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Automorphism groups of some variants of lattices

Ganyushkin O.G., Desiateryk 0.0.>

In this paper we consider variants of the power set and the lattice of subspaces and study auto-
morphism groups of these variants. We obtain irreducible generating sets for variants of subsets of
a finite set lattice and subspaces of a finite vector space lattice.

We prove that automorphism group of the variant of subsets of a finite set lattice is a wreath
product of two symmetric permutation groups such as first of this groups acts on subsets. The
automorphism group of the variant of the subspace of a finite vector space lattice is a natural
generalization of the wreath product. The first multiplier of this generalized wreath product is the
automorphism group of subspaces lattice and the second is defined by the certain set of symmetric
groups.

Key words and phrases: lattice, variant, sandwich semigroup, automorphism group, power set,
subspaces lattice, generating set.
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Introduction

Let S be a semigroup and a € S. A binary operation *, defined on the set S by x *, y = xay,
x,y € S, is associative. This operation *, is called a sandwich operation and the semigroup
(S, *4) is called a variant of S or a sandwich semigroup.

E.S. Lyapin initiated the study of variants in his monograph [1]. In that work he studied
transformation semigroups. Variants of other types of semigroups were studied by various
authors, for example, papers [2-5], chapter 13 in monograph [6] and references in this chapter.
We studied variants of commutative bands with zero in [7] and variants of a lattice of partitions
of a countable set in [8].

We study variants of lattices which are considered as semigroups with respect to the ope-
ration A of taking the greatest lower bound of two elements. Note, that the inequality a < b
holds if and only if a Ab = a. Besides, the transformation ¢ : L — L is an automor-
phism of the lattice L as an ordered set (L, <) if and only if it is an automorphism of L as a
semigroup (L, A\).

Let (L, <) be a lower semilattice. Forany a € Lby A, = {x € L: x Aa = x} we define the
lower conus of the element a.

Proposition 1. Each generating set of the variant (L, ;) contains the set L \. A,.

Proof. Let an element x be decomposable in the variant (L, *,). Then there exist elements
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Y,z € Lsuchthat x =y*,z =y Aa Az However,
xNa=yNaNzNa=yNalANz=x,

in the other words x € A,. Hence all elements from L \ A, are not decomposable, so they
belong to each generating system. O

Theorem 1. For each automorphism ¢ € Aut(L, x,) the lower conus A, is an invariant subset.
Also, the restriction ¢ to A, is an automorphism of A, as an partially ordered set.

Proof. Note, that ¢(a) < a. Obviously,
p(a) = planana) = gaxga) = ¢a)*pa) = ga) NaAg(a) =anga).

Hence, ¢(a) < a.
Further, we have to show, that lower conus A, is an invariant set for ¢. Evidently, if x < g,
then x = x Aa Aa = x %, a. Hence,

P(x) = @(x#a) = ¢(x) % 9(a) = ¢(x) NaAgla) = ¢(x) Ap(a) < ¢(a) < a.

Suppose x <y <a. Thenx =xAa Ay = x x, y. It follows

P(x) = ¢(x) xa 9(y) = @(x) Na A p(y) = ¢(x) A @(y)-
Hence, ¢(x) < ¢(y) and ¢ preserves the partial order on A,.

Thus, the restriction ¢[a, : Ay — A, is a homomorphism of partially ordered sets. Since
inverse mapping ¢! also belongs to Aut(L, x,), it follows that ¢|,, is a bijection and hence it
is an automorphism of A, as a partially ordered set. O
Corollary 1. For any automorphism ¢ € Aut(L, ;) we have ¢(a) = a.

Lemma 1. An element b € L is an idempotent of the semigroup (L, *,) if and only if b € A,.
Proof. Let b be an idempotent of the semigroup (L, *,). Then

b=bx;,b=bANaANb=bAa, thatis b <a.

Conversely, if b < a,thenb = bAa =bAaAb = bx,b. Hence, b is an idempotent of the
semigroup (L, *,). O

Lemma 2. Forany b € L and ¢ € Aut(L, *,), we have (b Aa) = ¢(b) Na.
Proof. The statement of the lemma follows from the chain of equalities
pbNa) = gbhana)=q(bxaa) = ¢(b)*ap(a) = ¢(b) Na A gla) = ¢(b) Aa,

the last equality is true by the Corollary 1. O
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1 Power set

Let M be a finite set. We define a power set of M as an ordered by inclusion set B(M) of
all subsets of the set M.

Proposition 2. For any proper subset A C M the set B(M) \ B(A) is an irreducible system
of generators of the variant (B(M), * ).

Proof. The lower conus A 4 of the power set B(M) coincides with B(A). Thus, by the Propo-
sition 1, each generating set of the variant (B(M), *4) contains B(M) \ B(A). Further, we
only have to show that B(M) \ B(A) is a generating set of the variant (B(M), x4 ). For two
arbitrary B € B(A) and b ¢ A we have BU{b} ¢ B(A) and

(BU{b})*4 (BU{b}) = (BU{b})NAN(BU{b}) = B.
It implies that each element from B(A) is also decomposable to a product of elements from
B(M)\B(A). O

For each transformation g : a — a€ of the finite set M there exists the induced transforma-
tiong: {a1,...,a} — {a3,...,ai} of the power set B(M).

Proposition 3. Let S, be an induced action of the symmetric group S, on the subsets of
N={1,2,...,n}. Then group S, is an automorphism group of the power set of the set N.

Proof. Letsubsets A,B C {1,2,...,n} be such as
AﬂB:{Cl,...,Ck}, A:{al,...,am,cl,...,ck}, B:{bl,...,br,cl,...,ck}.

Then for every permutation 7t € S, we have

n(A) ={n(a),..., m(an), (c1),...,(ck)}, 7(B) ={m(br),..., m(by), 7t(c1),...,7(ck)},

and since 7t is injective, we obtain
n(A)Nn(B) ={mn(c1),...,(ck)} = m(ANB).

Hence, the induced action 77 on B(N) is an automorphism and S,, C Aut(B(N)).

Conversely, we consider ¢ € Aut(B(N)). Since ¢ maps atoms into atoms, automor-
phism ¢ induces permutation 77, = <4)(11) (P(ZZ) - 4)&)) € S,. Each element A = {ay,...,a,}
of the boolean B(N) is fully defined by the set of smaller atoms {a1}, ..., {am}. Thus,
¢(A) = {¢(a1),---,¢(am)}, then ¢ coincides with the induced by the permutation 7,
automorphism. Hence, S, D Aut(By). O

Theorem 2. If [M| = n, A C M and |A| = k, then automorphism group Aut(8(M),x4) of
the variant (B(M), x4 ) is isomorphic to the wreath product Sy ! Syn—«_; of two permutation
groups Sy and Syn—_q.

Proof. If A = M, then n = k and the wreath product S S,n-k_q coincides with the group S
Thus, further we consider A as a proper subset of M.

The element B C M of the semigroup (B(M), x4) is an idempotent if and only if B C A.
Moreover, idempotents generate subsemigroup (B(A), *4) and it coincides with (B(A),N).
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Hence, the automorphism ¢ € Aut(B(M), x4 ) maps the subsemigroup (B(A), *4) to itself.
Furthermore, the restriction ¢ of the automorphism ¢ to the semigroup (B(A),*4) is an
automorphism (B(A), *4). Besides, A and & are fixed points (as 1 and 0 of this semigroup).
It follows that ¢(A) = A and ¢(@) = @.

Further, we represent each element B € B(M) \ B(A) as a disjoint union B = B; U By,
where By = BN A and B, = B~ A. Moreover, By = A x4 B and B, # @. It follows that

@(B1) = ¢(A) xa ¢(B) = AN ¢(B).

Thus, ¢(B) = ¢(B1) UB’, where B’ # @. Hence, automorphism ¢ maps all elements of
B € B(M) \ B(A) with a fixed first component B; to the elements with the fixed first compo-
nent ¢(Bq). Furthermore, for each fixed subset B C A the automorphism ¢ induces a permu-
tation 7rp, : By — B’ of non empty sets of the set M ~\. A. Moreover, since ¢ € Aut(B(M),*,),
it follows that

@((B1UB2) *4 (C1UC2)) = ¢((B1UBy)) x4 ¢((C1UC2)).

Let G = (Aut(B(A)), B(A)) be a permutation group. Thus, G is similar to 5 as a permu-
tation group. Let H be a symmetric group of all permutations on the set B(M \ A) \ {@}
of all non empty subsets of the set M \. A. Obviously, H is similar to S,»«_; as a group of
permutations. Let ¢ € G be a restriction of ¢ to B(A). Let f, be a function from B(A) to
H such that f, set a correspondence of each subset B; C A to a permutation f,(B1) = 7, .
From the above it follows that each automorphism ¢ € Aut(*8(M), * 4) induces a pair (¢, fy).
Since B(M) = B(A) x B(M \ A), it follows that the pair (¢, f,) is an element of the wreath
product G H of two groups G and H.

Therefore, we find mapping ¢ — (@, f,) of the permutation group (Aut(B(M), *4), B(M))
into the wreath product G H. Further, we have to show that this mapping is surjective.

Consider any permutation ¢ € G H, that is a pair of an automorphism y € Aut(B(A))
and a function f : B(A) — H. The permutation ¢ acts on elements from B(M) by the next

rule

u(B), if B C A;

¢(B) = : . o

}/l(Bl) Uf(Bl)(Bz), if B g Aand B = Bl U Bz,
here B = BN A and B, = B\ A. Hence, for each B, C € B(M)

f(B)(B2) NA = f(C1)(G)NA =2,
it follows that

P(BxaC)=9(BNANC) = ¢(B1NCi) = u(B1NCi) = p(Br) Np(Cy),
¢(B) *a ¢(C) = (u(B1) U f(B1)(B2))*a(p(C1) U f(C1)(C2))
=p(B1) N ANp(Cr) = p(B1) Np(Cr).

Therefore, ¢ is the automorphism of the variant (B (M), x4 ). O

2 The lattice of subspaces

Let V be a n-dimensional vector space over the field IF; of the order q. Let £(V) be an
ordered by inclusion lattice of the subspaces of the space V. Let (L(V), x4 ) be a variant of the
semigroup (L£(V),N) generated by the fixed subspace A C V such as dim A = m.



146 Ganyushkin O.G., Desiateryk O.0.

Proposition 4. For any proper subspace A C V the set L(V) \ L(A) is an irreducible system
of generators of the variant (L(V), % ).

Proof. The proof is similar to the proof of the Proposition 2. O

Lemma 3. Let B be a fixed subspace of A and dim B = k < m. Then a number of t-dimensional
subspaces U € L(V) of UN A = B is equal to

(@" —q")(q" —g") - (g" — g™
(gt —g") (g — g+ - (gt —gqt=1)
Proof. Let ey, ..., ex be some base of B. We complement it to the base ey, ..., e, ex1, ..., e of
some subspace from the set

1)

M={UCV|dimU=t UNA =B}

Since vectors e 1, . . ., e; lay in the subspace V \ A, the above base can be complemented in
(" — g™ (g" — ") ... (¢" — g"'*1) ways. Necessity of this fact is obvious. Further, if

xie; + - +agep +ag €1+ -+ arer € A,

then ay q1ex 1 + - - + arer € A and from the choice of vectors it follows a1 = -+ = a; = 0.
Hence, sufficiency is proved. Furthermore, a number of possibilities to compliment ey, ..., e
to the base of some defined space from M is equals to (g' — ¢*)(¢" — ¢**1) --- (¢t —¢'~1). O

Denote the number (1) by a'z;(m. To finalize the main result about the structure of the auto-
morphism group of the variant (£(V), *4) we need the next construction.

Let (G, M) be permutation group such that O, ..., Oy are orbits of this group. Let
(Hy,Ny), ..., (Hg, Ni) be permutation groups.

Let ¢ be an element from the group G. For each i, 1 < i < k, let f; be a function from O;
to H;. Then by G (Hy, ..., Hy) we denote the generalized wreath product, that is a permutation
group such that sets (g, f1,..., fx) are elements of this group. The group G (Hj, ..., Hy) acts
on the set (J¥_; (O; x N;) by the next rule

(m’ n)(g/fll---/fk) — (mg’ nfl(g)) if m c NZ

Theorem 3. Let A be an m-dimensional subspace of an n-dimensional vector space V over the
field IF; of the order q. The automorphism group of the variant (L(V), *4) is isomorphic to
the generalized wreath product

S =Aut(L(A)) 1(Sry, St/ Srm)s

n
wherer, = Y a}y".
t=k+1
Proof. It A = V,thenm = n,rg = r; = ... = ry = 1 and generalized wreath product S
coincides with the group Aut(£(A)). Thus, further we can consider A as a proper subspace of
the space V.

The element U C V of the semigroup (L(V),*4) is an idempotent if and only if U C A.
Moreover, idempotents generate a subsemigroup of (L(A), *4) and this subsemigroup coin-
cides with (L(A),N). It follows that the automorphism ¢ € Aut(L(V),*,4) maps the sub-
semigroup (L(A), *4) = (L(A),N) to itself.
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In addition, the restriction ¢ of the automorphism ¢ on subsemigroup (£(A),N) is an
automorphism of the semigroup (£L(A),N) such that A and {0} are fixed points (as 1 and 0 of
this subsemigroup).

Consider the set

U={W~\V:W¢ZA and WNA = U}

for each subspace U C A.
Note that |U| = 74im y. We enumerate elements of each set U, that is,
~ u u u
a={x\" x . x
We represent each element U € L(V) ~ L(A) in the form U = U; UU, such that
Uy =UNAand U; = U ~\ A. Moreover, U; = A x4 U and U, # @. Hence,

p(Uy) = ¢(A) x4 (U) = AN p(U).

It follows that ¢(U) = ¢(U;) UU’, such as U’ # @. Thus, automorphism ¢ maps all
elements U € L£(V) \ L(A) with the first fixed component U; to elements with the fixed first
component ¢(Uj ).

Since the restriction ¢ to £(A) is an automorphism of the lattice £(A), then ¢ preserves
the ranks of elements from £(A). Thus, dim U; = dim ¢(U; ). Furthermore, for elements with
the fixed first component Uj, the automorphism ¢ induces a bijection

f(ul) U — AN /
¢ U go(ul), UZ — U
With respect to the numeration of sets U and ¢(Uy), the bijection féul) define some permuta-
tion 1t (¢) € Srgimu,

The automorphism group Aut(L(A) preserves subspaces dimensions. On the other hand,
Aut(L(A)) contains the projective group PGL(A), such that PGL(A) acts transitive on each
set Oy = {W C A: dimW = k}. Thus, Oy, Oy, ..., Oy, are group orbits.

Let the function fék) : O — Sy, be defined for each k = 0,1,...,m as fq(pk)(W) = 7W)(p).
Then for each automorphism ¢ € Aut(L(V), x4 ) we define a set

Ty = (@150 f o ).

Obviously, the mapping ¢ +— T, is a monomorphism of the group ¢ € Aut(L(V),*4)
to the generalized wreath product S = Aut(L(A)) 1 (Sy,, Srys---,Sr,,). Now, we only need to
show that this monomorphism is surjective.

Lett = <y, O, W f (’”)> be an arbitrary subset from S. Then T acts on the elements
from L£(V) by the next rule

u), ifU C A
T(u):{”( )

: UunA . |y U
pUNA)U X%m(m?))(um)(i), ifU¢ Aand U = (UNA)UXY.

We represent an arbitrary element W € L(A) as W = W UW”, suchas W = WN A and
W = W . A. Hence, for any Wy, W, € L(A) we have

T(Wp 4 Wa) =T((W UW') DA N (Wy UWY)) =T(W) N Wa) = (Wi N W;) = (W) N (W)
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On the other hand, T(W;) = u(W/) U X;, where X; N A = &, i = 1,2. Thus,

T(W1) x4 T(W2) = (#(W1) U X1) N AN ((W3) U X2) = u(Wy) N pu(Wy).

Hence, T(Wy x4 Wp) = T(Wj) %4 T(W,) and 7 is the automorphism of the variant
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V 1iif cTaTTi MU PO3TASIAAEMO BapiaHTM 6yAeaHa i I'paTKM MAITPOCTOPIB Ta AOCAIAXKYEMO iX Ipy-
1 aBTOMOPpi3MiB. 3HalIA€HO He3BiAHI CMCTeMM TBipHMX BapiaHTiB I'paTKM I AMHOXMH CKiHUeHHOI
MHOXMHM Ta I'PaTKM HiAIIPOCTOPIB CKIHUEHHOr0 BeKTOPHOI'O IIPOCTOPY .

AoBeaeHO, ITI0 TpyTIa aBTOMOPi3MiB BapiaHTa I'paTKy I AMHOXIH CKiHUeHHOT MHOXKIHM € BiH-
LIEBMM AODYTKOM ABOX CMMETPUIHIX TPYII IiACTaHOBOK, TIepIlia 3 SIKMX A€ Ha IiAMHOXMHAX, a Ipy-
IIa aBTOMOpi3MiB BapiaHTa I'PaTKM MiAIPOCTOPIB CKiHUEHHOTO BEKTOPHOTO MPOCTOPY € IPUPO-
AHVIM y3araAbHEHHSIM BiHIIEBOTO AOGYTKY, A€ TIepIIii MHOXHUK € IPYTIO0 aBTOMOPdi3MiB rpaTku
IAIIPOCTOPiB, a APYTHUI BU3HAYAETHCSI TIEBHMM HabOPOM CHIMETPUIHIX TPYIL.

Kntouosi croea i ppasu: TpaTka, BapiaHT, CeHABIU-HaIiBIpyTIa, TpyIa aBToMopdimiB, byaeaH, rpa-
TKa IMAIPOCTOPiB, CUCTeMa TBipHMX.



