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Completely positive maps for imprimitive complex reflection
groups

Randriamaro H.

In 1994, M. Bozejko and R. Speicher proved the existence of completely positive quasimultiplica-
tive maps from the group algebra of Coxeter groups to the set of bounded operators. They used
some of them to define an inner product associated to creation and annihilation operators on a direct
sum of Hilbert space tensor powers called full Fock space. Afterwards, A. Mathas and R. Orellana
defined in 2008 a length function on imprimitive complex reflection groups that allowed them to
introduce an analogue to the descent algebra of Coxeter groups. In this article, we use the length
function defined by A. Mathas and R. Orellana to extend the result of M. Bozejko and R. Speicher to
imprimitive complex reflection groups, in other words to prove the existence of completely positive
quasimultiplicative maps from the group algebra of imprimitive complex reflection groups to the
set of bounded operators. Some of those maps are then used to define a more general inner product
associated to creation and annihilation operators on the full Fock space. Recall that in quantum me-
chanics, the state of a physical system is represented by a vector in a Hilbert space, and the creation
and annihilation operators act on a Fock state by respectively adding and removing a particle in the
ascribed quantum state.
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1 Introduction

Denote by IN the set of positive integers as usual, by [i, j] the set {i,i +1,...,j} for integers
i,j with i < j, and by [j] the set [1,j]. Recall that, for m,n € IN, the complex reflection group
G(m,1,n) is generated by reflections s, s1, 2, . . ., S;,—1 on C" subject to the relations

2 2 2
581 =8 =8 =:=85, 1= 1, 50515051 = S1S05150,
Vi e [1’1 - 2] P 5i5i418i = Si+1SiSi+1, VZ,] S [O,Vl - 1], |l —]| >2: Sl'S]' = S]'Sl'.

The study of cyclotomic descent algebras by A. Mathas and R. Orellana [7, § 2] leads to consider
the reflections t; := sg, and t;,1 := s;t;s; for i € [n — 1]. The subgroup T := (t1,tp,...,t,) is
isomorphic to (Z/mZ)", and is normal in G(m, 1,n). Since (s1, 5y, ...,5,—1) is the symmetric
group Sym(n) of order n, then G(m,1,n) = T x Sym(n). As set, we have

G(m,1,n) = {#]' ... tomw } 01,0, ..., 0, € [0,m—1], w € Sym(n)}.
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Completely positive maps for imprimitive complex reflection groups 453

Hence, the set IT = {t1,tp,...,tn,51,52,...,54—1} generates G(m,1,n) so that A. Mathas and
R. Orellana could define the length function1: G(m, 1,n) — IN given by [7, Definition 2.3]

1(g) :=min{k € N | 3ry,rp,..., 1 €EI1: g =1112... 1%}

Let call IT a set of representative reflections of G(m,1,n). In addition to those above, the
reflections in IT are also subject to the relations

Vijje€[n], i#n, |i—j| >2: sitisit; = tisit;s;, sitip1Sitiv1 = tip1sitiv1si, sitj = t;s;,
with following Dynkin diagram.

f1 ) th1 tn

51 52 Sn—2 Sn—1

We work on a complex Hilbert space H endowed with an inner product (.,.) : Hx H — C.
Denoting by IR, the set of nonnegative real numbers, recall that H is also a normed space with
norm || .| : H— Ry defined by ||x|| := /(x, x).

A bounded operator on H is a linear operator L : H — H for which there exists a number
a € Ry such that, for every x € H, ||Lx|| < a|x||. The set Zy of bounded operators on H is a
normed algebra with norm || . ||op defined, for every bounded operator L, by

[Llop := inf{a € Ry | Vx € H: [|Lx|| < af|x]}.

The adjoint of L € Ay is the linear operator L* : H — H such that (L*x,y) = (x,Ly) for
every x,y € H. Recall that L is said self-adjoint if L* = L.
Letf= )  f(wuandg= )  g(u)ubelongto CG(m,1,n). The group algebra

ueG(m,1,n) ueG(m,1,n)
CG(m,1,n) is a Hilbert space for the inner product (.,.) : CG(m,1,n) x CG(m,1,n) — C
defined by (f,g) := ) f(u)g(u). Moreover, as the map g — fg is a linear operator on
ueG(m,1,n)
CG(m,1,n), we may define the adjointof fby f*:= Y f(u=')u € CG(m,1,n).

ueG(m,1,n)
A linear map ¢ : CG(m,1,n) — Py is quasimultiplicative if ¢(1) = idyg and

Vu,v € G(m,1,n) : l(uv) =1(u) +1(v) = @(uv) = ¢(u)p(v).

Alinear map ¢ : CG(m,1,n) — Py is completely positive if

k
Vk e N%, f1,..., fr € CG(m,1,n), x1,...,x, € H: < Z (P(fj*ﬁ‘)xi' xj> > 0.
ij=1
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Theorem 1. Let IT = {t1,tp,...,tn,51,52,...,5,—1} be a representative reflection set of the
complex reflection group G(m,1,n), and Sy,...,S,-1,T1,..., Tn € Py such that

evieh: [Tlp<l ¥ (Th'= ¥ T,

ie[m—1] ie[m—1]
e the bounded operators satisfy the following braid relations:
Vi e [ﬂ — 2] 0 5iSi+1Si = Si+1SiSi41, VZ,] € [1’1 — 1], ‘l —]’ >2: SZ‘S]' = S]‘SZ‘,
VZ,] S [1’1] : TZ'T]‘ = T]‘TZ', VZ,] € [1’1], i # n, ‘l —]’ >2: SZT] = T]‘Si,
Vi e [1’1 — 1] : SiTiSiTi = TiSiTiSi/ SiTi+1SiTi+1 = Ti+1SiTi+1Si-

Then, the quasimultiplicative linear map ¢ : CG(m,1,n) — %y given by
(1) =idg, Vie[n—1]: ¢(s;) =S; and Vje€ [n]: ¢(t) =T,
is completely positive.

Remark that we recover the completely positive maps on symmetric groups [2, Theorem 1.1]
by letting T; = 0, and those on commutative groups [2, Theorem 5.1] by letting S; = 0 in that
theorem. If in addition we assume that SZ2 = idyg and T}“ = idy in Theorem 1, then ¢ would
be a group algebra representation of CG(m, 1, n).

In the following, we describe important bounded operators of e« fulfilling the assump-

tions of Theorem 1. Take some vector (2 € H with ||(2|| = 1 called vacuum. Denoting by Z,
the set of nonnegative integers, the full Fock space for His @5 H®*" where H := C(2.
HEZ+

Assume that we are given some operators S, T such that

* S € Pusn, ||Sllop < 1,5* =S, and S fulfills the braid relation also called Yang-Baxter
equation (idg ® S)(S®idy)(idg ® S) = (S®idy)(idg ®S)(S ® idy) [6, § 8.1],

e TePBulTllp<1l Y, (TH* = ) T!, and T fulfills the relations
ie[m—1] ie[m—1]

(T®idy)S(T ®idp)S = S(T ®idy)S(T @ idy),
(idg®@T)S(Hidg® T)S =S(idg ® T)S(idg ® T).
Letn € N,i € [n —1],and j € [n]. Define the operators S;, T; € Byen by

i—1 times n—i—1 times j—1 times n—j times

Si=idp® - ®idgeS®idg® - ®idg and Tj:=idy ® -+ @idg @ T @idg @ - - - ®idy.

The S;’s and T]-'s fulfill the assumptions of Theorem 1. Define P,, : H®" — H®" as the operator
given by
Pg:=idcn and P, := Z o(u),
ueG(m,1,n)

where ¢ is the quasimultiplicative map of Theorem 1 with ¢(s;) = S; and ¢(t;) = T;.
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Theorem 2. The sesquilinear form (. . @ H*" x @5 H*" — C given by
i’leZ+ H€Z+

VX € HYF, VY € H®" : (X,Y)g := 6in(X, PnY)

is an inner product so that, for each x € H one can define creation and annihilation operators

d*(x) : @ H*" — @ H*" andd(x) : @ H*" — @5 H®" respectively, which are
nez nezy nezy nezy

]

adjoint with respect to (., .) . Moreover, we have ||d*(x)||op < :
V(1= 118llop) (1 = [ Tllop)

The inner product defined by M. Bozejko and R. Speicher [2, Theorem 3.1] is naturally a
special case of (.,.)c. Note that, letting {e;} ;< be some basis of H and g;; € C, they used their
inner product associated to creation and annihilation operators d*(e;) and d(e;) to construct
the Fock representation of the g;j-relations [2, Corollary 3.2]

d(ei)d* (e]) — q1]d* (e])d(el) = (51']',

where q;; = g;; and [g;;] < 1. In [8], S. Meljanac and D. Svrtan independently did the
same construction. That g;;-relation model is a generalization of previously studied models
[5,10,12]. But we recently established a more general g;;-relation model for arbitrary g;; (see [9]).
Furthermore, other creation and annihilation operators have been established over time like
those of V. Bargmann [1] and J. Stochel [11] defined from the complex holomorphic func-
tions on C". And newly, A. Daletskii, A. Kalyuzhny, E. Lytvynov, and D. Proskurin defined
such operators for which the associated Hilbert space is the L2-space of C"-valued functions
on R" [3].

We use the proof strategy of M. Bozejko and R. Speicher to prove in Section 2 the complete
positivity of the quasimultiplicative linear map ¢ in Theorem 1, and to build in Section 3 the
inner product associated with creation and annihilation operators in Theorem 2.

2 Completely positive maps

We prove the complete positivity of the map ¢ in Theorem 1 in this section.

Lemma 1. Let IT = {t1, tp, ..., tu, 51, S2,..., Su—1} be a representative reflection set of the
complex reflection group G(m,1,n), and ¢ the quasimultiplicative map of Theorem 1. If

l¢(r)llop < 1 for every r € I, then the operator P := Y ¢(u) € By is invertible.
ueG(m,1,n)
Proof. Wehave P = ) ¢(t) ). ¢(w). On one side, M. Bozejko and R. Speicher already
teT weSym(n)
proved that ) ¢@(w) is invertible [2, Theorem 2.4]. On the other side,
weSym(n)
oW =11 X o)
teT jeln] i€[0,m—1]
Remark that (idg — ¢(t)) Y. ¢(t)" = idu — (t;)™. Since [|(t;)" [lop < ll@(t/)]lop < L,
ie[0,m—1]
both operators idy — @(t;)" and idg — @(t;) are consequently invertible. Hence the operator
Y ¢(tj) is invertible with inverse (idy — ) Y. ot O

ie[0,m—1] ke]N
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An operator L € Ay is said to be positive and strictly positive if, respectively, (Lx, x) > 0
and (Lx, x) > 0 for every nonzero vector x € H.

Lemma 2. Let IT = {t1, tp, ..., tn, 51, S2, --., Su—1} be a representative reflection set of the
complex reflection group G(m,1,n), and ¢ the quasimultiplicative map of Theorem 1. If

|¢(r)|lop < 1 for every r € I, then the operatorP = Y ¢@(u) is strictly positive.
ueG(m,1,n)

Proof. M. Bozejko and R. Speicher defined for a self-adjoint operator L € %y the number
my(L) :=inf {(Lx,x) e R |x € H, ||x|| =1},

which is in fact the smallest element in the spectrum of L, and proved that, for L, K € %y

self- (L) = mo(K)| < [IL = K]|op [2, Lemma 2.5].
Ifo0<g<1,letg,: CG(m,1,n) — Py be the quasimultiplicative linear map such that, for
every r € I, ¢ (r) := qo(r). The operator Py := Y ¢,(u) € By is self-adjoint since
ueG(m,1,n)
Pr= X 9"17 L) = ) 9"17( )< [T X Goq(tj)i)
weSym(n teT weSym(n j€ln] i€[0,m—1]
- L o (H Yoo >)= R ICEL
weSym(n jen] i€[0,m—1] weSym(n teT

Then, the map g — mO(Pq) is continuous, since the map g — P; is norm-continuous and
|mo(Py,) — mo(Pg,)| < [[Pg; — Py, lop- Remark that Py = idyg and P; = P. The invertibility
of P; deduced from Lemma 1 implies my(P;) # 0. As mg(Pg) = 1, we necessarily have
mg(P;) > 0, in particular mg(P;) > 0. O

Proposition 1. Let II = {t1,t,...,ty,51,52,...,5,—1} be a representative reflection set of the
complex reflection group G(m,1,n), and ¢ the quasimultiplicative map of Theorem 1. If

l¢(r)|lop < 1 for every r € I1, then the operatorP = Y @(u) is positive.
ueG(m,<1,n)

Proof. The argument is similar to that of [2, Theorem 2.2]. Let ¢; : CG(m,1,n) — Py, for
0 < g < 1, be the quasimultiplicative linear map in the proof of Lemma 2. We know from

Lemma 2 that Py := Y} ¢,(u) € Py is strictly positive. As lim P, = P uniformly, we
ueG(m,1,n) 1"
get the result. O

Forv € G(m,1,n),let6, : CG(m,1,n) — CG(m,1,n) be the operator

0,(f) :=of = ) f(o™'u)u  withnorm ||6y]jop = 1.
ueG(m,1,n)

Define the quasimultiplicative linear map A : CG(m,1,1) = Beg(m,1,) given by

A1) =idegiminy, Vi€ [n—1]: A(s;)) =05, and Vj€ [n]: A(t;) = 6.
One can easily verify that A(s;) and ) _ )\(tj)i are self-adjoint. We can now establish the
i€[m—1]
proof of Theorem 1.
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Proof. Fori € [n—1]andj € [n], define the operators S; and 'T']- on CG(m,1,n) ® H respectively
by 5; := A(s;)) ® S;and T; := A(t})) ® T;. And let ¢ : CG(m,1,n) = Bcg(minen be the
quasimultiplicative linear map given by

P(1) = idegminyen Vi€ m—1]: ¢(s;) = A(s;)) ®S; and Vj € [n]: gb(t]-) = A(t]-) ®T;.

As [[@(si)|lop < 1 and [|¢(t)|lop < 1, we deduce from Proposition 1 that the operator
P = Z gb( ) is positive. Let x1,...,xx € H, f1,..., fr € CG(m,1,n), and set

m

y = Z u®2f1 Dy € CG(m,1,n) @ H.
ueG(m,1,n) ic[k]

Then, on the Hilbert space CG(m, 1,n) @ H, we have

0<(Pyy= L )<<A<u>®qo<u>)y,y>
ueG(m,l,n

= T T {0 eem) @ flo ), we fiw )

u,0,weG(m,1,n)ijek|

- L T (@) e, ve fiw )

u,0,weG(m,1,n)ijek|

= T ¥ ww) () e, o)

u,o,weG(m,1,n)ijek|

_ Y Y. (uv,w) <f]( Dfile™") p(u )xi’xf>

u,o,weG(m,1,n)ijelk|

- X Z<f] u ) fi(o™) @(u)xi, xp)

u,veG(m,1,n)ijek]

=L (o T FETAE ) ) = X (el A

ijelk| u,veG(m,1,n) ijelk]

3 Representation on Fock Space

In this section, we prove that the sesquilinear form (., .) ¢ in Theorem 2 is an inner product,
for which suitable creation and annihilation operators are defined.

Recall the canonical free creation and annihilation operators I*(x) : @ H*" — 5 H®"
nezZ, nezZ,
and I(x) : @ H®" — € H®" respectively, for each x € H, defined by [4, § 2]
nezZ, nezZ,

Fx)Q=x and I"(X)1®@ - QX =x@x1 Q- DXy,
(x)2=0 and (X)X ® - @x; = (X, X)X R Xy,

for x1,...,x, € H. Consider the operator

Ry = (idH®n Z TZ) <idH®n + Z f[ Sl‘> € Byeon.

ie[m—1] j€m—=1]i€]j]
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We define the creation and annihilation operators d*(x) and d(x) in Theorem 2 by
d(x) :=1"(x) and d(x)x1® - @x, :=1(x)Ryx1 ® -+ ® xp.

Remark that they are clearly not adjoint with respect to the usual inner product (.,.). We
can now establish the proof of Theorem 2.

Proof. As stated in Lemma 2, P, is strictly positive, then (., .)¢ is an inner product. By defini-
tion of S; and T;, we have I"(x)S; = S; 11" (x) and I*(x) T; = T; 11" (x), which implies

(x)Py = (idg ® Pp)I*(x) or Pyl(x) = I(x)(idy ©® Py).

Note that
Pra=( T o) (o T o) (s + T 17% ?(s),
ueG(m,1,n i€[m j€ln]i€]j

where the complex reflection group G(m, 1, n) is generated by {f;, t3, . . th, $2,83,--.,51} as

reflection set, Z ¢(u) = Py, and < ) + Z o( tl >< ) + Z H ¢(s ) = Ry11-

ueG(m,1,n) jelnlielj]
Then,
Pur1 = (idg ® Py)R;41-
Now, for X € H®" and Y € H®"*+1 we have
(d* ()X, Y) o = (d*(2)X, Payp1Y) = (X, 1(x)Pusr¥) = (X, 1(x)(ide @ Pp)Rys1Y)
= (X, Pul(x)Ry11Y) = (X, Ppd(x)Y) = (X, d(x)Y) .

Moreover, since

Rusillor < ( 3 ISl) (2 1Tlep) < ¢

ie[0,n] jel0,m—1]

1
1—Sllop) (1 = I Tllop)’

then
|(ide ® Pw) (ide @ Pu)|,,
(1= ISllop)™ (1 — [ Tllop)*”

IPur1Puiallop = || (ida @ Pu)Ruta Ry 1 (idm @ Pu) || ) <

H(ldH ® P”>Hop

(1= 1ISllop) (1 = I Tllop)
for X € H®", we consequently have

hence ||P,,41lop <

. Denoting by || . || the norm associated to (s,.)¢,

[d*(0)X||; = (d*(0)X, d*()X), = (x @ X, x @ X)g = (x @ X, Ppp1 x ® X)
1

= = Sllp) (1 = [Tlop) % (it @ Pa) & X)

1 [ 1 Xl

= A= T8lon) (A= TTTTepy & X PrX06 = g o N = [Ton)
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M. Boxeriko Ta P. HImavixep y 1994 poui poBeAM iCHyBaHHS IIAKOM ITO3UTVBHMX KBa3iMyAbBTH-
IIAiKaTMBHIMX BiaOOpaskeHb 3 TpymoBoi aAreb6pu rpyn Kokcerepa y MHOXIMHY 0OMeXeHMX OIIepaTo-
piB. BoHM BUKOpMCTaAM AesIKi 3 HVX AASI TOTO, OO BU3HAYUMTY CKAaASIPHMIL AOOYTOK, acoLifoBaHNIA
3 oIepaTopaMy HapOAKeHHsI Ta 3HMIIeHHS, 3aAaHVMI Ha MPsIMili CyMi TeH30pHMX CTeIleHiB TiAb-
bepTOBOrO IMPOCTOPY, IO Mae Ha3By MoBHOro npocropy @Poka. 3roaom y 2008 poui A. Marxac Ta
P. Opeanana BusHauwmm (OYHKITIFO AOBXVHN Ha HETIPMMITUBHIX KOMIIAEKCHMX I'PyTIaX BiAGUTTSI, IO
AO3BOAMAO iM BBECTM aHAAOT aArebpu crycky rpyn Kokcerepa. Y 1ili cTaTTi MU BUKOPUCTOBYEMO
PYHKIIIO AOBXMHU AASI TOTO, IIO6 po3mmputn pesyabraT M. boxerika Ta P. Illmaiixepa Ha He-
MIPMMITMBHI KOMITAEKCHI Tpymyt BIAOGMTTSI. [HITIMMY cAOBaMyL, MM AOBOAVIMO iCHYBaHHSI IIIAKOM MO3M-
TUBHMX KBa3iMyABTUIIAIKATUBHMX BiAOOpaskeHb 3 IPyTIOBOi aATebpY HETPYMITHBHMX KOMIIAEKCHIIX
TPYT BiAOUTTS y MHOXMHY O6MeXeHMX omepaTopiB. Aeski 3 mmx Biao6paXkeHb Ti3Hillle BUKOPH-
CTOBYIOTBCSI AASI BUSHAUEHHSI GiABII 3araAbHOTO CKaASPHOTO AOOYTKY, IO acOLiliOBaHMiL 3 Orlepa-
TOpaMy HApOAXKEeHHsI Ta 3HMILEHHsS Ha MOBHOMY mpocropi @oka. HarapaeMo, 110 y KBaHTOBIl Me-
XaHiIlli cTaH (i3NIHOI CHCTeMM IPEACTaBASIETLCSI BEKTOPOM I'iAb6EPTOBOrO IPOCTOPY, a orepaTopu
HapOAKeHHS Ta 3HMIIIEHHS AiIOTb Ha (POKiBCHKMIA CTaH SIK BiATIOBIAHO AOAaBaHHS Ta BiAKMAQHHS
YaCTMHKM y IPUIMCAHOMY KBAaHTOBOMY CTaHi.

Kntouosi cnosa i ¢ppasu: obmexeHVI1 orepaTop, KBa3iMyAbBTUITAIKaTHBHe Bia0b6pakeHHsI, IPOCTip
doxa.



