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LEIBNIZ ALGEBRAS, HAVING A DENSE FAMILY OF IDEALS
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We say that a Leibniz algebra L has a dense family of ideals, if for every pair of subalgebras A,

B of L such that A 6 B and A is not maximal in B there exists an ideal S such that A 6 S 6 B. We

study the Leibniz algebras, having a dense family of ideals.
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INTRODUCTION

Let L be an algebra over a field F with the binary operations + and [·, ·]. Then L is called a

Leibniz algebra (more precisely a left Leibniz algebra), if it satisfies the Leibniz identity

[a, [b, c]] = [[a, b], c] + [b, [a, c]]

for all a, b, c ∈ L.

If L is a Lie algebra, then L is a Leibniz algebra. Conversely, if L is a Leibniz algebra such

that [a, a] = 0 for each element a ∈ L, then L is a Lie algebra. Therefore, Lie algebras can be

characterized as the Leibniz algebras in which [a, a] = 0 for every element a ∈ L.

Leibniz algebras appeared first in the papers of A. Blokh [2], in which he called them the

D-algebras. However, in that time these works were not in demand, and they have not been

properly developed. Only after two decades, a real interest to Leibniz algebras arose. It is

happened thanks to the work of J.-L. Loday [16], who “rediscovered” these algebras and used

the term Leibniz algebras.

One approach to the study of Leibniz algebras, which proved to be quite effective especially

for infinite dimensional Leibniz algebras, is to consider of Leibniz algebras, all whose subalge-

bras have some fixed natural properties. This approach has been very effective for Lie algebras,

while in Leibniz algebras it is starting to be used only recently. Thus in [4] the Leibniz algebras

whose subalgebras are Lie algebras and Leibniz algebras whose subalgebras are abelian were

studied.

In the paper [13] the Leibniz algebras whose subalgebras are ideals were studied. In the

paper [15] the Leibniz algebras whose subideals are ideals were studied. More detailed in-

formation about this approach to the study of Leibniz algebras can be found in the survey

papers [5, 6] and [14]. In this paper we start to study the Leibniz algebras, having very big

family of ideals.
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Let L be a Leibniz algebra over a field F and S be some family of subalgebras of L. We say

that a family S is dense in L, if for every pair of subalgebras A, B of L such that A 6 B and A

is not maximal in B there exists a subspace S ∈ S such that A 6 S 6 B (of course, S can be

coincides with A or B).

The origins of this concept are in group theory. There is a whole array of articles devoted to

the study of groups, having different natural families of subgroups (see [3, 7–10, 17–23]). This

topic is not limited to the framework of the classical theory of groups. For example, in [24]

the infinite dimensional linear groups having a dense family of subgroups of finite central

dimension were considered.

One of most important family of L is the family of ideals of L. Therefore, one of the first

natural question is the study of Leibniz algebras, having a dense family of ideals.

The definition shows that Leibniz algebra, having a dense family of ideals, must have a very

extensive system of ideals and, therefore, it is very close to Leibniz algebras, whose subalgebras

are ideals. However, it should immediately be noted that in such algebras not all subalgebras

are necessarily ideals. For example, every Leibniz algebra of dimension 3 clearly has a dense

family of ideals.

Consider another example. Let L be a cyclic nilpotent Leibniz algebra of dimension 4. Then

L has a basis {a1, a2, a3, a4} such that

[a1, a1] = a2, [a1, a2] = a3, [a1, a3] = a4

and

[aj, ak] = 0

for all j > 1. Put K = Fa2 ⊕ Fa3 ⊕ Fa4, then clearly K is an abelian ideal of L. Let S be

an arbitrary non-zero subalgebra of L. If K does not include S, then S = L. Assume that K

includes S. If D is a subalgebra of L such that D includes S and S is not maximal in D, then

for D we have only two possibilities: D = K or D = L. In both cases D is an ideal of L. This

means that L has a dense family of ideals.

A Leibniz algebra which is not a Lie algebra has one specific ideal. Denote by Leib(L) the

subspace generated by the elements [a, a], a ∈ L. It is possible to prove that Leib(L) is an ideal

of L. Moreover, L/Leib(L) is a Lie algebra. Conversely, if H is an ideal of L such that L/H is a

Lie algebra, then Leib(L) 6 H. The ideal Leib(L) is called the Leibniz kernel of L.

As usual, a Leibniz algebra L is abelian, if [x, y] = 0 for each x, y ∈ L.

Let L be a Leibniz algebra over a field F. If A, B are subspaces of L, then [A, B] will denote

a subspace generated by all elements [a, b] where a ∈ A, b ∈ B. If M is a non-empty subset of

L, then 〈M〉 denote the subalgebra of L generated by M.

1 MAIN RESULTS

Lemma 1. Let L be a Leibniz algebra, having a dense family of ideals. Then every abelian

subalgebra of L, having dimension 3, is an ideal of L.

Proof. Let A be an abelian subalgebra of L, having dimension 3, then A = Fa ⊕ Fb ⊕ Fc. Since

A is abelian, every subspace Fa, Fb, Fc is a subalgebra of A. A subspace Fa has codimension

2 in A, so that Fa is not maximal in A. Then there exists an ideal Da of L such that Fa 6

Da 6 A. By the similar reasons there are the ideals Db, Dc of L such that Fb 6 Db 6 A
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and Fc 6 Dc 6 A. We note that the sum Da + Db + Dc is an ideal of L. The inclusions

A = Fa ⊕ Fb ⊕ Fc 6 Da + Db + Dc 6 A shows that A is an ideal of L.

Lemma 2. Let L be a Leibniz algebra, having a dense family of ideals, and let A be an abelian

subalgebra of L. If dimF(A) > 4, then every subalgebra of A is an ideal of L.

Proof. Clearly it is sufficient to prove that every cyclic subalgebra of A is an ideal of L. Since

A is abelian, every cyclic subalgebra of A has dimension 1. Let a be an arbitrary element of A.

Since dimF(A) > 4, we can choose a subspace B of A such that a ∈ B and dimF(B) = 4. Choose

in B a basis {a, b, c, d}. Since A is abelian, B and each subspace of B are subalgebras of L. Since

A is abelian, every subspace Fa, Fb, Fc, Fd is a subalgebra of A. Put Ba,b,c = Fa ⊕ Fb ⊕ Fc. A

subspace Fa has codimension 2 in Ba,b,c, so that Fa is not maximal in Ba,b,c. Then there exists an

ideal Da,b,c of L such that Fa 6 Da,b,c 6 Ba,b,c. Put Ba,b,d = Fa ⊕ Fb ⊕ Fd, Ba,c,d = Fa ⊕ Fc ⊕ Fd.

By the similar reasons there are the ideals Da,b,d and Da,c,d of L such that Fa 6 Da,b,d 6 Ba,b,d

and Fa 6 Da,c,d 6 Ba,c,d. We note that the intersection Da,b,c ∩ Da,b,d ∩ Da,c,d is an ideal of L. We

note also that

Ba,b,c ∩ Ba,b,d ∩ Ba,c,d = (Fa ⊕ Fb ⊕ Fc) ∩ (Fa ⊕ Fb ⊕ Fd) ∩ (Fa ⊕ Fc ⊕ Fd) = Fa.

Thus the inclusions

Fa 6 Da,b,c ∩ Da,b,d ∩ Da,c,d 6 Ba,b,c ∩ Ba,b,d ∩ Ba,c,d = Fa

shows that Fa is an ideal of L.

Corollary 1. Let L be a Leibniz algebra, having a dense family of ideals. If L includes an abelian

subalgebra A > Leib(L) such that dimF(A) > 4, then every subalgebra of L is an ideal of L.

Proof. Since A is abelian, Lemma 2 implies that each subalgebra of A is an ideal of L.

Let a be an arbitrary element of L. If a ∈ A, then by above noted a subalgebra 〈a〉 = Fa is

an ideal of L.

Suppose that a 6∈ A. An inclusion Leib(L) 6 A implies that L/A is a Lie algebra. Every

cyclic subalgebra of a Lie algebra has dimension 1, so that 〈a + A〉 = F(a + A). Further [a, a] =

b ∈ A. By above noted a subalgebra 〈b〉 = Fb is an ideal of L. Then [a, b], [b, a] ∈ 〈b〉, so that

〈a〉 = Fa ⊕ Fb. If b = 0, then 〈a〉 = Fa. In every case 〈a〉 ∩ A = 〈b〉 = Fb. Since dimF(A) > 4,

we can choose a subspace B of A such that b ∈ B and dimF(B) = 4.

Since B is an ideal of L, 〈a, B〉 = 〈a〉 + B. Choose in B a basis {b, u, v, w}. Put Bu,v =

〈a〉 ⊕ Fu ⊕ Fv. A subalgebra 〈a〉 has codimension 2 in Bu,v, so that 〈a〉 is not maximal in Bu,v.

Then there exists an ideal Du,v of L such that 〈a〉 6 Du,v 6 Bu,v. Put Bu,w = 〈a〉 ⊕ Fu ⊕ Fw,

Bv,w = 〈a〉 ⊕ Fv ⊕ Fw. By the similar reasons there are the ideals Du,w and Dv,w of L such that

〈a〉 6 Du,w 6 Bu,w and 〈a〉 6 Dv,w 6 Bv,w. We note that the intersection Du,v ∩ Du,w ∩ Dv,w is

an ideal of L. We note also that

Bu,v ∩ Bu,w ∩ Bv,w = (〈a〉 ⊕ Fu ⊕ Fv) ∩ (〈a〉 ⊕ Fu ⊕ Fw) ∩ (〈a〉 ⊕ Fv ⊕ Fw) = 〈a〉.

Thus the inclusions

〈a〉 6 Du,v ∩ Du,w ∩ Dv,w 6 Bu,v ∩ Bu,w ∩ Bv,w = 〈a〉

shows that 〈a〉 is an ideal of L. Hence every cyclic subalgebra of L is an ideal. It follows that

every subalgebra of L is an ideal of L.
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Lemma 3. Let L be a Lie algebra, having a dense family of ideals, and let A be an abelian

subalgebra of L. If dimF(A) > 4, then every subalgebra of L is an ideal of L. In particular, L is

abelian.

Proof. By Lemma 2 every subalgebra of A is an ideal of L. Choose in A a basis {a1, a2, a3, a4}.

Let x be an arbitrary element of L. Since L is a Lie algebra, [x, x] = 0, so that 〈x〉 = Fx. Since

every subalgebra 〈aj〉 = Faj, 1 6 j 6 4, is an ideal, A1,2 = 〈a1, a2, x〉 = 〈a1〉 ⊕ 〈a2〉 ⊕ 〈x〉. It

follows that a subalgebra 〈x〉 is not maximal in A1,2. Therefore A1,2 includes an ideal D1,2 such

that 〈x〉 6 D1,2 6 A1,2. By the similar reasons a subalgebra A3,4 = 〈a3, a4, x〉 = 〈a3〉 ⊕ 〈a4〉 ⊕

〈x〉 includes an ideal D3,4 such that 〈x〉 6 D3,4 6 A3,4. We note that the intersection D1,2 ∩ D3,4

is an ideal of L. We note also that

A1,2 ∩ A3,4 = (〈a1〉 ⊕ 〈a2〉 ⊕ 〈x〉) ∩ (〈a3〉 ⊕ 〈a4〉 ⊕ 〈x〉) = 〈x〉.

Thus the inclusions

〈x〉 6 D1,2 ∩ D3,4 6 A1,2 ∩ A3,4 = 〈x〉

shows that a subalgebra 〈x〉 is an ideal of L. Hence every cyclic subalgebra of L is an ideal. It

follows that every subalgebra of L is an ideal of L.

Theorem 1. Let L be a Leibniz algebra, having a dense family of ideals. If L includes an abelian

subalgebra A, having dimension at least 4, then every subalgebra of L is an ideal of L.

Proof. Put K = Leib(L). We note that K is abelian. If dimF(K) > 4, then using Corollary 1 we

obtain that each subalgebra of L is an ideal of L. Suppose now that dimF(K) < 4. Lemma 2

implies that every subalgebra of A (and A itself) is an ideal of L. Then A+K is a nilpotent ideal

of L [1, Lemma 1.5]. If a ∈ A, then using again Lemma 2 we obtain that 〈a〉 = Fa is an ideal of

L. In particular, 〈a〉 is an ideal of A + K. Then the intersection 〈a〉 ∩ ζ(A + K) is non-zero [14,

Lemma 2.4]. On the other hand, dimF(〈a〉) = 1. This means that 〈a〉 6 ζ(A + K). Since it

is true for every element a ∈ A, we obtain that A 6 ζ(A + K). Then A + K is abelian. Since

dimF(A + K) > dimF(A) > 4, an application of Corollary 1 implies that every subalgebra of

L is an ideal of L.

The left (respectively right) center ζ le f t(L) (respectively ζright(L)) of a Leibniz algebra L is

defined by the rule:

ζ le f t(L) = {x ∈ L| [x, y] = 0 for each y ∈ L}

(respectively,

ζright(L) = {x ∈ L| [y, x] = 0 for each y ∈ L}).

It is not hard to prove that the left center of L is an ideal, but it is not true for the right center.

Moreover, Leib(L) 6 ζ le f t(L), so that L/ζ le f t(L) is a Lie algebra. The right center is a subalge-

bra of L, and in general, the left and right centers are different. Moreover, they even may have

different dimensions. The example which have been constructed in [11] show this.

The center ζ(L) of L is defined by the rule:

ζ(L) = {x ∈ L | [x, y] = 0 = [y, x] for each y ∈ L}.

The center is an ideal of L. In particular, we can consider the factor-algebra L/ζ(L).
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Lemma 4. Let L be a Leibniz algebra and K be an ideal of L. Then the center of K is an ideal

of L.

Proof. Put Z = ζ(K). Choose the arbitrary elements x ∈ L, y ∈ K, z ∈ Z. We have

[[x, z], y] = [x, [z, y]] − [z, [x, y]]

and

[[z, x], y] = [z, [x, y]] − [x, [z, y]].

The choice the elements z, y implies that [z, y] = 0. Since K is an ideal of L, [x, y] ∈ K, therefore

[z, [x, y]] = 0, so that [[x, z], y] = [[z, x], y] = 0. Thus Z is an ideal of L.

Let L be a Leibniz algebra, B, C are ideals of L such that B 6 C. The factor C/B is called

L-central, if C/B 6 ζ(L/B). In other words, [C, L], [L, C] 6 B or AnnL/B(C/B) = L/B. The

factor C/B is called L-eccentric, if AnnL/B(C/B) 6= L/B.

If A is an ideal of a Leibniz algebra L, then we define the upper L-central series

〈0〉 = ζL,0(A) 6 ζL,1(A) 6 ζL,2(A) 6 . . . ζL,α(A) 6 ζL,α+1(A) 6 . . . ζL,γ(A) = ζL,∞(A)

of A by the following rule: ζL,1(A) = ζL(A) = AnnA(L), ζL,α+1(A)/ζL,α(A) = ζL(A/ζL,α(A))

for all α, and ζL(A/ζL,γ(A)) = 〈0〉. The last term ζL,∞(A) of this series is called the upper

L-hypercenter of A. By this definition, every term of the upper L-central series of A is an ideal

of L.

An ideal C of L is said to be L-hypereccentric, if it has an ascending series

〈0〉 = C0 6 C1 6 C2 6 . . . Cα 6 Cα+1 6 . . . Cγ = C

of ideals of L such that each factor Cα+1/Cα is L-eccentric and L-chief for every ordinal α.

We say that the ideal A of L has the Z-decomposition if

A = ζL,∞(A)⊕ ηL,∞(A)

where ηL,∞(A) is the maximal L-hypereccentric ideal of A. It is possible to prove that in this

case ηL,∞(A) includes every L-hypereccentric ideal of L, in particular, this decomposition is

unique.

Let L be a Leibniz algebra over a field F, M be non-empty subset of L and H be a subalgebra

of L. Put

Ann
le f t
H (M) = {a ∈ H| [a, M] = 〈0〉}

and

Ann
right
H (M) = {a ∈ H| [M, a] = 〈0〉}.

The subset Ann
le f t
H (M) is called the left annihilator or the left centralizer of M in H. The subset

Ann
right
H (M) is called the right annihilator or the right centralizer of M in H. The intersection

AnnH(M) = Ann
le f t
H (M) ∩ Ann

right
H (M) = {a ∈ H| [a, M] = 〈0〉 = [M, a]}

is called the annihilator or the centralizer of M in H.

It is not hard to see that all of these subsets are subalgebras of L. Moreover, it is possible to

prove that if M is a left ideal of L, then Ann
le f t
L (M) is an ideal of L. If M is an ideal of L, then

AnnL(M) is an ideal of L.
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Lemma 5. Let L be a Leibniz algebra, having a dense family of ideals. Suppose that a Leibniz

kernel of L has dimension at most 3 and L/Leib(L) includes an abelian subalgebra of dimen-

sion 4. Then L is nilpotent and L/Leib(L) is abelian.

Proof. Put K = Leib(L). If the center of L includes K, then clearly L is nilpotent. There-

fore suppose that the center of L does not include K. Since the left center of L includes K,

Ann
right
L (K) = L. It follows that Ann

le f t
L (K) 6= L. Note that L/Ann

le f t
L (K) is isomorphic to

some subalgebra of algebra of derivations of K [11, Proposition 3.2]. It follows that this factor-

algebra is finite dimensional and has dimension at most 9. By Lemma 3 L/K is abelian.

Suppose that Ann
le f t
L (K) = AnnL(K) 6= L. Let x be an element of L such that x 6∈ AnnL(K).

Then 〈x, K〉 is an ideal of L. Using Proposition 1.3 of [12] we obtain that K has a direct decom-

position K = A ⊕ B, where

A = ζ〈x〉,∞(A)⊕ η〈x〉,∞(A).

Since 〈x, K〉 is an ideal of L, A, B are also ideals of L. Moreover, by the choice of B we obtain

that B = [x, B].

Suppose that a subspace B is non-zero and consider a factor-algebra L/A. We have

[x + A, K/A] = [x + A, (B + A)/A] = ([x, B] + A)/A = (B + A)/A = K/A.

Let y be an arbitrary element of L. Since L/K is abelian, [x, y] ∈ K, so that

[x + A, y + A] = c + A ∈ K/A.

An equality K/A = (B + A)/A shows that c + A = b + A for some b ∈ B. An equality

B = [x, B] implies that b = [x, d] for some d ∈ B. Thus we have

[x + A, y + A] = c + A = [x, d] + A = [x + A, d + A].

It follows that [x + A, (y + A)− (d + A)] = A. In other words,

(y + A)− (d + A) ∈ Ann
right
L/A (x + A) = S/A

or

y + A ∈ K/A + S/A.

The fact that y is an arbitrary element of L shows that L/A = K/A + S/A. Furthermore,

the choice of B shows that (S/A) ∩ (K/A) = (S/A) ∩ ((B + A)/A) is zero. Thus L/A =

K/A ⊕ S/A. An isomorphism

S/A ∼= (L/A)/(K/A) ∼= L/K

shows that S/A is a Lie algebra, having abelian subalgebra of dimension 4. From the proof of

Lemma 3 we can see that every cyclic subalgebra of S/A is an ideal of L/A. Hence L/A is a

direct sum of two abelian ideals, so that L/A is abelian. In particular, it is a Lie algebra. This

means that Leib(L) 6 A, and we obtain a contradiction. This contradiction shows that K is

〈x〉-nilpotent for each element x ∈ L.

Let x be an element of L such that x 6∈ AnnL(K). Then 〈x, K〉 is an ideal. Since K is 〈x〉-

nilpotent, 〈x, K〉 is nilpotent. In this case ζ(〈x, K〉) 6= 〈0〉. Since 〈x, K〉 is an ideal of L, Lemma 4

implies that ζ(〈x, K〉) is an ideal of L. The choice of x implies that Z1 = ζ(〈x, K〉) 6= K. If
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we suppose that K does not include Z1, then Z1 contains an element αx + b for some non-zero

α ∈ F. Then for arbitrary element c ∈ K we obtain

0 = [αx + b, c] = α[x, c] + [b, c] = α[x, c].

Since α 6= 0, [x, c] = 0. It is true for each element c ∈ K, so that [x, K] = 〈0〉, and we obtain a

contradiction with a choice of x. This contradiction shows that K includes Z1.

Suppose that dimF(Z1) = 1. If y is an arbitrary element of L, then by above proved 〈y, K〉

is nilpotent. Since Z1 is an ideal of L, and hence of 〈y, K〉, the intersection ζ(〈y, K〉) ∩ Z1 is

non-zero [14, Lemma 2.4]. The fact that dimF(Z1) = 1 implies that ζ(〈y, K〉) ∩ Z1 = Z1. Since

it is true for every element y ∈ L, we obtain that Z1 6 ζ(L).

Suppose that dimF(Z1) = 2. If L = AnnL(Z1), then again Z1 6 ζ(L). Therefore assume

that L 6= AnnL(Z1) and choose an element y such that y 6∈ AnnL(Z1). Then again 〈y, K〉 is

nilpotent. Since Z1 is an ideal of L, and hence of 〈y, K〉, the intersection ζ(〈y, K〉) ∩ Z1 = Z2 is

non-zero [14, Lemma 2.4]. The choice of y implies that Z2 6= Z1. Thus dimF(Z2) = 1. Using the

above arguments, we obtain an inclusion Z2 6 ζ(L). Hence in every case ζ(L) ∩ K is non-zero.

Repeating the above arguments we obtain that K 6 ζ3(L). Since L/K is abelian, it follows that

L is nilpotent.

Theorem 2. Let L be a Leibniz algebra, having a dense family of ideals. Suppose that L/Leib(L)

includes an abelian subalgebra of dimension 4. Then either every subalgebra of L is an ideal

or L satisfies the following conditions:

(a) dimF(Leib(L)) 6 3;

(b) L is nilpotent;

(c) L/Leib(L) is abelian;

(d) L includes an ideal E such that Leib(L) 6 ζ(E) and [v, v] 6= 0 for every element v of E

such that v 6∈ Leib(L);

(e) if dimF(Leib(L)) = 3, then dimF(L/E) 6 3;

(f) if dimF(Leib(L)) = 2, then dimF(L/E) 6 6;

(g) if dimF(Leib(L)) = 1, then dimF(L/E) 6 8.

In particular, if dimF(Leib(L)) = 1, then every subalgebra of E is an ideal of L.

Proof. Put K = Leib(L). If L includes an abelian subalgebra of dimension 4, then Theorem 1

shows that every subalgebra of L is an ideal. Suppose that L has the subalgebras, which are

not ideals. Then dimF(K) 6 3. By Lemma 5 L/K is abelian and L is nilpotent.

Suppose that dimF(K) = 3. A factor-algebra L/Ann
le f t
L (K) is isomorphic to some subalge-

bra of algebra of derivations of K [11, Proposition 3.2]. Moreover, the fact that L is nilpotent

implies that L/Ann
le f t
L (K) is isomorphic to some subalgebra of all zero-triangular matrices

NT3(F). In particular, we obtain that

dimF(L/Ann
le f t
L (K)) 6 3.
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We note that Ann
le f t
L (K) = AnnL(K). Put E = AnnL(K). Assume that E has an element

x 6∈ K such that [x, x] = 0. Since L/K is abelian, 〈x, K〉 is an ideal of L. The choice of element

x follows that this subalgebra is abelian. Since dimF(〈x, K〉) = 4, Theorem 1 implies that

every subalgebra of L is an ideal, and we obtain a contradiction. This contradiction shows that

[x, x] 6= 0 for every x of E such that x 6∈ K.

Suppose that dimF(K) = 2. In this case L/Ann
le f t
L (K) is isomorphic to some subalgebra of

all triangular matrices T2(F). In particular,

dimF(L/Ann
le f t
L (K)) 6 1.

Put D = AnnL(K). Assume that D has an element x 6∈ K such that [x, x] = 0. Then 〈x, K〉 is

abelian and has dimension 3. Since L/K is abelian, 〈x, K〉 is an ideal of L. For arbitrary element

y ∈ D consider the mappings

ly : 〈x, K〉 → 〈x, K〉

and

ry : 〈x, K〉 → 〈x, K〉,

defined by the rule: ly(b) = [y, b] and ry(b) = [b, y], b ∈ 〈x, K〉. If {a1, a2} is the basis of K, then

the matrix of ly in a basis {a1, a2, x} has a following form





0 0 0

0 0 α

0 0 β





for some α, β ∈ F. It follows that dimF(D/Ann
le f t
D (〈x, K〉)) 6 2. Further, the matrix of ry in a

basis {a1, a2, x} also has a following form





0 0 0

0 0 λ

0 0 µ





for some λ, µ ∈ F. It follows that D/Ann
right
D (〈x, K〉) has a dimension at most 2. Put

B = Ann
le f t
D (〈x, K〉) ∩ Ann

right
D (〈x, K〉) = AnnD(〈x, K〉).

Since D is an ideal of L, B is an ideal of L. The choice of B implies that

dimF(L/B) 6 1 + 2 + 2 = 5.

Assume that B has an element u 6∈ 〈x, K〉 such that [u, u] = 0. The choice of this element

yields that the subalgebra 〈u, x, K〉 is abelian. Since dimF(〈u, x, K〉) = 4, Theorem 1 implies

that every subalgebra of L is an ideal, and we obtain a contradiction. This contradiction shows

that [u, u] 6= 0 for every u of B such that u 6∈ 〈x, K〉. Since L/K is abelian, 〈x, K〉/K has a

complement E/K in B/K:

B/K = 〈x, K〉/K ⊕ E/K.

Moreover, E is an ideal of L. Since x 6∈ K, 〈x, K〉 = K ⊕ Fx. The fact that [x, x] = 0 implies

that 〈x〉 = Fx, and we have B = E ⊕ 〈x〉. Then dimF(E) = dimF(B) − 1, and therefore
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dimF(L/E) 6 5 + 1 = 6. The choice of E implies that [v, v] 6= 0 for every v of E such that

v 6∈ K.

Finally, suppose that dimF(K) = 1. Using the above arguments, in this case we obtain that

L includes an ideal E > K such that dimF(L/E) 6 8 and [v, v] 6= 0 for every v of E such that

v 6∈ K.

In Theorem 2 appeared the following type of Leibniz algebras: dimF(Leib(L)) 6 3,

Leib(L) 6 ζ(L) and [x, x] 6= 0 for every x 6∈ Leib(L). If dimF(Leib(L)) = 1, then every

subalgebra of L is an ideal. But the cases when dimF(Leib(L)) = 2 or 3, require the separate

consideration.

If in Theorem 2 Leib(L) = AnnL(Leib(L)), then we obtain the algebras of dimension 6, 8, 9

respectively. These cases also require the separate consideration.

Finally, let L be a Lie algebra, having dense family of ideals, and suppose that every abelian

subalgebra of L has dimension at most 3. If L includes an abelian subalgebra A of dimension 3,

then by Lemma 1 A is an ideal of L. Then A = AnnL(A), and hence L/AnnL(A) has dimension

at most 9, L has a dimension at most 12. Thus we can see that the case, when a Leibniz algebra,

having dense family of ideals, has a dimension at most 15, require the separate consideration.
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Семко М.М., Скаскiв Л.В., Ярова О.А. Алгебри Лейбнiца з щiльним сiмейством iдеалiв // Карпат-

ськi матем. публ. — 2020. — Т.12, №2. — C. 451–460.

Кажуть, що алгебра Лейбнiца L має щiльне сiмейство iдеалiв, якщо для кожної пари таких

пiдалгебр A, B з L, що A 6 B та A не є максимальною в B, iснує такий iдеал S, що A 6 S 6 B. У

статтi дослiджуються алгебри Лейбнiца з щiльним сiмейством iдеалiв.

Ключовi слова i фрази: алгебра Лейбнiца, алгебра Лi, iдеал, щiльне сiмейство, нiльпотентна

алгебра Лейбнiца.


