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Evolution pseudodifferential equations with analytic symbols
in spaces of S type

Horodets’kyi V.V., Martynyuk O.V.

A nonlocal multipoint by time problem for an evolution equation with a pseudodifferential
operator is studied. This operator is treated as an infinite order differentiation operator in gen-
eralized spaces of S type. We consider the case when the initial condition of the problem is an
element of an ultradistributions type space and the nonlocial condition contains pseudodifferential
operators. The solvability of such problem is established, the properties of the fundamental solution
are investigated, the analytical representation of the solution is found.
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Introduction

Pseudodifferential operators (PDO) and equations with pseudodifferential operators are
closely related to important problems of analysis, modern mathematical physics, probabil-
ity theory, fractal theory, quantum field theory etc. The class of pseudodifferential operators
includes differential operators, fractional differentiation and integration operators, convolu-
tions and so on.

A wide class of PDO can be formally represented as A = I 1 [a(t, x;0) x—¢], {x,0} C R,
t > 0, where a is the symbol of the operator A that satisfies certain conditions, I, [~! are
direct and inverse Fourier or Bessel transform respectively. If the symbol a is an entire even
function of the argument o, then the evolution equations with the operator A also con-
tain singular differential equations, in particular, the equations with the Bessel operator
B, = d?/dx* + (2v 4+ 1)x‘1d /dx, v > —1/2, which in its structure contains the expression
1/x and is formally represented as B, = Fp ![—0?Fg, ], where Fg, is the Bessel integral trans-
formation. If a(t,x;0) = P(t,x;0), where P is a polynomial of the variable ¢ for fixed ¢, x,
which satisfies the condition of “parabolicity”, such equations belong to parabolic equations if
Iy—o = F is a Fourier transform, or to B-parabolic equations if I,_,, = Fp . B-parabolic equa-
tions are degenerated at the boundary and are close in their internal properties to uniformly
parabolic equations.

The theory of linear parabolic and B-parabolic equations with partial derivatives origi-
nates from the study of the thermal conductivity equation. The classical theory of the Cauchy
problem and boundary value problems for such equations and systems of equations is con-
structed in the works of L.G. Petrovsky, S.D. Eidelman, S.D. Ivasyshen, M.I. Matiychuk,
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M.V. Zhitarashu, A. Friedman, S. Teklind, V.O. Solonnikov, I.A. Kipriyanov, V.V. Krekhivskyi
and others. The Cauchy problem with initial data in the spaces of generalized func-
tions such as distributions and ultradistributions was studied by G.Ye. Shilov, B.L. Gurevich,
M.L. Gorbachuk, V.I. Gorbachuk, O.I. Kashpirovsky, S.D. Ivasyshen, Ya.l. Zhytomyrskyi,
V.V Gorodetskyi, V.A. Litovchenko and others.

Many mathematicians have studied the Cauchy problem for evolution equations with PDO,
using different methods and approaches, e.g. M. Nagase, R. Shinkai, C. Tsutsumi, M.A. Shu-
bin, M. Taylor, L. Hermander, A.N. Kochubey, S.D. Eidelman, Y.A. Dubinsky, B.Y. Ptashnyk,
M.I. Matiychuk, M.I. Konarovska etc. Important results on the solvability of the Cauchy prob-
lem in different functional spaces are obtained. In this case, the initial functions often have
features at one or more points and allow regularization in certain spaces of generalized func-
tions such as Sobolev-Schwartz distributions, ultradistributions, hyperfunctions and others.
Thus, the Cauchy problem for these equations has a natural formulation in the classes of gen-
eralized functions of finite and infinite orders.

In this paper, we investigate the problem, which can be understood as a generalization of
the Cauchy problem, when the initial condition u(t, -)|;—o = f is replaced by the condition

m
Z “kBku(t/ ) ‘t:tk = f’
k=0

where tg =0, {t1,...,tm} C (0, T],0 <ty <tp < -+ <ty < T,{ao,a1,...,0m} CR,m €N
are fixed numbers, By, B; ..., By, are pseudodifferential operators built on certain functions
(symbols) g0, 81,---,8m (ifag =1, 09 = ... = ay, = 0, By = [ is the identity operator, then we
obviously have a Cauchy problem). This condition is interpreted in the classical sense or in the
weak sense if f is a generalized function, i.e. as a limit relation

m

Y ax lim (Byu(t, ), ¢) = (f, 9)

k=0 t—tx

for an arbitrary function ¢ from the test space (here (f, ) denotes the action of the functional
f on the test function). This problem refers to nonlocal multipoint by time problems for par-
tial differential equations. A detailed review of works on nonlocal problems for differential-
operator equations and partial differential equations is given in [9]. Nonlocal by time prob-
lems, in turn, refer to nonlocal boundary value problems that arise when modeling many
processes and problems of practice (see, for example, [1,2, 14, 18]). Such problems include
problems that are studied, for example, in the papers [16,17].

At present, the nonlocal multipoint time problem has not been studied in the case of evo-
lution equations with PDO operating in spaces of type S, the symbols of which are functions
that allow analytic extension into the whole complex plane and satisfy a certain condition of
“parabolic”, and the function f in the corresponding condition is an element of space of type
S’ that is topologically dual of the space of type S.

Note that spaces of type S are often used in the study of the problems of uniqueness classes
and classes of correctness of a Cauchy problem for partial differential equations and consist
of infinitely differentiable on R functions, whose behavior on the real axis are characterized
by my, = sup, g |x*¢" (x)|, {k,n} C Z, where the double sequence {my,} satisfies certain
conditions. L.M. Gelfand and G.E. Shilov (see [4]) investigated the case m, = Kkennb, o, g >0;
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spaces of type S in this case are denoted by the symbol S 5 and consist of infinitely differentiable
functions on R, which together with all their derivatives decrease as |x| — +oo faster than
exp{—alx|'/*},a > 0,x € R.

In the works [5,6,10-12,15], it is established that spaces of type S and S’ are natural sets of
initial data of a Cauchy problem for wide classes of equations with partial derivatives of finite
and infinite orders, where the solutions are entire functions by space variables. For example,
for the heat equation du/dt = 9%u/dx> the fundamental solution of Cauchy problem is the
function G(t,x) = (2y/7tt) " Lexp{—x%/(ut)}, t > 0, which as a function of x is an element of

space Siﬁ (see [12, p. 46]), that refers to spaces of S type.

In this article, we investigate the nonlocal multipoint by time problem for the equation
ou/ot = Agu, (t,x) € (0,T] x R in S type spaces, which is constructed by sequences
my, = aib,, that defined by certain conditions. Here Ag is pseudodifferential operator in S
type spaces with analytical symbol g, which can also be understood as an operator of differen-
tiation of “infinite order”:

Ag = Fi 4 [8(0) Fese] = ) x(id/dx)F,
k=0

function g is a symbol of operator Ag, which satisfyies certain conditions that generalize the
known condition of “parabolic” for parabolic pseudodifferential equations.

In Section 1, we define the spaces of type S and S/, multiplier and convolutor in spaces
of type S. In Section 2, the correctness of the definition of the operator Ag in generalized
spaces of S type as an operator of differentiation of finite order is proved and its continuity is
proved. In Section 3, a property of the fundamental solution of a nonlocal multipoint by time
problem for the specified equation is established, the solvability of the problem is proved; the
representation of the solution in the form of a convolution of the fundamental solution of the
problem with the initial generalized function is found.

1 Generalized spaces of S and S’ type

LM. Gelfand and G.E. Shilov in the well-known monograph [4] proposed a method of con-
structing functional spaces of infinitely differentiable functions on R, which impose certain
conditions for decreasing at infinity and increasing of derivatives when the order is increas-
ing. These conditions are given by the inequalities |x*¢(") (x)| < ct,, {k,n} C Z, where {c;,}
is a double sequence of positive numbers. If these numbers change randomly together with
the function ¢, then we have Schwartz’s space S = S(IR) of rapidly decreasing on R functions.
If ¢y, = agbn, where {ay : k € Z.}, {b, : n € Z,} are some sequences of positive numbers,
then we have generalized S type spaces, which are denoted by SZZ. In the monograph [4], the
case a, = Kk o > 0, b, = n"p, B > 0, was studied in detail; the corresponding spaces are
called S spaces and are denoted by sE.m 7, topological structure of the spaces SZZ, proper-
ties of functions, basic operations in such spaces were studied. Known spaces of the W type,
introduced by B.L. Gurevich [8] (see also [3]), in which convex functions are used instead of
power functions to characterize the behavior of functions at infinity, are also included in the
spaces SZ; with the specific choice of sequences {a;} and {b,} (see [13]).
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We will focus on the spaces SZZ, which are constructed by the sequences of the form
{by = nlpy, : n € Z.}, {ax = kldy : k € Zy}. Here {py : n € Z1}, po = 1, is
a sequence of positive numbers having the properties: a) it is monotonically increasing;
b)dc, >0371€(0,1)VneN:p, 1/0n < cpn’;c) limy oo /on =0, d)Ve>0dce >0
VnelN: p, > ce"/n". The above sequence {dy : k € Z.}, dy = 1, also has properties like
a)—d), e.g. condition b) have the form: 3¢, > 039 € (0,1) Vk € IN : dy_q/dy < c k™.

The sequence p, = (nB)~"Pe"f, where B € (0,1) is a fixed parameter, is the example of a
sequence {p, } with properties a)-d). Let us check, for example, the property d). We have

P "B [n(1— ﬁ)]n(l—ﬁ) o(1-B)
= 1nB)"® ~ (nB)™® [n(1— B)]"(1-P en(1-F)
e" 1 n(1—p)ra-pA e 1 Al
o [BB(1— B)1-F]" o(1—B) T non iglg W,

where w = BP(1 — B)1=F < 1. If we take an arbitrary ¢ > 0 and put A = ¢, then we get the
inequality p, > c.€"/n", where ¢, = exp{—el/ (1-p) }. Note that condition b) for this sequence
is satisfied with the parameter y; = B.

We denote by SI,;Z the set of functions ¢ € C*(IR) that satisfy the condition

3¢, AB>0 VY{kn}czZ, VYxeR: [ (x)|<cA*B"ab,.

The set SI,;Z coincides with the union of countable normed spaces SEZ’ ﬁ over all indices {A, B} C

IN, where SEZ: f‘ denotes the set of functions ¢ € S, that for arbitrary J, 0 > 0 satisfies inequal-
ities
o (x)] < csp(A+0) (B +p)ab, {kn} CZi, xeR;

the system of norms in 52:’ ﬁ is determined by the formulas

ol = sy PO
Pllop = p(A+5)k(B+p)”akbn'

x,k.n

{6,0} C {1,1/2,1/3,...}.

In [7], it was established that a function ¢ € C*(R) is an element of the space SZZ with
ay = kldy, b, = nlp, if and only if it analytically extends into the complex plane to the entire
function ¢(z), z € C, which satisfies the condition

da,b,c>0 Vz=x+iyeC: |¢(z)| <cylax)p(by), (1)

1/ |x| <1/ 1/ |]/| < 1’
T = ina/ ), =1 OO T Y suplyl /b, vl 21
n
Note that p is a continuously differentiable even function on IR that is monotonically increasing
on the interval [1, +00). It follows from property d) (see [7]) that

dco,c>0 VyeR: p(y) > coexplclyl).

For example, if b, = n"f, 0 < B < 1, then p(y) ~ exp{|y|'/#}. In addition, as proved in [7],
Inp is a convex function on (0, +o0) in the sense

VA{y1,y2} C(0,+0): Inp(y1) +1Inp(ya) < Inp(y: +y2). ()
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Inequality Inp(y1) —Inp(y1 + y2) < —Inp(y2) also follows from (2).
The function p in (1) is related to the sequence {p,}, which generates the sequence
{bn} = {n'pn}, as follows [7]

pn = inf (p(w)/|w[") = v, "p(vn),
|w]>1
where vy, is the solution of the equation wu(w) =n,n € N, u(w) = p'(w)/p(w); the sequence
{vn} is monotonically increasing and unbounded, v, < n, n € IN. Accordingly, the func-
tion v in (1) is related to the sequence {dy}, which generates the sequence {a;} = {k!d;}, as
follows [7]
di = sup (y(w)/|w[*) = wiy(me),
|w|>1
where i is the solution of the equation wa(w) =k, k € N, a(w) = 7' (w)/y(w); the sequence
{#x} is monotonically increasing and unbounded, p < k, k € IN.
Since v(x) = 1/9(x), where 7(x) = 1, |x| < 1 and 4(x) = sup,(|x|*/ax), |x| > 1, then
is a continuously differentiable, even function on R that monotonically decreases on [1, 0],
0 < y(x) <1,x € R. Forexample, if a; = K, & € (0,1), k € N, then the following inequalities
hold (see [4])

2 /e /e _
eXP( e’x‘ ) < (x) Scexp< e]x\ ), c = exp(ae/2).
The function In 1y satisfies on (0, +o0) the inequality (see [7])

Iny(x1) +Iny(xz) > Iny(x; +x2), {x1,x} C (0, +0c0). (3)

From the results given in [7] it follows that the sequence {¢, : v > 1} C SZZ converges to

zero in this space if the functions ¢, and their derivatives of arbitrary order uniformly converge
to zero on each segment [2,b] C R and the following inequalities are satisfied

|xkg01(,n)(x)| < cA*B"ayb,, {k,n} CcZy, xR

with some constants ¢, A, B > 0 independent of v.

The function g is called the multiplier in the space SZZ if gy € SZZ for an arbitrary function
(VNS SZZ and the mapping 1 — g1 is a linear and continuous operator from SZZ to SZZ. Multi-
plier in the space SZ,’:, ax = kldy, b, = n'py, is a function g € C*(R), which may be analytically
continued onto the whole complex plane and which satisfies the condition (see [7])

Ve>0 Jc>0: |g(z)] <cely(ex))to(ey), z=x+iyecC.

In the introduced spaces SZ,’:, ay = k'dy, b, = n!p,, there are defined continuous operators
that are important for analysis. First of all, this is multiplication operators by x and by all
polynomials; the differentiation, shift and stretching operators [7]. In particular, the operation
of argument shifting Ty : ¢(¢) — ¢(¢ + x) is differentiable in the spaces SZZ (even infinitely
differentiable) in the sense that the limit relations of the form

(p(x+h) —@(x))/h " = ¢'(x), h—0,
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hold for each function ¢ € SZZ with respect to convergence in the topology of SZZ. The spaces
SZ,’: are perfect [7] (that is, spaces whose bounded sets are compact); they are interconnected
by the Fourier transform, namely, the formula F [SZZ] = SZ: is correct (see [4]), where

F[SZ;} = {1/1: Y(o) = /]Rq)(x)ei‘”dx, RS Sg:}.

In particular, F[SZ:f] = SZ:; or F[Sf] = S§.

The set of functions that are extensions onto C of functions from the space 52;, {ar} =
{kldy}, {bn} = {n!p,}, is denoted by symbol sf;; (C). In the spaces SZZ(C) we can introduce
the topology of the inductive limit of countably normed spaces. The sequence of functions
{pv:v>1} C SI,;Z converges to zero if and only if the sequence of functions {¢,(z) : v > 1},
z € C, uniformly converges to zero in each bounded area of the complex plane C, and the

following inequality holds

v (2)] < cyl(ax)p(by), z=x+iy€C,

with constants ¢, 4,b > 0 independent of v (see [7]). Moreover, the sequence {¢,(x) : v > 1},
x € R, converges to zero in space SZZ if and only if the sequence {¢,(z) : v > 1}, z € C,
converges to zero in space SZ,’: (C) (see [7]). The multiplier in the space SZ,’: (C) is every entire
function g(z), z € C, that satisfies the condition

Ve>0 Jee>0: |g(2)| <cely(ex))pley), z=x+iyeC.

Respectively, function g(x), x € R, is a multiplier in the space SZ,'Z-

The symbol (Sg;)’ denotes the space of all linear continuous functionals over the corre-
sponding space of test functions with weak convergence, and its elements will be called gen-
eralized functions.

Since the operation of argument shift Ty : (&) — (¢ + x) is defined in the test space SZ;,

the convolution of a generalized function f € (SZZ ) with a test function may be defined by the
formula

(fr9)(x) = (fe, T2P(0)) = (fe, p(x =0, $(8) = ¢(=2),

(the index ¢ in f; means that the functional f acts on ¢ as a function of the argument ¢). The
convolution f * ¢ is an infinitely differentiable function. The functional f is called a convolutor
in the space Sfig if fxyp € sf;; for any ¢ € sf;; and the relation ¢, — 0 as v — +oo0 implies
f * ¢y — 0asv — +o0in the topology of SZ;.

Since each space of type S together with a function ¢(x) also contains the function ¢(—x)
and F~[y] = (271) "'F[y(—¢)], the Fourier transform of the generalized function f € (SZZ)’ is
determined by the relation

(FIfl.w) = (£ El¥]), VyeS,

while F[f] € (SZZ)’ dff e (SZZ)’ is a convolutor in the space SZZ, then for an arbitrary function

P e SZ; the formula F[f = ¢] = F[f]F[y] is correct [7].
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2 Infinite order differentiation operators

From the properties of the Fourier transform in spaces of S type it follows that in the space

SI,;Z the pseudodifferential operator Agp = F, % [g(0)Fimso[9]], V ¢ € 52;, is well defined

and it is continuous. This operator is built by the function (symbol) g, which is a multiplier
in the space SZ:. If the operator A, acts in the space Sg:, by, = nlpy, the operator A can
be understood as a differentiation operator of “infinite order”. If ¢(z) = Y ;_gcnz", z € C, is
some entire function, then we say that in space S Z: (C) an infinite order differentiation operator

(D) =Y ocn(iD)", D = d/dz, is specified if for an arbitrary function ¢ € ng (C) series
p(z) = (§(D)g)(z) := }_ cu(iD)"9(z), z€C,
n=0

represents the test function from the space SZ: (C). The restriction of the operator g(D) to the
space SZ:, which we denote by the symbol A, will be called a differential operator of infinite

order in the space SZ”.
k

Theorem 1. If the entire function g is a multiplier in the space ng (C), then in this space the
continuous operator (D) is defined, and

Agp(x) = F'g(0)F[gl(0)](x), {x,0} CR, g¢e€S". 4)

Proof. Let us write down (so far formally) the relation
F[¢](0) = ¥ cuFI(iD)"9](0) = ¥ ca0Flg](0) = g(0)E[gl(c), 9 €S, ceR.  (5)
n=0 n=0

Since F[¢] € SZ:, and g is a multiplier in this space, we have ¢F[¢] € SZ:. Then the function

¢F[p] can be analytically extended onto the whole complex plane, and (gF[¢])(z) € SZ: (C),
z = x +1y € C. Therefore, it suffices to prove the correctness of the transformations and justify
the correctness of the formulas (5); hence the statements (4) will already follow. Therefore it
suffices to establish that

r(z) =) Z“Flgl(z) =0, n— oo,
k=n+1

in the space ng (C). In other words, we need to show that: 1) {r, : n > 1} C SZ: (C);
2) the sequence converges uniformly to zero in each bounded domain of the complex plane
and the following inequalities are true

Itn(z)| < cy(aoc)p(by), v=1/p, z=0c+iyeC, neN,

with some constants 4, b, c > 0 independent of n.
Taylor coefficients c,,, n € Z, of function g are calculated by Cauchy’s formula
_ L8,
2mi ) it
I'r

n TlEZ.,.,



Evolution pseudodifferential equations with analytic symbols in spaces of S type 167

where I'y is a circle of radius R with center at the point zg = 0. Hence, from the condition of
the theorem (g is the multiplier in Sg: (C)) it follows that

- (r(eR)T . p(eR) . p(eR) . p(eR)
len| < cg1%f R 111%f R cglrlgf R/ 1%f Ri72 e>0.
Let us estimate separately the coefficients ¢y and cpr11, k € Z. So,
) eR)\2 ) eR)\2
leok| < C£<111%f ‘O(Rk )) = C882k<111%f {EER)’E) = CSSka%. (6)
Similarly,
. eR) . eR
lcaks1] < ce ngfp(Rk ) inf ‘;{(k +1> < cet® M ppin < cee™ M7 (7)
(it is taken into account that the sequence {px : k € Z, } is monotonically decreasing). Next,
we estimate the function a,(z) := [c,2"F[¢](z)|, z € C, with a fixed n € N, if n = 2k and

n =2k +1,k € Z,, taking into account the inequalities (6) and (7), respectively.
Let n = 2k. Since F[¢] € SSZ(C), we have

dc,a,b>0 Vz=0c+iyeC: |Flp|(z)|<cy(ac)p(by), v=1/p.

In addition,
2% = (0% + ) < @max{o?, 21 < 24 (o + [y).
So,

w1 (z) < ceez* e pR(|o** + |y[*) v (ac)p(by)
= cactte (p2(|o Py (ao)p(by) + p2lyP (a0)p(by)) = cce® (AL(z) + A (2).

Since

4

p(o) <a>kinfp(w/4)

= 1 f— = ,
= 200 ok lac/4[k

we have

o ok (AN\%*p*(ac/4) o oqa
Okl S<4:> pryriad _p<4‘7)'

From the inequality (3) it follows

+(2e) =r(20) +1(3e) < (3). »

Since p = 1/, taking into account (8), we find that

A(z) = pHo Py (ao)p(br) < p*(30)7(50) (50 )obw)
< LA (S0)ote) = 1 (S0)otew)

Let us estimate A}/(z). Taking into account the convexity of the function In p, we obtain the
following relations

Al(z) = p%kav(W)elnp(by) :p%kae—lnp(SOy)elnp(by)ﬂnp(eoy),Y(M)

< p%yzke— lnp(SOy)elnp((b+€o)y)7(aa),



168 Horodets’kyi V.V., Martynyuk O.V.

(¢0 > 0 is arbitrarily fixed number). Next, we use the fact that o, = v~ Fo(ve) = v kek, k > 1,
where vy is the solution of the equation xp(x) =k, x > 0,k € N, u = p'/p, (1) > 1. In fact,

since ;
Inp(y) = / u(¢)dg,

0

by the mean value theorem for a certain integral we have

tnp(n) = [ (@ = vip() < vnlue) <k, 0 < <,

(here it is taken into account that u is a monotonically increasing and continuous on [0, +o0)
function [7]). Then p(v;) < ek, k € IN. Next, we directly find that

sup (]/Zkei In p(soy)) _ ﬁ]%kei In p(egP) < =}3k’
y=0

where 7y is the solution of the equation xy(x) = 2k, k € IN. Note that

Ve _ Uei(u) U)o —

ve vk u(ve) k7

Since v < 7, a u is increasing and continuous on [0, +00) function, then p(v;) < (7). There-
fore

S < F B =" =2 keN, and  A/(z) < (2e)* v (ac)o((b + £0)y).

So, ay(z) < BA*y(ayo)p(bry), z € C, k € Z, by = b+ ¢g. Similarly, we estimate ay1(z),
k€ Z;,z € C. As a result, we get a,(z) < ,BA”S”'y(aZU)p(bzy), n € Zy,z € C,and all
constants do not depend on 7. So

@ <B Y Adyaopby), zeC.

1(2)] < Ly(m)obay), zec. ©)

From (9) it follows that: a) r,, € Sg: (C) for each n € N (i.e. condition 1) is satisfied); b) the
sequence {r, : n > 1} converges uniformly to zero as n — oo in any bounded domain Q C C,
while |, (z)| < By(a20)p(bay), n € N, z € C, where the constants §, a, b, > 0 do not depend
on n. So, the sequence {r, : n > 1} converges to zero in the space SSZ (C). This proves that the
operator g(D) is defined in the space SZ: (C), and it maps each bounded set of this space into a
bounded set of the same space. Thus, the operator g(D) is continuous in the space SZ: (C), and

the operator Ag is defined and continuous in the space Sbl':, and from the relation (5) it follows
that the equality (4) is correct. O
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3 Nonlocal multipoint by time problem

Let us consider the evolution equation
du(t,x)/ot = Agu(t,x), (t,x) € (0, T] xR=Q, (10)

where Ag = F; % [¢(0) Fx—] is a pseudodifferential operator in space Sg: which is constructed

by the function g(c), ¢ € R. This function is a multiplier in this space and €3 € SZ:. Recall (see
Section 2) that the operator A, can be understood as a differentiation operator of infinite order
in space Sgl’:. The symbol Pé’; will denote the class of functions (symbols) ¢ that satisfy these
conditions. For example, let ¢(z) = —0?, o € R. In this case, A; = F[—0?F] = —(iDx)* = D3,
and the equation (10) is the heat eqzuation ou/ot = 0%u/ox>.

Since |e % | = e~ (CT%)?| = ¢+ 7 = ¢+ iy € C, from this and from the characteristics

n/2

of the spaces 55 (see [4]) it follows that e € S%% = SZk /» - In addition, the function —0%isa

multiplier in the space S%;g Therefore, the function g(o) = —02, 0 € R, is an element of the
space ng%z.

For the equation (10) we define a nonlocal multipoint by time problem: find the solution of
the equation (10), which satisfies the condition

m

pu(t, Y=o — Y meBru(t, -)|i=t, = f- (11)
k=1

Here m € N, {y, p1,...,tm} C (0,40), {t1,...,tm} C (0,T] are fixed parameters, and
>yl e 0<thh <h<...<t, <T, f¢€ Sgl’:, By, ..., By are pseudodifferential ope-

. by, . . .
rators in space S by which are constructed by functions (symbols) g1, ..., gm, respectively, and
they satisfy conditions:

da>0 Ve>0: 0<g(o) <exp{elnp(ac)},
JdLy>0 F3a>0 Vex>0: |Dyg(o)| < Lislpsexp{elnp(ac)},

wheres € N,c € R, k € {1,...,m}.

We find the solution of the problem (10), (11) using the Fourier transform in the form
u(t,x) = FL.[v(t,0)](x). For the function v : QO — R we get the following problem with
the parameter ¢

do(t,o)
dt

yv(t, U)‘tzo - Z ngk(a)v(t/ U)‘t:tk = f(o’), ceR, (13)
k=1

=g(0)o(t, o), (t,o)€Q, (12)

where f(c) = F1[f](c). The general solution of the equation (12) has the form
v(t, o) =cexp{tg(c)}, (t,0)€Q, (14)

where ¢ = ¢(0) is defined by the condition (13). Substituting (14) into (13), we find

" 1
¢ = F(0) (V—Zykguwexp{tkg(a)}) , veR
k=1
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Therefore, the formal solution of the problem (10), (11) is the function
u(t,x) = (271)"! / o(t, o)~ do.
R

Let us introduce the notation G(t,x) = F,1.[Q(t,0)] (x), where Q(t,¢) = Q1(t,o)Qa2(0),
Qi(t, o) = exp{tg(c)},

" 1
Qo) = (u—zukgk<a>exp{tkg<o—>}) ( zukgk Q1 (ks >)
k=1

-1

Then, considering formally, we find that

u(t,) = [ Gltx—)f(©)E = Glt,x) x f(x), (1) €

Indeed,

u(t,x) =2m)" [ Q(t,0) ( /Rf@)ef”@d@') o
=k <<2”>1 /e cr)ei‘“”)da) f(@)de (15

:/H{G(t'x —¢)f(6)dg = G(t, x) * f(x), (t,x) € Q.

The correctness of the transformations here and the convergence of the corresponding inte-
grals, and hence the correctness of the formula (15) follows from the properties of the function
G, which we present below. The properties of the function G are related to the properties of
the function Q, since G = F~1[Q)].

Since § € Pé’:, we have e € SZ:. Then (see Section 1), there are numbers ¢y, a,b > 0 such
that

Ing(ac)+Inp(bt)

|eg |<c0e Yy=1/y=p, z=0c+iteC. (16)

Further, we assume that the constant c in the inequality (16) satisfies ¢y < 1. Then
1e'8)| = 1e83)|F < [cg exp{—InF(ac) + Inp(bT)}]! < exp{—tInF(ac) + tInp(bT)}. (17)

Lemma 1. For the function Q1(t,0) = exp{tg(c)}, ¢ € R, t € (0,T] and its derivatives (for
the variable o) the estimates

ID5Q1(t,0)| < b°slpsexp{—tIin§(ac)}, s€Z;, (18)

are correct, here a > 0 is constant from inequality (17), b > 0 is independent of t,
ps = infr(p(T)/|T[*).

Proof. For t > 1 the inequality tInp(bt) < Inp(btt), T € [0,00) is correct. This property
follows from the relations

tbt bt bt
np(bre) = [ p@dz =t [ pty)ay =t [ pw)ay = tmp(er), (1)
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where u(&) = p'(&)/p(&), while u is a non-negative, continuous function on R, monotonically
increasing on the interval [0, o) [7]. Then

|Q1(t,2)| < exp{—tInF(ac) +1Inp(tbt)}, z€C, t>1. (20)

Due to the Cauchy integral formula we have

s! Q1(t,z)
D; t,o) = —/ 'z, 7z,
O'Ql( U) 27Ti I (Z —0’)S+1 z s€ Ly

where I'y is a circle of radius R centered at the point ¢. Using (20), we come to the inequalities

| |
ID5Qu(t,0)] < 2o max|Qi(£,2)] < o exp{—tIn(aco) + Inp(tbR)},
R

where 0y is the maximum value of the function exp{—tIn¥(a¢)}, ¢ € [c — R, ¢+ R]. Since
In(ag) is an even function on R increasing on the interval [0, +0),

0, Sl <R,
0o =< 0+R, ¢<-—R,
c—R, ¢>R.

Using the inequality — In (071 + 02) +In¥(07) < —In9(02), 01,02 > 0, we prove the existence
of constant a; > 0, such that

Vo >0, VR > 0:exp{—tIng(aoy)} < exp{—tIny(ac)}exp{tIn§(a1R)}.

Then

s!
D5Qu(t,0)| < o5 exp{~tIn¥(ac)} exp {tIn¥(a1R)} exp{Inp(tbR)}
|
< % exp{—tIny(ac)} exp{lnp(tb1R)}, by = b+ a;.

Here we used that ¥ = p as well as the inequality Inp(tbR) + Inp(ta1R) < Inp(t(b + a1)R).
For each s € Z the function g;:(R) = R™*exp{Inp(b1tR)} = R~°p(b1tR) is differentiable on
(0, +00), and the properties of the function p implies the relations

400, s€ NN,

Li R) = , Zy; i R) =
im 8+(R) =+oo, s€Zy; lim g:4(R) {1, i,

R—+c0

Since gs+(R) > 0, R € (0, +00), this function reaches its infimum. So,

|D5Q1(t, )] <s! i%fgs,t(R) exp {—tIny(ac)} = slb°t* inf {Eglﬁgz exp {—tIn¥(ac)}

=b°Fslpsexp {—tIng(ac)} < b°slpsexp {—tIngy(ac)},

where b = b T*, T* = max{1, T}. The case of 0 < t < 1is considered similarly. As a result, we
arrive at estimates (18). O
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t,-) € Sg:, b, = nlp,, foreacht € (0,T|.

Remark. From the inequality (17) it follows that Q1 (¢,
In fact, if t € (0,1], then from (19) the inequality

exp{—tIny(ac)} < exp{—Inj(ac)}, ay=at, y=1/y=p,

follows. Then |Q1(t,z)| < exp{—In¥(a10) +Inp(b7)} = y(a10)p(b7).
If t > 1 and t is non-integer, then t = [t] 4+ {t}. Then (see (19))

—tIn¥(ac) < ef[t] ln'?(ao)ef{t}ln'?(uo) < ef{t}ln’y(aa) < efln'y(aza),
4y = a{t}, etlnp(br) < elnp(btr) _ elnp(blr)’ by = bt.
So, |Q1(t,z)| < exp{—In(ax0)} exp{Inp(b17)} = y(az0)p(b17) for every t > 1.
}, then we may write t = 1+ n — 1. In this case the estimation

Ift =mnne€ {23...},
|Q1(t,2)| < exp{—1In§(a20)} exp{Inp(ba71)} = y(az0)p(b27), by = n, is correct.

Lemma 2. The function

= <Pl - i #8k () eXP{fkg(‘T)}) T oceR,

is a multiplier in the space SZ:, where a, = n*", by = k'py, {k,n} € Z
Proof. To prove the assertion we estimate the derivatives of Q,. For this purpose we use Faa di

Bruno’s formula for differentiating a complex function

s L s! d oo d "
Dﬁ(qo(a))—pgwmzm(w(g)) (re)

where the above sum is taken over all solutions in non-negative integers of the equation
In this formula we put F = ¢~ !, ¢ = R,

s = m1—|—2m2—|—...+lml,p = my+...+m.
= F(R(0)) and

where R(0) = p — Y /' 1 k8 (0)Q1(t, o). Then Qo (o)

ﬂ _ @ 1 PR~ (p+1)
dq)pF(R) R = (F1)PpIR :

Taking into account the inequalities (18) and the properties of functions g1, . .., g, we find

!
' 1d ‘D(I;ietkg(v),

1 <1
I! dU’l l

l
ZCZ‘Dng

Z ClLkl'plbl Z(Z — i)!pieitklnr;(ﬂo—)e‘c—lnp(ﬂo').
i=0

2

Note that exp{—t;In¥(ac)} = exp{—txInp(ac)} < exp{—tilnp(ac)}, k € {2,3 m},
F=p, (=) <ILpi<po=1p0_i<po=11i€{0,1,...,1} (here we used the fact that the

sequence {p, : n € Z,} is monotonically decreasing, pg = 1). Therefore the inequality
1
' 1d R(0)

N | =1 Zﬂkl'Ll exp{—tInp(ac) +elnp(ac)}
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is correct, where [, = 2max{L, B}, L = max{1,Ly,...,Ly}. If we put e = t;, we get the
estimate

1 d
l_'ﬁR( )

()" (o)

where & = max{1, c}. Taking into account the properties of the functions g, ..., gm and the
inequality (17), we find

m
< cLl, c= Z Uk
k=1
So,

<ML L%mz . cmlLllm’

2 et ~
:Cm1+m2+...+mlL;H1+ my+..tlimp CpLi < CsLil

elnp(aa)e—tklni(atr) elnp(ac)—t Inp(ao)

1 gk (0)e8K ) < e < e = Uk,

where ¢ = t;. Then

m m -1
Ry(0) :H—kZngk( )etk8(@) >y — Zykr Qx(0) =R (o) < (H—?M) = Bo > 0.
— -

Therefore, R~ (P*1) < ﬁg“. Summing up, we find |D5Qx(0)| < bBS(s!)? < bB*s*,s € Z,..

From the last inequality and boundedness of the function Q; on R it follows that Q> is a
multiplier in the space SZZ, where a,, = n?", by = k'p.

From Lemma 1 and Lemma 2 it follows that for every fixed t € (0,T] the function
Q(t,0) = Q1(t,0)Q2(0) as function of variable ¢ is an element of space SZ;:, a, = n** and
the inequality

ID5Q(t,0)| < cB°s* exp{—tInj(ac)} (21)

is correct with constants c, B,a > 0 independent of ¢.
Since G(t,-) = F~1[Q(t, )], taking into account the properties of direct and inverse Fourier
transforms in spaces of type S, we obtain G(¢, -) € SZZ, by = nlp,, ap = k* for each t € (0, T].
Note that representation

m -1 m -1
Q) = (1= L mg@)es®)) = (11 % (o))

k=1 k=1
1 !
==Y 0 <2ngk )e'k8( )
I3 r=0
X 7!
S Y g g ()
r=0 rtotry=r Ao tme
=Y u (1) )3 rlo 17/‘1 o Hmgy () - g (o)t ) (o)
r=0 r1+...+rm=r

is also correct for the function Q,. Here we used polynomial formula and inequality

— fkg
Z nrgk(o
Fi3
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From this fact we get

. o it
G(t,x) = (27m)~ / etg(U)Qz(o-)e—zade — Z rl—i—l Z MG(A_{_,{ x),
R =0 e Fra=r T Tm'

where
G(A+tx) = (21)"" /R eSO () T (0)e o,

A= Hr1 4 ...+ twrm + £, and G(t, x) is the fundamental solution of Cauchy problem for
equation (10). O

Lemma 3. The functionG(t,-), t € (0, T}, as an abstract function of the parameter t with values
in the space SZZ = SZ;k differentiable by t.

Proof. Continuity of direct and inverse Fourier transforms in spaces of type S implies that we
only need to establish that the function F[G(t,-)] = Q(t, -) is differentiable by t as an abstract
function of the parameter t with values in the space F [SZZ] = SZ:, i.e. we need to prove that the
limit relation

Lo+ At 0) - Q)] — %Q(t,a), Af 0,

is performed in the following sense: 1) Dj;®x(0) 0 D;g(0)Q(t,0), s € Z, uniformly
ﬁ

on each segment [2,b] C R; 2) |D5®p(0)| < ¢B’s®e~m7@) s ¢ Z,, where the constants
¢,da, B > 0do not depend on At for rather small values of At.

The function Q(t,0), (t,0) € (0, T] x R, is differentiable by ¢ in the usual sense, therefore,
due to Lagrange’s mean value theorem, we have ®x;(0) = g(0)Q(t +0At,0), 0 < 6 < 1,
t+60At < T. So,

D5dp (0 2 C!D! ¢(0)D571Q(t 4 0AL, 0)
=0
and
DS (@At(a) — ;t ) Z C!D!g(0)[DST'Q(t + 0AL, o) — DE'Q(t, 7).

From the equality D5~'Q(t + 0At,0) — D57'Q(t,0) = DSTH1Q(t + 61AL,0)0At, 0 < 6; < 1,
and from (21) it follows that D(S;IHQ(I‘ + 01At,0)0At — 0, At — 0, uniformly on each segment
[a,b] C R. Then

Di®a(0) — DS <§tQ(t a)) . A0,

uniformly on the segment [a, b] C R. So, condition 1) holds.
Since g is a multiplier in the space SZZP”, we obtain

Ve>0 Jc>0 Vz=o4iteC: |g(z)] < ceemTe0)+Inpler), (22)

Due to the Cauchy integral formula we have that

) (gy — M / 8(z)
8 (U) 271i Ty (Z _ 0_>n+1dzr ne Z-i—r
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where I'y is a circle of radius R centered at the point ¢ € R. Then, taking into account (22), we
get the inequalities
N ¥(e(c+R))+Inp(eR)

8" (0)| < ﬁgéiwg( z)| <ceRn

< cen! i%f p(li—f)elnﬂg(”R)) = cee"nlp, M TECHR) o >,

For sufficiently large values o > 0, the inequality ¢(c + R) < (¢ + R)o holds. Since the func-
tion In¥ increases monotonically for ¢ > 0, we have for the same values of ¢ that
In9(e(c+R)) < Inj(e+ R)o). Forallo > 0 the inequality In¥(e(c +R)) < In§((e +R)0) +cr
holds. So, for o > 0 we have

exp{In¥(e(c + R))} < érexp{Iny((e + R)o)}.
In what follows, for a given ¢ > 0, we assume that R = ¢. Then

In ¥(2¢e0) <é ~/ e In ¥(2¢e0)

|g(n)(‘7)| < Ee'"nlpye nle , nesZ,,

(here we take into account that the sequence {p, } is monotonically increasing). Due to above
inequality and estimates for the derivatives of Q(t,0), we find that

|Dg®a(0)] <C Z ClelltBs=! (s — 1)2(s= 1) In 7 (2e0) = (t40At) In 5 (ac)
1=0
< GBS §25pIn7(2e0) ~tIn¥(a0) s[5 425 InT(2e0) —tIn ¥ (ac)

(we assume f + 0At > 0, t € (0, T] is fixed number). Take ¢ = ta/4. From the convexity of the
function In 4 it follows

In§(2e0) —Iny(ato) < —Inj((at —2¢)0) = —Inj(ac), a=at—2e=at/2>0.

Then
DDy (0)| < eB%s%e01(30) 5 >,

moreover, the constants ¢,4, B > 0 do not depend on At (for enough small values of At). The
case of ¢ < 0 may be considered similarly. So, the condition 2) also holds. O

Lemma 4. The formula

d JG(t, x
d(peca) =« 2S00 yre(sh), te@T), a=k kez,

is correct.

Proof. By the definition of the convolution of a generalized function with a test function, we
have

f* G(t, x) = <f§/ T_xé(t,g», é(t/ C) = G(tr _C>
Then

0
Wf*G(ffx))—A%E‘O—V*G(HN )= £,

Algogg, [T_(G(t+ AL E) — T_xé(t,(;")]>.
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Due to Lemma 3 the limit relation
1

TG+t = TGt )] — = 2T.6(t,1)

At—0 Ot

is performed in the sense of convergence in the topology of space SZZ = SZ;f ", therefore, taking

into account the continuity of the functional f, we have that

DG4 = (fe, lim LT (Gl +ALE) T E(1,8))

At—0 At

— <fC/ ET—xé(t,6)> - <f§’ T—x%é(t,6)> _ f* aGgi,x).

Lemma 5. In the space (SZZ)’ = (SZZ!,’:”)’ the boundary relation

t—40 t—t;

u lim G(t Zyl lim B,G(t,-) =6 (23)

holds (here ¢ is the Dirac delta function).

Proof. Using the continuity of the Fourier transform and the function G(t,-) as an abstract
function of the parameter t with values in the space S (2 from the relation (23) we obtain

p Mim F[G(t, ZHZ llmF[BlG( )] = F[d] (24)

in the space (SZZ" )'. Considering the representation of the function G, (24) is given as
", lun Q(t, o) Zyl hmgl( )Q(t, o) =1. (25)

To prove (25) we take an arbitrary function ¢ € Sgk” and using the limit transition theorem
under the Lebesgue integral and treating Q(t,-), ¢;Q(t,-), I € {1,...,m}, as regular distribu-
tions from the space (SZZH )', we find that

p lim (Q(t, ) thlgrgl (&()Q(t ), 9)
_yhm/Qt(r d(r—Zyltlgrtl/gl Q(t, 0)p(o)do

:/ I/‘Q(O,U)_Zl/‘lgl(U)Q(tl,a)]go(g)dU
R =1
= F 3 a1l >Ql<tz, )

S oo

It follows that the relation (25) holds in the space (Sg:n)’ , and therefore the relation (23) is
correct. U
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The symbol (Sfjgk, ) denote the class of generalized functions from (SZ;k)’ , which are con-

volutors in the space SZ;}.

Lemma 6. Let
w(t,x) = fxG(t,x), fe (S, (tx)eq.

Then in the space (Si’;k)’ the following limit relation holds

p lim w( Z g lim Brw(t, ) = f. (26)

t—-+0 t—tp

Proof. Since

w(t,x) = f*G(t,x) = (fz, T-xC(£,),  f € (S *)'s
from the continuity of G(f, -) as an abstract function of the parameter ¢ with values in the space
SZ;k it follows the continuity of w(t, -) as an abstract function of the parameter ¢t with values in
the same space. Taking into account the continuity of the Fourier transform and the formula
F[f = G] = F[f]F[G] = F[f]Q, which is correct for an arbitrary generalized function f from the
class (SZ’Z’k, x)’, from (26) we get the relation

p lim Flw( ZP‘k lim F[Byw(t, )] = F[f]

t—+0 j t—ty

in the space (Sg:n)’ or

1 1 =1
p lim Q(t - Zﬂktgﬁgk( 0)Q(t,) =1,
which, as proved earlier (see (25)), is correct in this space. This proves that the relation (26)
holds in the space (SZ;k)’ . O

The function G is the solution of the equation (10). Indeed,

d d ~1[9
56t x) = SFQ(L 0] () = F [ 5.0(,0)] (x)

On the other hand,

AgG(t,x) = F A [8(0) Feso [G(t, x)]] = F'[3(0)Q(t )] (x) = F7! L’?t

Qt, )] (x).
It follows that the function G satisfies the equation (10).

Further, let us call the function G the fundamental solution of a nonlocal multipoint by
time problem for the equation (10).

From the Lemma 6 it follows that for the equation (10) nonlocal multipoint by time prob-
lem can be formulated as follows: find the solution of the equation (10), which satisfies the

condition

Htlirﬂou Zyk hm Buu(t,)=f, fE€ (Sng, ), 27)

where the limit relation (27) is considered in the space (Si’;k)’ (restrictions on parameters
WU, Wi, ---, Ym, t1, ..., ty are the same as in the case of problem (10) , (11)).
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Theorem 2. The nonlocal multipoint by time problem (10), (27) is solvable; the solution is
given by the formula u(t,x) = f * G(t,x), (t,x) € Q, where G is the fundamental solution of
the multipoint problem for the equation (10).

Proof. The function u(t, x) is the solution of the equation (10). In fact (see Lemma 4),

Jdu(t,x) 0 . 0G(t,x)
o~ g *Gtx)) = fr—a,

Agu(t,x) = F~'[g(c)F[f * G| (x).

Since f is a convolutor in the space Sfjgk, we obtain

Flf « G(t,x)](0) = F[fI(e)F[G(t, x)](0) = F[f)()Q(t, o).

So,

Agu(t,x) = F ' [g(@)Q( ) FIfA(0)](x) = F' [ Q0 ) FIAI(0)] ()
_p! [F[%G} (t,0) - E[f(0)] (x) = F 1 [F[ £+ %—fﬂ (x) = f+ %

Hence, the function u(t, x), (¢, x) € (), satisfies the equation (10). From the Lemma 6 it follows
that u satisfies the condition (27) in the specified sense. O
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AOCAiAXYeTbCSI HeAOKAABHA 6araTOTOUKOBA 3a YacOM 3ajada AASI €BOAIOIIMHOIO PiBHSHHS 3
niceBAOAMIpEpeHIIIaAbHMM OIIepaTOPOM, SIKMI TPaKTY€eThCs SIK OIepaTop AMdpepeHIIiIoBaHHS He-
CKiHUEeHHOTO MOPSIAKY B y3araAbHeHIX IMPOCTOpaXx THUITy S y BUTIaAKY, KOAYM IIOYaTKOBa YMOBA € eAe-
MEHTOM IIPOCTOPY y3ararbHeHMX (PYHKIIIN THITy YABTPapO3IOAiAiB, a HEAOKAABHA yMOBa MiCTUTD
TiceBAOAMpepeHITiaAbHI onepaTopu. BcraHOBAEHO po3B’sI3HICTD Takol 3aAadi, AOCAIAXKEHO BAACTH-
BOCTi PyHAAMEHTaABHOTO PO3B’ 3Ky, 3HalIA€HO aHaAITIUHe 306pakeHHs PO3B’ SI3KY.

Kntouosi cnoea i ppasu: HeaOKaAbHa 6araTOTOUKOBA 3aAava, ICeBAOAV( epeHIIiaAbHIIT OIlepaTop,
y3arasbHeHa PyHKIIisI.



