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Dirichlet-Neumann problem for the partial differential
equations with deviation over the space argument

Pukach P.Ya.l, Repetylo S.M.12, Symotiuk M.M.22, Vovk M.L.L2<

Dirichlet-Neumann problem for the typeless high order partial differential equation with de-
viating over the space argument is studied in the domain, which is the Cartesian product of the
segment (0, T) and the unit circle O = R/ (27Z). Dirichlet-Neumann problem for hyperbolic equa-
tions and their systems in case with absent argument deviation & has been studied by the authors
before. Correct solvability conditions have been established for these problems for almost all (with
respect to Lebesgue measure) numbers T > 0 and for almost all (with respect to Lebesgue measure)
vectors, constructed by coefficients of the equation.

In this paper, the solvability conditions of the problem for /1 # 0 are described and the influ-
ence of the deviation /1 on the solvability of the problem is studied. The solution of the problem is
constructed in the form of the series with respect to the systems of orthogonal functions. Metric es-
timations (of exponential type) are proved for small denominators appearing during construction of
the problem solution. These estimations guarantee the correctness of the problem in Sobolev spaces
for almost all (with respect to Lebesgue measure) values T > 0 and for almost all (with respect to
Lebesgue measure) values i € [0,277). The obtained results are based on the fact that the corre-
sponding characteristic determinant permits factorization in the form of the product of hyperbolic
functions with integer parameters.

Key words and phrases: Dirichlet-Neumann problem, partial differential equation, deviation over
the space argument, small denominators, metric approach.
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Problem statement. Introduction

Let us consider the Dirichlet-Neumann problem for the partial differential equation with
deviating argument

*'u(t,x) & *u(t,x+2jh)

92n ‘ 1“] 02 —2igyd 0, (t,x)€(0,T)xQ, (1)
]:
P 2u(t, x) () |
W‘tzo_%x’ Wtﬂ—qonﬂ(x), i=1...,n, 2)

where ) = R/(27tZ) is a unit circle, h € Q, aj,j=1,...,n, are the complex numbers. The
partial differential equation (1) connects the values of the unknown function u(t,x) and its
derivatives with respect to different space argument values.
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The partial differential equations with deviating arguments describe the systems taking
into account the fact that interaction between the system parts is realized not instantly but
with some delay on time or spatial variables. A lot of literature is devoted to the various
aspects of the differential equations with a deviating argument theory and its applications
(see, for example, [1-3,6-8,15] and bibliography therein).

Dirichlet-Neumann problem (2) for hyperbolic equations and their systems (1) in the case
h = 0 was studied in papers [13,14]. There were established the conditions of correct solvability
for the considered problems in Sobolev spaces if the argument deviation is absent (h = 0) in
equation (1). Fourier series convergence for solution of the problem is connected with the
problem of small denominators [11,12]. The metric approach is applied in above cited articles
for overcoming the negative influence of the small denominators. It was established for almost
all (with respect to Lebesgue measure in R) numbers T > 0 and for almost all (with respect to
Lebesgue measure in R") vectors @ = (a3, ...,a,), constructed by coefficients of the equation
(1).

The article [10] sets the stability conditions for the solution of Cauchy problem for the first-
order and second-order equations by a time variable with deviations of spatial coordinates.
These conditions are expressed via the properties of the deviations over the spatial arguments
values. The action of the operator Tj, on the deviation over the spatial argument Tj,u(t, x) =
u(t,x + h) can be interpreted as the action of the pseudo-differential infinite order operator
u(t,x +h) = exp(ihou(t,x)/0x). Thereby, the results of this paper are closely related to the
research conducted in the article [9], which deals with the boundary problems for equations
with pseudo-differential operators in infinite domains by spatial coordinates and the nonlocal
problems for the differential-operator equations [4,5].

1 Main notation

Let us denote mes A as Lebesgue measure in R of a measurable set A C R; H, (¢ € R)
as the space being obtained as completion of the trigonometric polynomials space ¢(x) =
Yy (pkeikx with the finite degree in the norm

1/2
o(x HucH—(Z!qvk!z ) , wila) =1+ k), keZ;
k| >0

C"([0, T]; Hy) is space of the functions u(t,x) = ¥ x>0 u(t)e**, u, € C"0,T), k € Z. Their

derivatives 9/u /9t = ¥ x>0 u,((j) (t)e**,0 < j < n, belong to the space H, at fixed t € [0, T] and
are continuous by t on [0, T] as the space elements. Norm in C" ([0, T|; Hy) is prescribed as

n . .
Ju(t, x); C"([0, T]; Ha) || = Y max [|9/u(t, x)/0t; Hy|.
j:()tE 0,T

2 Solution uniqueness

We suppose that a, # 0 and that the roots o7, ..., 0, of polynomial 0" — ajo” =1 + ... +
(—1)"a, are different and simple. Let us find the solution of the problem (1), (2) represented
as series u(t,x) = Y x>0 ui(t)e’**. Every function uy(t), k € Z, is a solution of the next two-
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point problem for the ordinary differential equation:

u,(f")(t) n Z%aj(ik)ZjeiZjhkul((Zn—Zj)(t) —0, 3)
]_

2j-2 2j-1 .

u,((] )(0) = @ik u,((] )(T) = @uijke J=1...,m, 4)
where @;y, k € Z, are the corresponding Fourier coefficients of the functions ¢;(x), j =
1,...,2n.

Equation (3) is expressed in case k = 0 as d*"uq(t)/dt*" = 0, and the functions system

{uoq(t) =171, g = 1,...,2n} is its fundamental solutions one. Therefore the solution of the
problem (3), (4) for k = 0 is the next

n

2n
Up (t) = Z C(),qtqil. (5)
q=1

Constants CO,q/ g =1,...,2n,in formula (5) are the solutions of the linear equations system

{CO,Zj—l(Zj_Z)! = q)]-,o, ] =1,...,n, (6)
Yoo Coq(q = OITT2/(q = 2)! = @uyjo, j=1,...,n.
The system determinant (6), denoted as A(0), is written as
10 0 ... 0 0 0
00 2 0 0 0
00 O 0 (2n —2)! 0
A(0) =
©) 01 2T ... nTn=1 oo 2n—=2)T?"3 (2n —1)T?"2
s 2n=2)! 9y 5 2n—1)! 5, 4
00 0 ... (n—3)!T (2n—5)!T (2n—4)!T
00 O 0 0 (2n —1)!
It is evident that
A(0) = —=1121...(2n — 1), (7)

Since A(0) # 0, then the coefficients Co 4,9 = 1,...,2n, in the formula (5) can be uniquely
determined from the system (6) via Cramer’s rule. Consequently
2n
Aps(0)
_ _ 1\{+s s s—1

ls=1

where Ay (0) is the cofactor of the element being the intersection of /th raw and sth column in
determinant A(0).
The next formula describes the fundamental solutions system of the equation (3) in case
k # 0:
{u(t) = exp(k}\jeikht), Ut j(t) = exp(—k}\jeikht), j=1,...,n},
where A]- =/}, j =1,...,n,and branch of the root is chosen with the condition V1i=1.
Solution of the problem (3), (4) for k # 0 is represented as follows

n

we (£) = Y_{Cy,j exp(k}\jeikht) + Cingj exp(—k}\jeikht)},
=1
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where the coefficients Ck,]-, j=1,...,2n, are determined from the linear algebraic equations

{ i—1{Ck; + Cipntjt(kAj ™22 = o, r=1,...,n, ©)
Li1{Cx,j exp (kAje™T) — Cpyyjexp(—kA;e™T)} (kAje®)2 =L = @, r, 7=1,...,n.
Let us denote 7; = k)t]-eikh, My j(k) = —k)t]-eikh, j =1,...,n. Characteristic determinant of
the problem (3), (4), in case k # 0 is the next
1 1 1 1
/A Uk n UF
DR A ;7.2.(;1._.1.) ............... o
1 n 1 n
A (k) =
n1ent e’ —mre=mT o e T
men™ o plemT —p3e=mT o —yde T
,ﬁn 716}71T : : W%nflean 3 ,ﬁn 7167111T . . _W%nflefan

The next determinant is a result of the replacement of every (n + j)th column with the differ-
ence the (n +j)thand jth,j=1,...,n,

1 1 0 0
i 0 0 0
%(”*1) %(”*1) 0 0
A(k) =
ment .. et —m(enT +e=nTy .. —pu(emT 47T
mrenT . plemT —n3(enT 4 e~mTy 0 —pd(eT 4 7T
ni—tenT op2nlemT o _p2nlenT Ty L —p2n=l (e 4 o=
1 s 1 —11 (e’71T + E_rllT) e —Mn (eUnT + e_U"T)
| lk —p(enT +enT)y o —pi(enT e T)
17%(11—1) 77;%(”_1) Wanl(eqlT + e*’?lT) 77%” 1(611nT P an)
n
= (0" TT 2 =u)?*TTien" +e7mh)),
1<s<I<n j=1
therefore,
. 2 L ikh g ik
A(k) — (_1)n(kezkh)2n n H ()\52, _AIZ)ZHA]_(ek)\]e T+e kA e T)‘ (10)
1<s<iI<n j=1

There are no two different solutions of the problem (3), (4) for every k € Z if and only if
A(k) # 0. Basing on (7) and (10) the next theorem can be formulated.

Theorem 1. Solution of the problem (1), (2) is unique in the space C*"(|0, T|; H, ) if and only if
the condition .
( U U {iAjkTeikh}> N(r/2+7Z) =2 (11)
j=1kEZ, k#0
is satistied.
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The proof of this theorem is analogical to [11, Theorem 2.1].

Remark 1. Condition (11) in the Theorem 1 can be rewritten as

n

H(cosz(]}\j]kT) + cos? (kh + 0;)) #0, k#0,

j=1

where(?j =argli,j=1,...,n

Proof. Let us assume, that condition (11) is not true for some ky € Z. Then at least for one
j,j =1,...,n, the next condition is satisfied

ch(koA;Te ") = 0. (12)

Presenting A]- in terms of exponential form A]- = |A]-|ei91, j = 1,...,n, condition (12) can be
formulated as

ch(ko|Aj| Te™ ") = 0. (13)

Since zeroes of the function ch z are numbers z; = i(7/2+ 7l), | € Z, then ko|A,| Tk 1% ¢ M,
M = {—i(t/2 4+ nZ)} arise from the formula (13).

Therefore there exists p € Z, such that
ko|Aj| Te™ "+ = ko|Aj| T(cos(koh + ;) + isin(koh + 6;)) = —i(7/2 + mp),

namely, the next equations system is true

ko|A;| T cos(koh +6;) =0, (14)
ko|Aj|T sin(koh + 6;) = —m/2 — 7tp.
Since A; # 0 and ko # 0, then the equations system (14) is equivalent to the system
cos(koh +0;) =0,
cos(ko|Aj|T) =0,
that can be rewritten as equation cos?(koh + 0;) + cos? (ko |A{|T) = 0. O

3 Solution existence

Let us suppose the condition (11) is satisfied. Coefficients Cy;, j = 1,...,2n, are uniquely
determined from the system (9) via Cramer’s rule for every k # 0

{Ck,j = Y (=D (@it j(k, T) /A, T) + (=)™ @y kD g1,i(k, T) /A (K, T)),
Chntj = Lo (D) (1)W1 pA (kT /AK, T) + @i 1B i1i(k, T) /DK, T)),
where Ay (k,T),1,j € {1,...,2n},is complementary minor of the element being intersecion of

the Ith raw and jth column in the determinant A(k, T).
All cofactors Al,]-(k, T),1,j € {1,...,2n} are calculated by analogy with A(k). In particular,
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forr,qg € {1,...,n}, one can obtain

1 .1 1 1
T i i T
s R o
A7‘7(k)_ Tll(r ) 1717(—7‘1) 1717—(:1) 1,]"(7' )
nmoo M '
e TR e
2(n-1) ORI O 20
menT +enTy o el g, (et e
| et et mae T 7 (€T e )
T ;7.3”._.%._.’7&. BT
n n
= (01 Dy T G = PT L™+ D) [T0 = o)
<s<I<n j= s
s124 g s#q

where Séq), ¢ € {1,...,n—1} is the sum of all possible products of the elements 17%, cen, 17571,

175 SRVRRRY 12, taking /¢ elements in every product; S(()q) =1

The next results one can get by analogy

n
Anirg(k) = (=120 TT 2 =nd) 21‘[ (7 (T + e ) T T2 — 12),

1<s<I<n s=1
si#q j#q S#q

n

Drq(k) = (=1)27 0 T ’7175( )2r+1 [T &2 =) ZH (T +e ) TG —n2),

1<S:<l<#lq<n ]#q Z;lﬂ

n
Anirnrqk) = (=1)" 98\ TT (2 —n? ZH (™ + e~ T)) [T — n2)-

s n s=1
1<S/lilq§ ]#q s#q

So there is unique solution uy(t) of the problem (3), (4) for every k € Z. Formal solution of
the problem (1), (2) after realizing all necessary calculations can be represented as a series in
the form

q)]k}\qke ik ch(Agke™ (T —t)) + q)nﬂ- k sh(Agke"t)

u(t,x) = up(t) + Y e Y s ’
k|2>:0 q]X:l n— ] n—i—]A (kezkh)Zn 1Ch(k/\ ezkhT) " 1s¢q()\§—7t§)

where k € Z\{0}, uo(t) is defined by the formula (8).

Convergence of the series (15) is associated with the small denominators problem, since
nonzero | ch(AjkTeikh) |, 7 =1,...,n, can take the arbitrarily small values for the infinite quan-
tity of integer numbers k.

(15)

Theorem 2. Let the condition (11) be satisfied and there exists the constant w, such that for all

numbers k € Z the next inequalities

| ch(AKTEM )| > (14 [k]) TRk ™l j—q, n, (16)
are true. If ¢; € Hytwi2n, @nvj € Harwion-1,j = 1,...,n, then the unique solution of the
problem (1), (2) exists in the space C?'([0,T);H,) and continuously depends on @i,
j=1,...,2n.
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Proof. Assuming that ¢; € Hyiwi2q-1, ] = 0,1,...,2n, the aim is to demonstrate that the
series (15) belongs to the space C?"([0, T]; H,) and is the solution of the problem (1), (2). Let
us majorize the value max;¢|o 7| |u](<q) (t)| forallk € Zand g =0,1,...,2n. Due to the formulas
(8), (15) and estimations (16) one can get:

G—1)t 8;(0) ;. 4
<2 ‘ g1
ma [uy” (1) ool B G101 A0)

, 9q=0,...,2n, (17)

n
max [ (1) < C Y (1gul (14 W) - lpugal (14 W) T, g =020, (8)
j=1

The next formula follows from the inequalities (17) and (18)

1/2
|u(t, x); C2*([0, T); Hy) || < Cy Z < Z max ]uk (£)[2(1 + |k|)? )

|k‘>0te[0 T)

n 1/2 2n 1/2
Z < )y \(p]k\ wi (e + w + 2n)> +Cs ), ( ) ]q)]-k]zwk((x +w+2n — 1))
j=1 \[k[>0 j=n+1 % [k[>0

n 2n

- (ano] Horwsall+ 3 100 Harwsznll) <o
=1 j=n+1
The statement of this theorem can be obtained from the above inequality. O

Theorem 3. For almost all (with respect to Lebesgue measure in R) numbers h € (0,27) all
inequalities (16) are true for all (except for the finite quantity) numbersk € Z, if w > 1.

Proof. To prove the theorem it is sufficient to verify that, if w > 1 for almost all values 1 € ()
every inequality | cos(T Im(Ake™"))| > (14 |k[)™®, j = 1,...,n, is true for all (except for the
finite quantity) integer numbers k. Due to the Borel-Cantelli lemma it is sufficient to establish
that the series ) ;. mes M;, (k), j = 1,...,n, is convergent, if w > 1, where M; ., (k) = {h e
Q : |cos(TIm(Ajke®™))| < (14 |k[)7@},j=1,...,n. LetA; = M]-\ei”i,j =1,...,n,where; is
an argument of the complex number A;. Then Im(A;je*") = |A;|sin(kh 4 77;), j = 1,...,n. Let
us consider the case k > 0. It is obviously

mes M; , (k) = k" 'mes {H € (0,27k) : | cos(T|Ak|sin(H +1;))| < (1+ [k|)“}
=k 'mes{H e (17,1 +27k) = | cos(T|Ajksin H|) < (1+ [k])~“}.

Let us partition the interval [, 17; + 27tk] for the assigned J € (1,w — 3) by the uncountinu-

able intervals and intervals I, g = 1, N; (k), and intervals Jgo 9 =1,N> (k), to accomplish the
next conditions VH € I, [cosH| > 1/k°*}, g = 1,Ny(k), and VH € J; |cosH| < 1/k°*1,
g = 1, Na(k). For the numbers Nj(k), N, (k) the following inequalities are true Ny(k) < Cyk,
N, (k) < Csk. Since mes ], < C¢k™°~1, g = 1, Np(k), then mes (UN2 Jq) < C7k=°. Because of

mes {H € I : | cos(T[Ajk| sin H)| < (1 4 [k[)™“}
< K mes {t € sin(ly) : [cos(T|Ajk|t)| < (1+ [k|)~“}
<K'"mes{t € [-1;1] : |cos(T|Ajk|t)] < (1+ [k])~“}.
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By [11, Lemma 2.2] mes {t € [-1;1] : |cos(T|Ajk|t)| < (1+ [k|)~“} < Cg(1+ [k[)} . In this
way fork > 0

N (k)

mes M; , (k) < Co X:l mes {H € I;: |cos(T|Ajk|sin H)| < (1+ [k[)"“}
q:
N (k) )
+ Cqo Z mes ]q < Cllk_o + C12k2+(5_w.
q=1

The case k < 0 is considered analogically. The series ) ;. mes M; (k),j =1,...,n, conver-
gence is stated. O

Theorem 4. The inequalities (16) are true for almost all (with respect to Lebesgue measure
in R) numbers T and for all (except the finite quantity) numbersk € Z, if w > 0.

Proof. Satisfaction of the inequalities (16) for every k € Z is identical to satisfaction of the next
estimations ,
1+ 29 > 14 k)@, j=1,...,n (19)
Choosing jth inequality from (19), one can note [(T, k) := (1+ e_z’\fkTelkh). It is easy to show,
that for every T € (0, +o0) and for every k € Z? the following equality

Jl(T, k)

Jepikiy—1 _
I(T, k) + T (ZA]ke ) 1, (20)
is true. Whence
max {\I(T,k)], al(;;k) (2Ajkeikh)*1‘} >1/2, Te (0,4x), kezZF. (21)
Let us consider the function
ol(T, k)

2(T, k) := |[I(T, k)| — ‘ (2Ajke ™)1, T € (0,400), ke Z?, (22)

oT

as function of the variable T and parameter k and find the number of zeroes of this function on
the interval (0, +00). Basing on (20) and (22) one can get that zeroes of this function coincide
with the zeroes of the function

z1(T, k) := (T, k) — (Z)ijeikh)_l o 2ATER 41,

Jl(T, k)
9T

9k Teikh
KT | 4

Equation 2e = 0 is equivalent to the next system

{Zcos(ZkT(Re Ajsinkh +ImA; coskh)) = —eT(Red;coskh—ImA;sinkh), kezl. ()

sin(2kT(Re A;sinkh + Im A coskh)) = 0,

The existence of a solution in relation to T for the system (23) is obvious. Moreover it
is unique, only for those values of the vector parameter k € Z, for which ReA;coskh —
ImA;sinkh # 0, and In4(Re A;sinkh +Im A;coskh))/(rt(Re Ajcoskh — Im A;sinkh)) is odd
integer number. The set of these integers k € Z would be denoted as K. Solution of the system
(23) is positive and can be represented as follows

- In4
Tik) = 4k(Re Ajcoskh —Im A;sinkh)’ kek
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Let us consider the interval (0, Ty], where 0 < Ty < +o0, and introduce the following
notation: E(Ty) would be the set of those values T € (0, Ty], in case the next inequality

(T, k)| < Ca(1+[K|)~ (24)

is true for the infinite integers quantity k € Z; E(Ty, k) is the set of those values T € (0, T, in
case the next inequality (24) is true at fixed k = k € Z; E1(Ty, k) and E»(Tp, k) are the sets of
those values T € (0, Tp), in case the inequalities |[Re (T, k)| < C4(1+ |k|)~“ and [ImI(T, k)| <
C4(1 + |k|) ™%, respectively, are true at fixed k = k € Z; Ky = {k € K: T(k) > To}; K» =
(Z\K) U Ks. .

There are no zeroes of the function z on the interval (0, Ty), if k € K. Denoting K3 = {k €
Ky : z(T,k) >0, T € (0,Tp]} and using (21), (22), one can obtain at k € K3 : |I(T, k)| > 1/2,
T € (0, Tp]. Hence,

mes]R(E(TO,l_c)) =0, ke K3, (25)
atCy < 1/2.
If k € K2\K3, then z(T, k) < 0 forall T € (0, Tp]; due to the (21), (22) one can get
)al (T.K) ) >20k, Te(0T) Fek\Ks. (26)

The estimations (26) ensue that for all (except the finite quantity) integers k one of the inequal-
ities 3
7 Rel(TR)| > K|, |
is true, where T € (0, Ty, k € K»\Ks.
According to [11, Lemma 2.2] and to estimations (27) it follows that for all (except the finite
quantity) integers k one of the inequalities

mes RE1(To, k) < C5(1+ [k]) "),  mesgEy(To, k) < Cs(1 + [k|)~@+D), (28)

is true, where k € K,\K3; since E(Ty, k) C E1(To, k), E(To, k) C Ex(Tp, k), and taking into
account the inequalities (28), one can get

mes RE(Tp, k) < Cs(1+ k)~ @), ke Ky\Ks. (29)

9 ] _
ﬁ(Iml(T,k))‘ > Ak, 27)

As a consequence of formulae (25) and (29) the next estimation
mes RE(Tp, k) < Cs(1+ k)~ @), keKy, (30)

is true for all (except the finite quantity) integers k.

The function z has one zero T(k), belonging to the interval (0, To], if k € K\K;. Under
this condition one can realize partition of the interval (0, Tp] into the intervals J; = (0, T)
and [, = (T, Tp]. There are no zeroes of the function z on every of these intervals. Realizing
analogical illustrations similar to the above, on the intervals J; and ] one can obtain that on
the interval (0, Tp] the following estimation

mesrE(To, k) < 2C5(1+ |k|)~ @V, ke K\K;, (31)

is true for all (except the finite quantity) integers k on the interval (0, Tp).
Adding up the estimations (30) and (31) by k € K, and k € K\Kj, respectively, in reference
to measure of the set E(Tj) can be obtained the next estimation

mesgE(Ty) < Ce Y (14 [k|)~@+). (32)
kezp
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The series in the right-hand side of the inequality (32) is convergent, if w > 0. Via Borel-
Cantelli lemma mesRE(Tp) = 0. Namelly, the inverse inequality to the inequality (24) is true
for almost all T € (0, Ty] for all (except the finite quantity) of integers k € Z. The fact that
interval (0, +o0) can be covered by the countable quantity of the intervals with the length Ty,
proves the theorem. O

As a result of the Theorems 2, 3 and 4 the next statements can be formulated.

Corollary 1. Let the condition (11) be satistied. If ¢; € Hyiwion, $Pntj € Harwion—1,J =
1,...,n, w > 1, then for almost all (with respect to Lebesgue measure in R) numbers h <
(0,271) the unique solution of the problem (1), (2) exists in the space C*"([0, T]; H,) and con-
tinuously dependson ¢;,j =1,...,2n.

Corollary 2. Let the condition (11) be satisfied. If ¢; € Hytwi2n, Pnvj € Huvwron-1,] =
1,...,n, w > 0, then for almost all (with respect to Lebesgue measure in R) numbers T > 0
the unique solution of the problem (1), (2) exists in the space C?" ([0, T]; H,) and continuously
depends on ¢, j=1,...,2n.

Remark 2. Results of this paper can be carried on the case of Dirichlet-Neumann problem for
the partial differential equations systems.

4 Conclusions

The correctness of Dirichlet-Neumann problem for the partial differential equations with
deviating space argument is studied. There are established conditions of the unique solution
existence for this problem in Sobolev spaces scale. The metric theorems on the estimations of
the small denominators appearing in the solution’s construction are proved.
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B o6aacri, 110 € AekapToBuM A06yTKOM Biapiska (0, T) i oamamusoro xoaa Q) = R/ (27Z), pos-
TASIHYTO 3apady Aipixae-HelimMana aast 6e3TMITHOTO AMdpepeHITiaAbHOTO PiBHSIHHS 3 YaCTMHHIMI
TIOXiAHMMM BICOKOTO IOPSIAKY 3 BiAXMAEHHSIM IIPOCTOPOBOTO apryMeHTy. 3aaadi Aipixae-Helimana
AASI TilepOOAIYHIX PiBHSIHB Ta iX CHCTeM, SIKIIO BiAXVAEHHS /I apTyMeHTiB BiACYTHi, BUBUAAUCS aB-
TOpaMm paHimme. AASI TaKMX 3apa9 6yAO BCTAHOBAEHO YMOBYM OAHO3HAUHOI PO3B’SI3aHOCTI AASI Maii-
Xe Bcix (cTocoBHO Mipu Aebera) uncea T > 0 i AAsI MalKe BCix (cTOCOBHO Mipy Aebera) BeKTOPiB,
o6y AOBaHMX 3 KOedpillieHTiB PiBHSHHSI.

Y it poboTi BCTAaHOBAEHO YMOBM PO3B’SI3HOCTI 3apadi y BUIIAAKYy /i # 0 Ta AOCAIAXKEHO BIIAVB
BiAXMAEHHSI /1 Ha PO3B’sI3HICTD 3aAadi. PO3B’s130K 3apadi MO6GYAOBAHO Y BUTASIAL PSIAY 3a CHCTEMOIO
OPTOTOHAABHMX (PYHKIIIA. AAST MAAMIX 3HAMEHHMKIB, SIKi BMHUKAM IIPY TOOGYAOBi PO3B’SI3Ky 3aAadi,
AOBEAEHO MeTPMYHI OLIHKM (eKCIIOHEeHIIHOTO THITY), SIKi FapaHTYIOTh KOPEeKTHICTb 3apadi y Impo-
cropax CoboaeBa AAST MavbKe Bcix (cTrocoBHO Mipu Aebera) 3HaueHb T > 0 i AAst Maiike Bcix (cTO-
coBHO Mipu Aebera) sHa4eHb 1 € [0,27). LTi pe3yAbTaTu OTPMMaHO 3aBASKM TOMY, IO BiAIOBiAHMIA
XapaKTepUCTUUHMIA BM3HAUHMK AOIycKae cpakTopmsamilo y dpopmi A06yTKy Timepboriurmx dpyH-
KIIiJT 3 HIAMMM TapaMeTpaMum.

Kntouosi cnoea i ppasu: 3apada Aipixae-HeliMaHa, piBHSHHS i3 YaCTMHHVMI IOXIAHVMIY, BIAXVI-
A€HHSI IPOCTOPOBOTO apryMeHTY, MaAi 3HAMEHHMKM, METPUYHIA ITAXIA,



