we define the spaces of type S and S′, multiplier and convolutor in spaces

of type S. In Section 2, the correctness of the definition of the operator Ag in generalized

spaces of S type as an operator of differentiation of finite order is proved and its continuity is

proved. In Section 3, a property of the fundamental solution of a nonlocal multipoint by time

problem for the specified equation is established, the solvability of the problem is proved; the

representation of the solution in the form of a convolution of the fundamental solution of the

problem with the initial generalized function is found.

1 Generalized spaces of S and S
′ type

I.M. Gelfand and G.E. Shilov in the well-known monograph [4] proposed a method of con-

structing functional spaces of infinitely differentiable functions on R, which impose certain

conditions for decreasing at infinity and increasing of derivatives when the order is increas-

ing. These conditions are given by the inequalities |xk ϕ(n)(x)| ≤ ckn, {k, n} ⊂ Z+, where {ckn}
is a double sequence of positive numbers. If these numbers change randomly together with

the function ϕ, then we have Schwartz’s space S = S(R) of rapidly decreasing on R functions.

If ckn = akbn, where {ak : k ∈ Z+}, {bn : n ∈ Z+} are some sequences of positive numbers,

then we have generalized S type spaces, which are denoted by Sbn
ak

. In the monograph [4], the

case ak = kkα, α > 0, bn = nnβ, β > 0, was studied in detail; the corresponding spaces are

called S spaces and are denoted by S
β
α . In [7], topological structure of the spaces Sbn

ak
, proper-

ties of functions, basic operations in such spaces were studied. Known spaces of the W type,

introduced by B.L. Gurevich [8] (see also [3]), in which convex functions are used instead of

power functions to characterize the behavior of functions at infinity, are also included in the

spaces Sbn
ak

with the specific choice of sequences {ak} and {bn} (see [13]).
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We will focus on the spaces Sbn
ak

, which are constructed by the sequences of the form

{bn = n!ρn : n ∈ Z+}, {ak = k!dk : k ∈ Z+}. Here {ρn : n ∈ Z+}, ρ0 = 1, is

a sequence of positive numbers having the properties: a) it is monotonically increasing;

b) ∃ cb > 0 ∃ γ1 ∈ (0, 1) ∀ n ∈ N : ρn−1/ρn ≤ cbnγ1 ; c) limn→∞
n
√

ρn = 0; d) ∀ ε > 0 ∃ cε > 0

∀ n ∈ N : ρn ≥ cεε
n/nn. The above sequence {dk : k ∈ Z+}, d0 = 1, also has properties like

a)–d), e.g. condition b) have the form: ∃ ca > 0 ∃ γ2 ∈ (0, 1) ∀ k ∈ N : dk−1/dk ≤ cakγ2 .

The sequence ρn = (nβ)−nβenβ, where β ∈ (0, 1) is a fixed parameter, is the example of a

sequence {ρn} with properties a)–d). Let us check, for example, the property d). We have

ρn =
enβ

(nβ)nβ
=

enβ

(nβ)nβ

[n(1 − β)]n(1−β)

[n(1 − β)]n(1−β)

en(1−β)

en(1−β)

=
en

nn

1

[ββ(1 − β)1−β]n
[n(1 − β)]n(1−β)

en(1−β)
=

en

nn

1

ωn
sup
λ≥0

λn

exp{λ1/(1−β)}
,

where ω = ββ(1 − β)1−β
< 1. If we take an arbitrary ε > 0 and put λ = ε, then we get the

inequality ρn ≥ cεε
n/nn, where cε = exp{−ε1/(1−β)}. Note that condition b) for this sequence

is satisfied with the parameter γ1 = β.

We denote by Sbn
ak

the set of functions ϕ ∈ C∞(R) that satisfy the condition

∃ c, A, B > 0 ∀ {k, n} ⊂ Z+ ∀ x ∈ R : |xk ϕ(n)(x)| ≤ cAkBnakbn.

The set Sbn
ak

coincides with the union of countable normed spaces Sbn, B
ak, A over all indices {A, B} ⊂

N, where Sbn, B
ak, A denotes the set of functions ϕ ∈ Sbn

ak
that for arbitrary δ, ρ > 0 satisfies inequal-

ities

|xk ϕ(n)(x)| ≤ cδρ(A + δ)k(B + ρ)nakbn, {k, n} ⊂ Z+, x ∈ R;

the system of norms in Sbn, B
ak, A is determined by the formulas

‖ϕ‖δρ = sup
x,k,n

|xk ϕ(n)(x)|
(A + δ)k(B + ρ)nakbn

, {δ, ρ} ⊂ {1, 1/2, 1/3, . . .}.

In [7], it was established that a function ϕ ∈ C∞(R) is an element of the space Sbn
ak

with

ak = k!dk , bn = n!ρn if and only if it analytically extends into the complex plane to the entire

function ϕ(z), z ∈ C, which satisfies the condition

∃ a, b, c > 0 ∀ z = x + iy ∈ C : |ϕ(z)| ≤ cγ(ax)ρ(by), (1)

where

γ(x) =





1, |x| < 1,

inf
k
(ak/|x|k), |x| ≥ 1,

ρ(y) =





1, |y| < 1,

sup
n
(|y|n/bn), |y| ≥ 1.

Note that ρ is a continuously differentiable even function on R that is monotonically increasing

on the interval [1,+∞). It follows from property d) (see [7]) that

∃ c0, c > 0 ∀ y ∈ R : ρ(y) ≥ c0 exp(c|y|).

For example, if bn = nnβ, 0 < β < 1, then ρ(y) ∼ exp{|y|1/β}. In addition, as proved in [7],

ln ρ is a convex function on (0,+∞) in the sense

∀ {y1, y2} ⊂ (0,+∞) : ln ρ(y1) + ln ρ(y2) ≤ ln ρ(y1 + y2). (2)
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Inequality ln ρ(y1)− ln ρ(y1 + y2) ≤ − ln ρ(y2) also follows from (2).

The function ρ in (1) is related to the sequence {ρn}, which generates the sequence

{bn} = {n!ρn}, as follows [7]

ρn = inf
|ω|≥1

(ρ(ω)/|ω|n ) = ν−n
n ρ(νn),

where νn is the solution of the equation ωµ(ω) = n, n ∈ N, µ(ω) = ρ′(ω)/ρ(ω); the sequence

{νn} is monotonically increasing and unbounded, νn < n, n ∈ N. Accordingly, the func-

tion γ in (1) is related to the sequence {dk}, which generates the sequence {ak} = {k!dk}, as

follows [7]

dk = sup
|ω|≥1

(γ(ω)/|ω|k ) = µk
kγ(µk),

where µk is the solution of the equation ωα(ω) = k, k ∈ N, α(ω) = γ′(ω)/γ(ω); the sequence

{µk} is monotonically increasing and unbounded, µk < k, k ∈ N.

Since γ(x) = 1/γ̃(x), where γ̃(x) = 1, |x| < 1 and γ̃(x) = supk(|x|k/ak), |x| ≥ 1, then γ

is a continuously differentiable, even function on R that monotonically decreases on [1,+∞],

0 < γ(x) ≤ 1, x ∈ R. For example, if ak = kkα, α ∈ (0, 1), k ∈ N, then the following inequalities

hold (see [4])

exp
(
−α

e
|x|1/α

)
≤ γ(x) ≤ c exp

(
−α

e
|x|1/α

)
, c = exp(αe/2).

The function ln γ satisfies on (0,+∞) the inequality (see [7])

ln γ(x1) + ln γ(x2) ≥ ln γ(x1 + x2), {x1, x2} ⊂ (0,+∞). (3)

From the results given in [7] it follows that the sequence {ϕν : ν ≥ 1} ⊂ Sbn
ak

converges to

zero in this space if the functions ϕν and their derivatives of arbitrary order uniformly converge

to zero on each segment [a, b] ⊂ R and the following inequalities are satisfied

|xk ϕ
(n)
ν (x)| ≤ cAkBnakbn, {k, n} ⊂ Z+, x ∈ R

with some constants c, A, B > 0 independent of ν.

The function g is called the multiplier in the space Sbn
ak

if gψ ∈ Sbn
ak

for an arbitrary function

ψ ∈ Sbn
ak

and the mapping ψ → gψ is a linear and continuous operator from Sbn
ak

to Sbn
ak

. Multi-

plier in the space Sbn
ak

, ak = k!dk , bn = n!ρn, is a function g ∈ C∞(R), which may be analytically

continued onto the whole complex plane and which satisfies the condition (see [7])

∀ ε > 0 ∃ cε > 0 : |g(z)| ≤ cε(γ(εx))−1ρ(εy), z = x + iy ∈ C.

In the introduced spaces Sbn
ak

, ak = k!dk , bn = n!ρn, there are defined continuous operators

that are important for analysis. First of all, this is multiplication operators by x and by all

polynomials; the differentiation, shift and stretching operators [7]. In particular, the operation

of argument shifting Tx : ϕ(ξ) → ϕ(ξ + x) is differentiable in the spaces Sbn
ak

(even infinitely

differentiable) in the sense that the limit relations of the form

(ϕ(x + h)− ϕ(x))/h−1 → ϕ′(x), h → 0,
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hold for each function ϕ ∈ Sbn
ak

with respect to convergence in the topology of Sbn
ak

. The spaces

Sbn
ak

are perfect [7] (that is, spaces whose bounded sets are compact); they are interconnected

by the Fourier transform, namely, the formula F[Sbn
ak
] = San

bk
is correct (see [4]), where

F
[
Sbn

ak

]
=

{
ψ : ψ(σ) =

∫

R

ϕ(x)eiσxdx, ϕ ∈ Sbn
ak

}
.

In particular, F[Snnβ

kkα ] = Snnα

kkβ or F[S
β
α ] = Sα

β.

The set of functions that are extensions onto C of functions from the space Sbn
ak

, {ak} =

{k!dk}, {bn} = {n!ρn}, is denoted by symbol Sbn
ak
(C). In the spaces Sbn

ak
(C) we can introduce

the topology of the inductive limit of countably normed spaces. The sequence of functions

{ϕν : ν ≥ 1} ⊂ Sbn
ak

converges to zero if and only if the sequence of functions {ϕν(z) : ν ≥ 1},

z ∈ C, uniformly converges to zero in each bounded area of the complex plane C, and the

following inequality holds

|ϕν(z)| ≤ cγ(ax)ρ(by), z = x + iy ∈ C,

with constants c, a, b > 0 independent of ν (see [7]). Moreover, the sequence {ϕν(x) : ν ≥ 1},

x ∈ R, converges to zero in space Sbn
ak

if and only if the sequence {ϕν(z) : ν ≥ 1}, z ∈ C,

converges to zero in space Sbn
ak
(C) (see [7]). The multiplier in the space Sbn

ak
(C) is every entire

function g(z), z ∈ C, that satisfies the condition

∀ ε > 0 ∃ cε > 0 : |g(z)| ≤ cε(γ(εx))−1ρ(εy), z = x + iy ∈ C.

Respectively, function g(x), x ∈ R, is a multiplier in the space Sbn
ak

.

The symbol (Sbn
ak
)′ denotes the space of all linear continuous functionals over the corre-

sponding space of test functions with weak convergence, and its elements will be called gen-

eralized functions.

Since the operation of argument shift Tx : ψ(ξ) → ψ(ξ + x) is defined in the test space Sbn
ak

,

the convolution of a generalized function f ∈ (Sbn
ak
)′ with a test function may be defined by the

formula

( f ∗ ψ)(x) := 〈 fξ , T−xψ̌(ξ)〉 ≡ 〈 fξ , ψ(x − ξ)〉, ψ̌(ξ) = ψ(−ξ),

(the index ξ in fξ means that the functional f acts on ψ as a function of the argument ξ). The

convolution f ∗ψ is an infinitely differentiable function. The functional f is called a convolutor

in the space Sbn
ak

if f ∗ ψ ∈ Sbn
ak

for any ψ ∈ Sbn
ak

and the relation ψν → 0 as ν → +∞ implies

f ∗ ψν → 0 as ν → +∞ in the topology of Sbn
ak

.

Since each space of type S together with a function ψ(x) also contains the function ψ(−x)

and F−1[ψ] = (2π)−1F[ψ(−ξ)], the Fourier transform of the generalized function f ∈ (Sbn
ak
)′ is

determined by the relation

〈F[ f ], ψ〉 = 〈 f , F[ψ]〉, ∀ ψ ∈ San
bk

,

while F[ f ] ∈ (San
bk
)′. If f ∈ (Sbn

ak
)′ is a convolutor in the space Sbn

ak
, then for an arbitrary function

ψ ∈ Sbn
ak

the formula F[ f ∗ ψ] = F[ f ]F[ψ] is correct [7].
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2 Infinite order differentiation operators

From the properties of the Fourier transform in spaces of S type it follows that in the space

Sbn
ak

the pseudodifferential operator Ag ϕ = F−1
σ→x[g(σ)Fx→σ [ϕ]], ∀ ϕ ∈ Sbn

ak
, is well defined

and it is continuous. This operator is built by the function (symbol) g, which is a multiplier

in the space San
bk

. If the operator Ag acts in the space Sbn
bk

, bn = n!ρn, the operator Ag can

be understood as a differentiation operator of “infinite order”. If g(z) = ∑
∞
n=0 cnzn, z ∈ C, is

some entire function, then we say that in space Sbn
bk
(C) an infinite order differentiation operator

g(D) := ∑
∞
n=0 cn(iD)n, D = d/dz, is specified if for an arbitrary function ϕ ∈ Sbn

bk
(C) series

ψ(z) ≡ (g(D)ϕ)(z) :=
∞

∑
n=0

cn(iD)n ϕ(z), z ∈ C,

represents the test function from the space Sbn
bk
(C). The restriction of the operator g(D) to the

space Sbn
bk

, which we denote by the symbol Ag, will be called a differential operator of infinite

order in the space Sbn
bk

.

Theorem 1. If the entire function g is a multiplier in the space Sbn
bk
(C), then in this space the

continuous operator g(D) is defined, and

Ag ϕ(x) = F−1[g(σ)F[ϕ](σ)](x), {x, σ} ⊂ R, ϕ ∈ Sbn
bk

. (4)

Proof. Let us write down (so far formally) the relation

F[ψ](σ) =
∞

∑
n=0

cnF[(iD)n ϕ](σ) =
∞

∑
n=0

cnσnF[ϕ](σ) = g(σ)F[ϕ](σ), ϕ ∈ Sbn
bk

, σ ∈ R. (5)

Since F[ϕ] ∈ Sbn
bk

, and g is a multiplier in this space, we have gF[ϕ] ∈ Sbn
bk

. Then the function

gF[ϕ] can be analytically extended onto the whole complex plane, and (gF[ϕ])(z) ∈ Sbn
bk
(C),

z = x + iy ∈ C. Therefore, it suffices to prove the correctness of the transformations and justify

the correctness of the formulas (5); hence the statements (4) will already follow. Therefore it

suffices to establish that

rn(z) :=
∞

∑
k=n+1

ckzkF[ϕ](z) → 0, n → ∞,

in the space Sbn
bk
(C). In other words, we need to show that: 1) {rn : n ≥ 1} ⊂ Sbn

bk
(C);

2) the sequence converges uniformly to zero in each bounded domain of the complex plane

and the following inequalities are true

|rn(z)| ≤ cγ(aσ)ρ(by), γ = 1/ρ, z = σ + iy ∈ C, n ∈ N,

with some constants a, b, c > 0 independent of n.

Taylor coefficients cn, n ∈ Z+, of function g are calculated by Cauchy’s formula

cn =
1

2πi

∫

ΓR

g(z)

zn+1
dz, n ∈ Z+,
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where ΓR is a circle of radius R with center at the point z0 = 0. Hence, from the condition of

the theorem (g is the multiplier in Sbn
bk
(C)) it follows that

|cn| ≤ cε inf
R

(γ(εR))−1

Rn/2
inf
R

ρ(εR)

Rn/2
= cε inf

R

ρ(εR)

Rn/2
inf
R

ρ(εR)

Rn/2
, ε > 0.

Let us estimate separately the coefficients c2k and c2k+1, k ∈ Z+. So,

|c2k| ≤ cε

(
inf
R

ρ(εR)

Rk

)2
= cεε

2k
(

inf
R

ρ(εR)

(εR)k

)2
= cεε

2kρ2
k . (6)

Similarly,

|c2k+1| ≤ cε inf
R

ρ(εR)

Rk
inf
R

ρ(εR)

Rk+1
≤ cεε

2k+1ρkρk+1 ≤ cεε
2k+1ρ2

k (7)

(it is taken into account that the sequence {ρk : k ∈ Z+} is monotonically decreasing). Next,

we estimate the function αn(z) := |cnznF[ϕ](z)|, z ∈ C, with a fixed n ∈ N, if n = 2k and

n = 2k + 1, k ∈ Z+, taking into account the inequalities (6) and (7), respectively.

Let n = 2k. Since F[ϕ] ∈ Sbn
bk
(C), we have

∃ c, a, b > 0 ∀ z = σ + iy ∈ C : |F[ϕ](z)|≤ cγ(aσ)ρ(by), γ = 1/ρ.

In addition,

|z|2k = (σ2 + y2)k ≤ (2 max{σ2, y2})k ≤ 2k(|σ|2k + |y|2k).

So,

α2k(z) ≤ ccεz
kε2kρ2

k(|σ|2k + |y|2k)γ(aσ)ρ(by)

= ccεz
kε2k(ρ2

k(|σ|2kγ(aσ)ρ(by) + ρ2
k |y|2kγ(aσ)ρ(by)) = ccεε

2k(∆′
k(z) + ∆′′

k (z)).

Since

ρk = inf
σ 6=0

ρ(σ)

|σ|k =
( a

4

)k
inf

ρ(aσ/4)

|aσ/4|k ,

we have

ρ2
k |σ|2k ≤

( a

4

)2k ρ2(aσ/4)

|aσ/4|2k
|σ|2k = ρ2

( a

4
σ
)

.

From the inequality (3) it follows

γ
( a

2
σ
)
= γ

( a

4
σ
)
+ γ

( a

4
σ
)
≤ γ2

( a

4
σ
)

. (8)

Since ρ = 1/γ, taking into account (8), we find that

∆′
k(z) = ρ2

k |σ|2kγ(aσ)ρ(bτ) ≤ ρ2
( a

4
σ
)

γ
( a

2
σ
)

γ
( a

2
σ
)

ρ(by)

≤ γ2(aσ/4)

γ2(aσ/4)
γ
( a

2
σ
)

ρ(by) = γ
( a

2
σ
)

ρ(by).

Let us estimate ∆′′
k (z). Taking into account the convexity of the function ln ρ, we obtain the

following relations

∆′′
k (z) = ρ2

ky2kγ(aσ)eln ρ(by) = ρ2
ky2ke− ln ρ(ε0y)eln ρ(by)+ln ρ(ε0y)γ(aσ)

≤ ρ2
ky2ke− ln ρ(ε0y)eln ρ((b+ε0)y)γ(aσ),
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(ε0 > 0 is arbitrarily fixed number). Next, we use the fact that ρk = ν−k
k ρ(νk) = ν−k

k ek, k ≥ 1,

where νk is the solution of the equation xµ(x) = k, x ≥ 0, k ∈ N, µ = ρ′/ρ, µ(1) > 1. In fact,

since

ln ρ(y) =
∫ y

0
µ(ξ)dξ,

by the mean value theorem for a certain integral we have

ln ρ(νk) =
∫ νk

0
µ(ξ)dξ = νkµ(ν̃k) ≤ νkµ(νk) < k, 0 < ν̃k < νk,

(here it is taken into account that µ is a monotonically increasing and continuous on [0,+∞)

function [7]). Then ρ(νk) ≤ ek, k ∈ N. Next, we directly find that

sup
y≥0

(y2ke− ln ρ(ε0y)) = ˜̃ν2k
k e− ln ρ(ε0 ˜̃νk) ≤ ˜̃ν2k

k ,

where ˜̃νk is the solution of the equation xµ(x) = 2k, k ∈ N. Note that

˜̃νk

νk
=

˜̃νkµ(νk)

νk · µ(νk)
=

˜̃νkµ(νk)

k
, k ∈ N.

Since νk ≤ ˜̃ν, a µ is increasing and continuous on [0,+∞) function, then µ(νk) ≤ µ( ˜̃ν). There-

fore

˜̃νk

νk
≤

˜̃νkµ( ˜̃νk)

k
=

2k

k
= 2, k ∈ N, and ∆′′

k (z) ≤ (2e)2kγ(aσ)ρ((b + ε0)y).

So, α2k(z) ≤ βAkγ(a1σ)ρ(b1y), z ∈ C, k ∈ Z+, b1 = b + ε0. Similarly, we estimate α2k+1(z),

k ∈ Z+, z ∈ C. As a result, we get αn(z) ≤ β̃Ãnεnγ(a2σ)ρ(b2y), n ∈ Z+, z ∈ C, and all

constants do not depend on n. So

|rn(z)| ≤ β̃
∞

∑
k=n+1

Ãkεkγ(a2σ)ρ(b2y), z ∈ C.

Let ε = (2Ã)−1. Then ∑
∞
k=n+1 Ãkεk = 2−n, i.e.

|rn(z)| ≤
β̃

2n
γ(a2σ)ρ(b2y), z ∈ C. (9)

From (9) it follows that: a) rn ∈ Sbn
bk
(C) for each n ∈ N (i.e. condition 1) is satisfied); b) the

sequence {rn : n ≥ 1} converges uniformly to zero as n → ∞ in any bounded domain Q ⊂ C,

while |rn(z)| ≤ β̃γ(a2σ)ρ(b2y), n ∈ N, z ∈ C, where the constants β̃, a2, b2 > 0 do not depend

on n. So, the sequence {rn : n ≥ 1} converges to zero in the space Sbn
bk
(C). This proves that the

operator g(D) is defined in the space Sbn
bk
(C), and it maps each bounded set of this space into a

bounded set of the same space. Thus, the operator g(D) is continuous in the space Sbn
bk
(C), and

the operator Ag is defined and continuous in the space Sbn
bk

, and from the relation (5) it follows

that the equality (4) is correct.
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3 Nonlocal multipoint by time problem

Let us consider the evolution equation

∂u(t, x)/∂t = Agu(t, x), (t, x) ∈ (0, T]× R ≡ Ω, (10)

where Ag = F−1
σ→x[g(σ)Fx→σ] is a pseudodifferential operator in space Sbn

bk
which is constructed

by the function g(σ), σ ∈ R. This function is a multiplier in this space and eg ∈ Sbn
bk

. Recall (see

Section 2) that the operator Ag can be understood as a differentiation operator of infinite order

in space Sbn
bk

. The symbol Pbn
bk

will denote the class of functions (symbols) g that satisfy these

conditions. For example, let g(z) = −σ2, σ ∈ R. In this case, Ag = F[−σ2F] = −(iDx)2 = D2
x,

and the equation (10) is the heat equation ∂u/∂t = ∂2u/∂x2.

Since |e−z2 | = |e−(σ+iy)2| = e−σ2+y2
, z = σ + iy ∈ C, from this and from the characteristics

of the spaces S
β
α (see [4]) it follows that e−x2 ∈ S1/2

1/2 ≡ Snn/2

kk/2 . In addition, the function −σ2 is a

multiplier in the space S1/2
1/2. Therefore, the function g(σ) = −σ2, σ ∈ R, is an element of the

space Pnn/2

kk/2 .

For the equation (10) we define a nonlocal multipoint by time problem: find the solution of

the equation (10), which satisfies the condition

µu(t, ·)|t=0 −
m

∑
k=1

µkBku(t, ·)|t=tk
= f . (11)

Here m ∈ N, {µ, µ1, . . . , µm} ⊂ (0,+∞), {t1, . . . , tm} ⊂ (0, T] are fixed parameters, and

µ > ∑
m
k=1 µk, 0 < t1 < t2 < . . . < tm ≤ T, f ∈ Sbn

bk
, B1, . . . , Bm are pseudodifferential ope-

rators in space Sbn
bk

, which are constructed by functions (symbols) g1, . . . , gm, respectively, and

they satisfy conditions:

∃ a > 0 ∀ ε > 0 : 0 ≤ gk(σ) ≤ exp{ε ln ρ(aσ)},

∃ Lk > 0 ∃ a > 0 ∀ ε > 0 : |Ds
σgk(σ)| ≤ Ls

ks!ρs exp{ε ln ρ(aσ)},

where s ∈ N, σ ∈ R, k ∈ {1, . . . , m}.

We find the solution of the problem (10), (11) using the Fourier transform in the form

u(t, x) = F−1
σ→x[v(t, σ)](x). For the function v : Ω → R we get the following problem with

the parameter σ

dv(t, σ)

dt
= g(σ)v(t, σ), (t, σ) ∈ Ω, (12)

µv(t, σ)|t=0 −
m

∑
k=1

µkgk(σ)v(t, σ)|t=tk
= f̃ (σ), σ ∈ R, (13)

where f̃ (σ) = F−1[ f ](σ). The general solution of the equation (12) has the form

v(t, σ) = c exp{tg(σ)}, (t, σ) ∈ Ω, (14)

where c = c(σ) is defined by the condition (13). Substituting (14) into (13), we find

c = f̃ (σ)

(
µ −

m

∑
k=1

µkgk(σ) exp{tkg(σ)}
)−1

, σ ∈ R.
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Therefore, the formal solution of the problem (10), (11) is the function

u(t, x) = (2π)−1
∫

R

v(t, σ)e−ixσdσ.

Let us introduce the notation G(t, x) = F−1
σ→x [Q(t, σ)] (x), where Q(t, σ) = Q1(t, σ)Q2(σ),

Q1(t, σ) = exp{tg(σ)},

Q2(σ) =

(
µ −

m

∑
k=1

µkgk(σ) exp{tkg(σ)}
)−1

=

(
µ −

m

∑
k=1

µkgk(σ)Q1(tk, σ)

)−1

.

Then, considering formally, we find that

u(t, x) =
∫

R

G(t, x − ξ) f (ξ)dξ = G(t, x) ∗ f (x), (t, x) ∈ Ω.

Indeed,

u(t, x) =(2π)−1
∫

R

Q(t, σ)

( ∫

R

f (ξ)e−iσξ dξ

)
eiσxdσ

=
∫

R

(
(2π)−1

∫

R

Q(t, σ)eiσ(x−ξ)dσ

)
f (ξ)dξ

=
∫

R

G(t, x − ξ) f (ξ)dξ = G(t, x) ∗ f (x), (t, x) ∈ Ω.

(15)

The correctness of the transformations here and the convergence of the corresponding inte-

grals, and hence the correctness of the formula (15) follows from the properties of the function

G, which we present below. The properties of the function G are related to the properties of

the function Q, since G = F−1[Q].

Since g ∈ Pbn
bk

, we have eg ∈ Sbn
bk

. Then (see Section 1), there are numbers c0, a, b > 0 such

that

|eg(z)| ≤ c0e− ln γ̃(aσ)+ln ρ(bτ), γ̃ = 1/γ = ρ, z = σ + iτ ∈ C. (16)

Further, we assume that the constant c0 in the inequality (16) satisfies c0 ≤ 1. Then

|etg(z)| = |eg(z)|t ≤ [c0 exp{− ln γ̃(aσ) + ln ρ(bτ)}]t ≤ exp{−t ln γ̃(aσ) + t ln ρ(bτ)}. (17)

Lemma 1. For the function Q1(t, σ) = exp{tg(σ)}, σ ∈ R, t ∈ (0, T] and its derivatives (for

the variable σ) the estimates

|Ds
σQ1(t, σ)| ≤ b̃ss!ρs exp{−t ln γ̃(aσ)}, s ∈ Z+, (18)

are correct, here a > 0 is constant from inequality (17), b̃ > 0 is independent of t,

ρs = infτ(ρ(τ)/|τ|s).

Proof. For t > 1 the inequality t ln ρ(bτ) ≤ ln ρ(btτ), τ ∈ [0, ∞) is correct. This property

follows from the relations

ln ρ(btτ) =
∫ tbτ

0
µ(ξ)dξ = t

∫ bτ

0
µ(ty)dy ≥ t

∫ bτ

0
µ(y)dy = t ln ρ(bτ), (19)
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where µ(ξ) = ρ′(ξ)/ρ(ξ), while µ is a non-negative, continuous function on R, monotonically

increasing on the interval [0, ∞) [7]. Then

|Q1(t, z)| ≤ exp{−t ln γ̃(aσ) + ln ρ(tbτ)}, z ∈ C, t > 1. (20)

Due to the Cauchy integral formula we have

Ds
σQ1(t, σ) =

s!

2πi

∫

ΓR

Q1(t, z)

(z − σ)s+1
dz, s ∈ Z+,

where ΓR is a circle of radius R centered at the point σ. Using (20), we come to the inequalities

|Ds
σQ1(t, σ)| ≤ s!

Rs
max
z∈ΓR

|Q1(t, z)| ≤ s!

Rs
exp{−t ln γ̃(aσ0) + ln ρ(tbR)},

where σ0 is the maximum value of the function exp{−t ln γ̃(aξ)}, ξ ∈ [σ − R, σ + R]. Since

ln γ̃(aξ) is an even function on R increasing on the interval [0,+∞),

σ0 =





0, |ξ| ≤ R,

σ + R, ξ < −R,

σ − R, ξ > R.

Using the inequality − ln γ̃(σ1 + σ2) + ln γ̃(σ1) ≤ − ln γ̃(σ2), σ1, σ2 > 0, we prove the existence

of constant a1 > 0, such that

∀σ ≥ 0, ∀R > 0 : exp{−t ln γ̃(aσ0)} ≤ exp{−t ln γ̃(aσ)} exp{t ln γ̃(a1R)}.

Then

|Ds
σQ1(t, σ)| ≤ s!

Rs
exp{−t ln γ̃(aσ)} exp{t ln γ̃(a1R)} exp{ln ρ(tbR)}

≤ s!

Rs
exp{−t ln γ̃(aσ)} exp{ln ρ(tb1R)}, b1 = b + a1.

Here we used that γ̃ = ρ as well as the inequality ln ρ(tbR) + ln ρ(ta1R) ≤ ln ρ(t(b + a1)R).

For each s ∈ Z+ the function gs,t(R) = R−s exp{ln ρ(b1tR)} = R−sρ(b1tR) is differentiable on

(0,+∞), and the properties of the function ρ implies the relations

lim
R→+∞

gs,t(R) = +∞, s ∈ Z+; lim
R→+0

gs,t(R) =

{
+∞, s ∈ N,

1, s = 0.

Since gs,t(R) > 0, R ∈ (0,+∞), this function reaches its infimum. So,

|Ds
σQ1(t, σ)| ≤ s! inf

R
gs,t(R) exp {−t ln γ̃(aσ)} = s!b1

sts inf
ρ(tb1R)

(tb1R)s
exp {−t ln γ̃(aσ)}

= b1
stss!ρs exp {−t ln γ̃(aσ)} ≤ b̃ss!ρs exp {−t ln γ̃(aσ)} ,

where b̃ = b1T∗, T∗ = max{1, T}. The case of 0 < t ≤ 1 is considered similarly. As a result, we

arrive at estimates (18).
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Remark. From the inequality (17) it follows that Q1(t, ·) ∈ Sbn
bk

, bn = n!ρn, for each t ∈ (0, T].

In fact, if t ∈ (0, 1], then from (19) the inequality

exp{−t ln γ̃(aσ)} ≤ exp{− ln γ̃(aσ)}, a1 = at, γ̃ = 1/γ = ρ,

follows. Then |Q1(t, z)| ≤ exp{− ln γ̃(a1σ) + ln ρ(bτ)} = γ(a1σ)ρ(bτ).

If t > 1 and t is non-integer, then t = [t] + {t}. Then (see (19))

e−t ln γ̃(aσ) ≤ e−[t] ln γ̃(aσ)e−{t} ln γ̃(aσ) ≤ e−{t} ln γ̃(aσ) ≤ e− ln γ̃(a2σ),

a2 = a{t}, et ln ρ(bτ) ≤ eln ρ(btτ) = eln ρ(b1τ), b1 = bt.

So, |Q1(t, z)| ≤ exp{− ln γ̃(a2σ)} exp{ln ρ(b1τ)} = γ(a2σ)ρ(b1τ) for every t > 1.

If t = n, n ∈ {2, 3, . . .}, then we may write t = 1 + n − 1. In this case the estimation

|Q1(t, z)| ≤ exp{− ln γ̃(a2σ)} exp{ln ρ(b2τ)} = γ(a2σ)ρ(b2τ), b2 = n, is correct.

Lemma 2. The function

Q2 =
(

µ −
m

∑
k=1

µkgk(σ) exp{tkg(σ)}
)−1

, σ ∈ R,

is a multiplier in the space San
bk

, where an = n2n, bk = k!ρk , {k, n} ∈ Z+.

Proof. To prove the assertion we estimate the derivatives of Q2. For this purpose we use Faà di

Bruno’s formula for differentiating a complex function

Ds
σF(ϕ(σ)) =

s

∑
p=1

dp

dϕp F(ϕ)∑
s!

m1! . . . ml !

(
d

dσ
ϕ(σ)

)m1

. . .

(
1

l!

dl

dσl
ϕ(σ)

)ml

,

where the above sum is taken over all solutions in non-negative integers of the equation

s = m1 + 2m2 + . . . + lml , p = m1 + . . . + ml . In this formula we put F = ϕ−1, ϕ = R,

where R(σ) = µ − ∑
m
k=1 µkgk(σ)Q1(tk, σ). Then Q2(σ) = F(R(σ)) and

dp

dϕp F(R) =
dp

dRp R−1 = (−1)p p!R−(p+1).

Taking into account the inequalities (18) and the properties of functions g1, . . . , gm, we find

∣∣∣∣
1

l!

dl

dσl
R(σ)

∣∣∣∣ ≤
1

l!

m

∑
k=1

µk

l

∑
i=0

Ci
l |Di

σgk(σ)| · |Dl−i
σ etkg(σ)|

≤ 1

l!

m

∑
k=1

µk

l

∑
i=0

Ci
l L

i
ki!ρi b̃

l−i(l − i)!ρie
−tk ln γ̃(aσ)eε ln ρ(aσ).

Note that exp{−tk ln γ̃(aσ)} = exp{−tk ln ρ(aσ)} ≤ exp{−t1 ln ρ(aσ)}, k ∈ {2, 3, . . . , m},

γ̃ = ρ, i!(l − i)! ≤ l!, ρi ≤ ρ0 = 1, ρl−i ≤ ρ0 = 1, i ∈ {0, 1, . . . , l} (here we used the fact that the

sequence {ρn : n ∈ Z+} is monotonically decreasing, ρ0 = 1). Therefore the inequality

∣∣∣∣
1

l!

dl

dσl
R(σ)

∣∣∣∣ ≤
1

l!

m

∑
k=1

µkl!L̃l
1 exp{−t1 ln ρ(aσ) + ε ln ρ(aσ)}
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is correct, where L̃1 = 2 max{L̃, B̃}, L̃ = max{1, L1, . . . , Lm}. If we put ε = t1, we get the

estimate ∣∣∣∣
1

l!

dl

dσl
R(σ)

∣∣∣∣ ≤ cLl
1, c =

m

∑
k=1

µk.

So,

∣∣∣∣
(

d

dσ
R(σ)

)m1
∣∣∣∣ . . .

∣∣∣∣
(

1

l!

dl

dσl
R(σ)

)ml
∣∣∣∣ ≤ cm1 Lm1

1 cm2 L2m2
1 . . . cml L

lml
1

= cm1+m2+...+ml L
m1+2m2+...+lml
1 = cpLs

1 ≤ c̃sLs
1,

where c̃ = max{1, c}. Taking into account the properties of the functions g1, . . . , gm and the

inequality (17), we find

µkgk(σ)e
tk gk(σ) ≤ µkeε ln ρ(aσ)e−tk ln γ̃(aσ) ≤ µkeε ln ρ(aσ)−t1 ln ρ(aσ) = µk,

where ε = t1. Then

R2(σ) = µ −
m

∑
k=1

µkgk(σ)e
tk g(σ) ≥ µ −

m

∑
k=1

µk, Q2(σ) = R−1(σ) ≤
(

µ −
m

∑
k=1

µk

)−1

≡ β0 > 0.

Therefore, R−(p+1) ≤ β
p+1
0 . Summing up, we find |Ds

σQ2(σ)| ≤ b0Bs
0(s!)2 ≤ bBss2s, s ∈ Z+.

From the last inequality and boundedness of the function Q2 on R it follows that Q2 is a

multiplier in the space San
bk

, where an = n2n, bk = k!ρk .

From Lemma 1 and Lemma 2 it follows that for every fixed t ∈ (0, T] the function

Q(t, σ) = Q1(t, σ)Q2(σ) as function of variable σ is an element of space San
bk

, an = n2n and

the inequality

|Ds
σQ(t, σ)| ≤ cBss2s exp{−t ln γ̃(aσ)} (21)

is correct with constants c, B, a > 0 independent of t.

Since G(t, ·) = F−1[Q(t, ·)], taking into account the properties of direct and inverse Fourier

transforms in spaces of type S, we obtain G(t, ·) ∈ Sbn
ak

, bn = n!ρn, ak = k2k for each t ∈ (0, T].

Note that representation

Q2(σ) =

(
µ −

m

∑
k=1

µkgk(σ)e
tk g(σ)

)−1

=
1

µ

(
1 − 1

µ

m

∑
k=1

µkgk(σ)e
tk g(σ)

)−1

=
1

µ

∞

∑
r=0

µ−r

( m

∑
k=1

µkgk(σ)e
tk g(σ)

)r

=
∞

∑
r=0

µ−(r+1) ∑
r1+...+rm=r

r!

r1! . . . rm!
(µ1g1(σ)e

t1 g(σ))r1 . . . (µmgm(σ)e
tm g(σ))rm

=
∞

∑
r=0

µ−(r+1) ∑
r1+...+rm=r

r!

r1! . . . rm!
µr1

1 . . . µrm
m gr1

1 (σ) . . . grm
m (σ)e(t1r1+...+tmrm)g(σ)

is also correct for the function Q2. Here we used polynomial formula and inequality

1

µ

m

∑
k=1

µkgk(σ)e
tk g(σ)

< 1.
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From this fact we get

G(t, x) = (2π)−1
∫

R

etg(σ)Q2(σ)e
−iσxdσ =

∞

∑
r=0

1

µr+1 ∑
r1+...+rm=r

r!µr1
1 . . . µrm

m

r1! . . . rm!
G̃(λ + t, x),

where

G̃(λ + t, x) = (2π)−1
∫

R

e(λ+t)g(σ)gr1
1 (σ) . . . grm

m (σ)e−iσxdσ,

λ := t1r1 + . . . + tmrm + t, and G(t, x) is the fundamental solution of Cauchy problem for

equation (10).

Lemma 3. The function G(t, ·), t ∈ (0, T], as an abstract function of the parameter t with values

in the space Sbn
ak

≡ Sbn

k2k differentiable by t.

Proof. Continuity of direct and inverse Fourier transforms in spaces of type S implies that we

only need to establish that the function F[G(t, ·)] = Q(t, ·) is differentiable by t as an abstract

function of the parameter t with values in the space F[Sbn
ak
] = San

bk
, i.e. we need to prove that the

limit relation

Φ∆t(σ) :=
1

∆t
[Q(t + ∆t, σ)− Q(t, σ)] → ∂

∂t
Q(t, σ), ∆t → 0,

is performed in the following sense: 1) Ds
σΦ∆t(σ) −−−→

∆t→0
Ds

σg(σ)Q(t, σ), s ∈ Z+, uniformly

on each segment [a, b] ⊂ R; 2) |Ds
σΦ∆t(σ)| ≤ c̄B̄ss2se− ln γ̃(āσ), s ∈ Z+, where the constants

c̄, ā, B̄ > 0 do not depend on ∆t for rather small values of ∆t.

The function Q(t, σ), (t, σ) ∈ (0, T]× R, is differentiable by t in the usual sense, therefore,

due to Lagrange’s mean value theorem, we have Φ∆t(σ) = g(σ)Q(t + θ∆t, σ), 0 < θ < 1,

t + θ∆t ≤ T. So,

Ds
σΦ∆t(σ) =

s

∑
l=0

Cl
sDl

σg(σ)Ds−l
σ Q(t + θ∆t, σ)

and

Ds
σ

(
Φ∆t(σ)−

∂

∂t
Q(t, σ)

)
=

s

∑
l=0

Cl
sDl

σg(σ)[Ds−l
σ Q(t + θ∆t, σ)− Ds−l

σ Q(t, σ)].

From the equality Ds−l
σ Q(t + θ∆t, σ) − Ds−l

σ Q(t, σ) = Ds−l+1
σ Q(t + θ1∆t, σ)θ∆t, 0 < θ1 < 1,

and from (21) it follows that Ds−l+1
σ Q(t+ θ1∆t, σ)θ∆t → 0, ∆t → 0, uniformly on each segment

[a, b] ⊂ R. Then

Ds
σΦ∆t(σ) → Ds

σ

(
∂

∂t
Q(t, σ)

)
, ∆t → 0,

uniformly on the segment [a, b] ⊂ R. So, condition 1) holds.

Since g is a multiplier in the space S
n!ρn

bk
, we obtain

∀ ε > 0 ∃ cε > 0 ∀ z = σ + iτ ∈ C : |g(z)| ≤ cεe
ln γ̃(εσ)+lnρ(ετ). (22)

Due to the Cauchy integral formula we have that

g(n)(σ) =
n!

2πi

∫

ΓR

g(z)

(z − σ)n+1
dz, n ∈ Z+,
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where ΓR is a circle of radius R centered at the point σ ∈ R. Then, taking into account (22), we

get the inequalities

|g(n)(σ)| ≤ n!

Rn
max
z∈ΓR

|g(z)| ≤ cε
n!

Rn
eln γ̃(ε(σ+R))+lnρ(εR)

≤ cεn! inf
R

ρ(εR)

Rn
eln γ̃(ε(σ+R)) = cεε

nn!ρneln γ̃(ε(σ+R)), σ ≥ 0.

For sufficiently large values σ ≥ 0, the inequality ε(σ + R) ≤ (ε + R)σ holds. Since the func-

tion ln γ̃ increases monotonically for σ ≥ 0, we have for the same values of σ that

ln γ̃(ε(σ+R))≤ ln γ̃(ε+R)σ). For all σ≥ 0 the inequality ln γ̃(ε(σ+R))≤ ln γ̃((ε+R)σ)+ cR

holds. So, for σ ≥ 0 we have

exp{ln γ̃(ε(σ + R))} ≤ c̃R exp{ln γ̃((ε + R)σ)}.

In what follows, for a given ε > 0, we assume that R = ε. Then

|g(n)(σ)| ≤ c̃εε
nn!ρneln γ̃(2εσ) ≤ c̃′εε

nn!eln γ̃(2εσ), n ∈ Z+,

(here we take into account that the sequence {ρn} is monotonically increasing). Due to above

inequality and estimates for the derivatives of Q(t, σ), we find that

|Ds
σΦ∆t(σ)| ≤ ˜̃cε

s

∑
l=0

Cl
sε

ll!Bs−l(s − l)2(s−l)eln γ̃(2εσ)−(t+θ∆t) ln γ̃(aσ)

≤ c̄B̄ss2seln γ̃(2εσ)−t ln γ̃(aσ) ≤ c̄B̄ss2seln γ̃(2εσ)−t ln γ̃(aσ)

(we assume t + θ∆t > 0, t ∈ (0, T] is fixed number). Take ε = ta/4. From the convexity of the

function ln γ̃ it follows

ln γ̃(2εσ)− ln γ̃(atσ) ≤ − ln γ̃((at − 2ε)σ) ≡ − ln γ̃(āσ), ā = at − 2ε = at/2 > 0.

Then

|Ds
σΦ∆t(σ)| ≤ c̄B̄ss2se− ln γ̃(āσ), σ ≥ 0,

moreover, the constants c̄, ā, B̄ > 0 do not depend on ∆t (for enough small values of ∆t). The

case of σ < 0 may be considered similarly. So, the condition 2) also holds.

Lemma 4. The formula

∂

∂t
( f ∗ G(t, x)) = f ∗ ∂G(t, x)

∂t
, ∀ f ∈

(
Sbn

ak

)′
, t ∈ (0, T], ak = k2k, k ∈ Z+,

is correct.

Proof. By the definition of the convolution of a generalized function with a test function, we

have

f ∗ G(t, x) = 〈 fξ , T−xǦ(t, ξ)〉, Ǧ(t, ξ) = G(t,−ξ).

Then

∂

∂t
( f ∗ G(t, x)) = lim

∆t→0

1

∆t
[ f ∗ G(t + ∆t, ·)− f ∗ G(t, ·)]

= lim
∆t→0

〈
fξ ,

1

∆t
[T−xǦ(t + ∆t, ξ)− T−xǦ(t, ξ)]

〉
.
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Due to Lemma 3 the limit relation

1

∆t
[T−xǦ(t + ∆t, ·)− T−xǦ(t, ·)] −−−→

∆t→0

∂

∂t
T−xǦ(t, ·)

is performed in the sense of convergence in the topology of space Sbn
ak

≡ S
n!ρn

k2k , therefore, taking

into account the continuity of the functional f , we have that

∂

∂t
( f ∗ G(t, ·)) =

〈
fξ , lim

∆t→0

1

∆t
[T−xǦ(t + ∆t, ξ)− T−xǦ(t, ξ)]

〉

=
〈

fξ ,
∂

∂t
T−xǦ(t, ξ)

〉
=
〈

fξ , T−x
∂

∂t
Ǧ(t, ξ)

〉
= f ∗ ∂G(t, x)

∂t
.

Lemma 5. In the space (Sbn
ak
)′ ≡ (S

n!ρn

k2k )′ the boundary relation

µ lim
t→+0

G(t, ·)−
m

∑
l=1

µl lim
t→tl

BlG(t, ·) = δ (23)

holds (here δ is the Dirac delta function).

Proof. Using the continuity of the Fourier transform and the function G(t, ·) as an abstract

function of the parameter t with values in the space Sbn

k2k , from the relation (23) we obtain

µ lim
t→+0

F[G(t, ·)] −
m

∑
l=1

µl lim
t→tl

F[BlG(t, ·)] = F[δ] (24)

in the space (Sn2n

bk
)′. Сonsidering the representation of the function G, (24) is given as

µ lim
t→+0

Q(t, σ)−
m

∑
l=1

µl lim
t→tl

gl(σ)Q(t, σ) = 1. (25)

To prove (25) we take an arbitrary function ϕ ∈ Sn2n

bk
and using the limit transition theorem

under the Lebesgue integral and treating Q(t, ·), glQ(t, ·), l ∈ {1, . . . , m}, as regular distribu-

tions from the space (Sn2n

bk
)′, we find that

µ lim
t→+0

〈Q(t, ·), ϕ〉−
m

∑
l=1

µl lim
t→tl

〈gl(·)Q(t, ·), ϕ〉

= µ lim
t→+0

∫

R

Q(t, σ)ϕ(σ)dσ −
m

∑
l=1

µl lim
t→tl

∫

R

gl(σ)Q(tl , σ)ϕ(σ)dσ

=
∫

R

[
µQ(0, σ)−

m

∑
l=1

µl gl(σ)Q(tl , σ)

]
ϕ(σ)dσ

=
∫

R

[
µ

µ − ∑
m
k=1 µkgk(σ)Q1(tk, σ)

−
m

∑
l=1

µl
gl(σ)Q1(tl , σ)

µ − ∑
m
k=1 µkgk(σ)Q1(tk, σ)

]
ϕ(σ)dσ

=
∫

R

µ − ∑
m
l=1 µlgl(σ)Q1(tl , σ)

µ − ∑
m
k=1 µkgk(σ)Q1(tk, σ)

ϕ(σ)dσ =
∫

R

ϕ(σ)dσ = 〈1, ϕ〉.

It follows that the relation (25) holds in the space (Sn2n

bk
)′, and therefore the relation (23) is

correct.
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The symbol (Sbn

k2k , ∗)′ denote the class of generalized functions from (Sbn

k2k)
′, which are con-

volutors in the space Sbn

k2k .

Lemma 6. Let

ω(t, x) = f ∗ G(t, x), f ∈ (Sbn

k2k , ∗)′, (t, x) ∈ Ω.

Then in the space (Sbn

k2k)
′ the following limit relation holds

µ lim
t→+0

ω(t, ·)−
m

∑
k=1

µk lim
t→tk

Bkω(t, ·) = f . (26)

Proof. Since

ω(t, x) = f ∗ G(t, x) = 〈 fξ , T−xǦ(t, ξ)〉, f ∈ (Sbn

k2k , ∗)′,
from the continuity of G(t, ·) as an abstract function of the parameter t with values in the space

Sbn

k2k it follows the continuity of ω(t, ·) as an abstract function of the parameter t with values in

the same space. Taking into account the continuity of the Fourier transform and the formula

F[ f ∗ G] = F[ f ]F[G] = F[ f ]Q, which is correct for an arbitrary generalized function f from the

class (Sbn

k2k , ∗)′, from (26) we get the relation

µ lim
t→+0

F[ω(t, ·)] −
m

∑
k=1

µk lim
t→tk

F[Bkω(t, ·)] = F[ f ]

in the space (Sn2n

bk
)′ or

µ lim
t→+0

Q(t, ·)−
m

∑
k=1

µk lim
t→tk

gk(σ)Q(t, ·) = 1,

which, as proved earlier (see (25)), is correct in this space. This proves that the relation (26)

holds in the space (Sbn

k2k)
′.

The function G is the solution of the equation (10). Indeed,

∂

∂t
G(t, x) =

∂

∂t
F−1[Q(t, σ)](x) = F−1

[ ∂

∂t
Q(t, σ)

]
(x).

On the other hand,

AgG(t, x) = F−1
σ→x[g(σ)Fx→σ [G(t, x)]] = F−1[g(σ)Q(t, σ)](x) = F−1

[ ∂

∂t
Q(t, σ)

]
(x).

It follows that the function G satisfies the equation (10).

Further, let us call the function G the fundamental solution of a nonlocal multipoint by

time problem for the equation (10).

From the Lemma 6 it follows that for the equation (10) nonlocal multipoint by time prob-

lem can be formulated as follows: find the solution of the equation (10), which satisfies the

condition

µ lim
t→+0

u(t, ·)−
m

∑
k=1

µk lim
t→tk

Bku(t, ·) = f , f ∈ (Sbn

k2k , ∗)′, (27)

where the limit relation (27) is considered in the space (Sbn

k2k)
′ (restrictions on parameters

µ, µ1, . . . , µm, t1, . . . , tm are the same as in the case of problem (10) , (11)).
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Theorem 2. The nonlocal multipoint by time problem (10), (27) is solvable; the solution is

given by the formula u(t, x) = f ∗ G(t, x), (t, x) ∈ Ω, where G is the fundamental solution of

the multipoint problem for the equation (10).

Proof. The function u(t, x) is the solution of the equation (10). In fact (see Lemma 4),

∂u(t, x)

∂t
=

∂

∂t
( f ∗ G(t, x)) = f ∗ ∂G(t, x)

∂t
,

Agu(t, x) = F−1[g(σ)F[ f ∗ G]](x).

Since f is a convolutor in the space Sbn

k2k , we obtain

F[ f ∗ G(t, x)](σ) = F[ f ](σ)F[G(t, x)](σ) = F[ f ](σ)Q(t, σ).

So,

Agu(t, x) = F−1[g(σ)Q(t, σ)F[ f ](σ)](x) = F−1
[ ∂

∂t
Q(t, σ)F[ f ](σ)

]
(x)

= F−1
[

F
[ ∂

∂t
G
]
(t, σ) · F[ f ](σ)

]
(x) = F−1

[
F
[

f ∗ ∂G

∂t

]]
(x) = f ∗ ∂G(t, x)

∂t
.

Hence, the function u(t, x), (t, x) ∈ Ω, satisfies the equation (10). From the Lemma 6 it follows

that u satisfies the condition (27) in the specified sense.
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Городецький В.В., Мартинюк О.В. Еволюцiйнi псевдодиференцiальнi рiвняння з аналiтичними

символами в просторах типу S // Карпатськi матем. публ. — 2021. — Т.13, №1. — C. 160–179.

Дослiджується нелокальна багатоточкова за часом задача для еволюцiйного рiвняння з

псевдодиференцiальним оператором, який трактується як оператор диференцiювання не-

скiнченного порядку в узагальнених просторах типу S у випадку, коли початкова умова є еле-

ментом простору узагальнених функцiй типу ультрарозподiлiв, а нелокальна умова мiстить

псевдодиференцiальнi оператори. Встановлено розв’язнiсть такої задачi, дослiджено власти-

востi фундаментального розв’язку, знайдено аналiтичне зображення розв’язку.

Ключовi слова i фрази: нелокальна багатоточкова задача, псевдодиференцiальний оператор,

узагальнена функцiя.


