

Карпатські матем. публ. 2021, Т.13, №1, С.217–228

Some results concerning localization property of generalized Herz, Herz-type Besov spaces and Herz-type Triebel-Lizorkin spaces

Djeriou A., Heraiz R.

In this paper, based on generalized Herz-type function spaces $\dot{K}^p_q(\theta)$ were introduced by Y. Komori and K. Matsuoka in 2009, we define Herz-type Besov spaces $\dot{K}^p_q B^s_\beta(\theta)$ and Herz-type Triebel-Lizorkin spaces $\dot{K}^p_q F^s_\beta(\theta)$, which cover the Besov spaces and the Triebel-Lizorkin spaces in the homogeneous case, where $\theta = \{\theta(k)\}_{k \in \mathbb{Z}}$ is a sequence of non-negative numbers such that

$$C^{-1}2^{\delta(k-j)} \le \frac{\theta(k)}{\theta(j)} \le C2^{\alpha(k-j)}, \quad k > j,$$

for some $C \ge 1$ (α and δ are numbers in \mathbb{R}).

Further, under the condition mentioned above on θ , we prove that $\dot{K}^p_q(\theta)$ and $\dot{K}^p_q B^s_\beta(\theta)$ are localizable in the ℓ_q -norm for p=q, and $\dot{K}^p_q F^s_\beta(\theta)$ is localizable in the ℓ_q -norm, i.e. there exists $\varphi \in \mathcal{D}(\mathbb{R}^n)$ satisfying $\sum_{k \in \mathbb{Z}^n} \varphi(x-k) = 1$, for any $x \in \mathbb{R}^n$, such that

$$||f|E|| \approx \left(\sum_{k \in \mathbb{Z}^n} ||\varphi(\cdot - k) \cdot f|E||^q\right)^{1/q}.$$

Results presented in this paper improve and generalize some known corresponding results in some function spaces.

Key words and phrases: generalized Herz space, Herz-type Besov space, Herz-type Triebel-Lizorkin space, localization property.

Laboratory of Mathematics Pure and Applied, M'Sila University, P.O. Box 166, M'Sila 28000, Algeria E-mail: aissa.djeriou@univ-msila.dz (Djeriou A.), rabah.heraiz@univ-msila.dz (Heraiz R.)

1 Introduction and preliminaries

As usual, \mathbb{R}^n is the n-dimensional real Euclidean space, \mathbb{N} is the collection of all natural numbers and $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. The letter \mathbb{Z} stands for the set of all integer numbers.

For any u > 0, $k \in \mathbb{Z}$ we set $C(u) = \{x \in \mathbb{R}^n : u/2 < |x| \le u\}$ and $C_k = C(2^k)$. For $x \in \mathbb{R}^n$ and r > 0 we denote by B(x,r) the open ball in \mathbb{R}^n with center x and radius r. Let χ_k , for $k \in \mathbb{Z}$, denote the characteristic function of the set C_k .

As usual, $L^p(\mathbb{R}^n)$ for $0 stands for the Lebesgue spaces on <math>\mathbb{R}^n$ normed by (quasi-normed for p < 1)

$$||f|L^p(\mathbb{R}^n)|| = ||f||_p = \left(\int_{\mathbb{R}^n} |f(x)|^p dx\right)^{1/p} < \infty, \quad 0 < p < \infty,$$

and

$$||f|L^{\infty}(\mathbb{R}^n)|| = ||f||_{\infty} = \operatorname{ess-sup}_{x \in \mathbb{R}^n} |f(x)| < \infty.$$

By ℓ_q , $0 < q \le \infty$, we denote the space of all (complex) sequences $\{a_k\}_{k \in \mathbb{Z}}$ equipped with the quasi-norm

$$\left\|\left\{a_k\right\}_{k\in\mathbb{Z}}\left|\ell_q\right\| = \left(\sum_{k=-\infty}^{\infty} |a_k|^q\right)^{1/q}$$

(with the usual modification if $q = \infty$).

Given two quasi-Banach spaces X and Y, we write $X \hookrightarrow Y$ if $X \subset Y$ and the natural embedding of X in Y is continuous. We use c as a generic positive constant, i.e. a constant whose value may change from appearance to appearance.

By $\mathcal{S}(\mathbb{R}^n)$ we denote the Schwartz space of all complex-valued, infinitely differentiable and rapidly decreasing functions on \mathbb{R}^n . The topology in the complete locally convex space $\mathcal{S}(\mathbb{R}^n)$ is generated by the norms

$$p_N(\varphi) = \sup_{x \in \mathbb{R}^n} (1 + |x|)^N \sum_{|\alpha| \le N} |D^{\alpha} \varphi(x)|, \quad N = 1, 2, 3, \dots.$$

By $S'(\mathbb{R}^n)$ we denote the dual space of all tempered distributions on \mathbb{R}^n . We define the Fourier transform of a function $f \in S(\mathbb{R}^n)$ by

$$\mathcal{F}(f)(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{-ix \cdot \xi} f(x) dx.$$

Its inverse is denoted by $\mathcal{F}^{-1}f$. Both \mathcal{F} and \mathcal{F}^{-1} are extended to the dual Schwartz space $\mathcal{S}'(\mathbb{R}^n)$ in the usual way.

It is well known that the localization property was first introduced by G. Bourdaud (see [1]) and under some conditions he proved that Besov spaces is localizable in the ℓ_p norm. N. Ferahtia and S. Allaoui (see [4]) generalized the Bourdaud theorem of a localization property of Besov spaces $B_{p,q}^s$ on the ℓ_r space, where $r \in [1, +\infty]$.

Recently, the localization property of some function spaces have attracted great attention (see [11,13,20]).

In this paper, we define Herz-type Besov spaces $\dot{K}^p_q B^s_\beta(\theta)$ and Herz-type Triebel-Lizorkin spaces $\dot{K}^p_q F^s_\beta(\theta)$ which covers Besov spaces and Triebel-Lizorkin spaces in the homogeneous case. Notice that these spaces based on generalized Herz-type function spaces $\dot{K}^p_q(\theta)$ were introduced by Y. Komori and K. Matsuoka in [8]. After this, we treat and discuss the localization property of these spaces and then we compare our results with existing ones.

2 Function spaces

We start by recalling the definition and some properties of the generalized Herz spaces.

Definition 1. Let $\alpha, \delta \in \mathbb{R}$. A sequence of numbers $\theta = \{\theta(k)\}_{k \in \mathbb{Z}}$ belongs to the class $\mathcal{A}(\alpha, \delta)$ if and only if

- (i) $\theta(k) > 0$ for all $k \in \mathbb{Z}$;
- (ii) there exists a constant $C \ge 1$ such that

$$C^{-1}2^{\delta(k-j)} \le \frac{\theta(k)}{\theta(j)} \le C2^{\alpha(k-j)} \tag{1}$$

for k > j.

The size condition (1) in the above definition can be satisfied by many sequences of numbers such as:

$$\theta = \left\{2^{\mu k}\right\}_{k \in \mathbb{Z}} \in \mathcal{A}\left(\alpha, \delta\right) \text{ for } \delta \leq \mu \leq \alpha, \qquad \theta = \left\{2^{\lambda k}(1 + \max(0, k \ln 2))\right\}_{k \in \mathbb{Z}} \in \mathcal{A}\left(\lambda, \lambda + 1\right).$$

Definition 2. Let $\theta \in \mathcal{A}(\alpha, \delta)$ and $0 < p, q \le \infty$. The generalized Herz space $\dot{K}_q^p(\theta)$ is defined by

$$\dot{K}_q^p(\theta) := \{ f \in L_{\text{loc}}^q(\mathbb{R}^n \setminus \{0\}) : \|f|\dot{K}_q^p(\theta)\| < \infty \},$$

where

$$||f|\dot{K}_q^p(\theta)|| = \left(\sum_{k=-\infty}^{\infty} \theta^p(k) ||f\chi_k|L^q||^p\right)^{1/p},$$

with the usual modifications made when $p = \infty$ and/or $q = \infty$.

The spaces $\dot{K}_p^q(\theta)$ were first defined by Y. Komori and K. Matsuoka [8] and under the condition above, the authors studied the boundedness of singular integral operators and fractional integral operators on these spaces.

The Definition 2 coincide with the classical definition of Herz spaces for the case of the particular function, i.e

$$\dot{K}_q^p(\theta) = \dot{K}_q^{\alpha,p}(\mathbb{R}^n) \quad \text{if} \quad \theta \in \mathcal{A}(\alpha,\alpha).$$

The spaces $\dot{K}_q^p(\theta)$ are quasi-Banach spaces and if $\min(p,q) \geq 1$ then $\dot{K}_q^p(\theta)$ are Banach spaces. If $\theta \in \mathcal{A}(0,0)$ and $0 then <math>\dot{K}_p^p(\theta)$ coincides with the Lebesque spaces $L^p(\mathbb{R}^n)$. A detailed discussion of the properties of $\dot{K}_q^p(\theta)$, where $\theta \in \mathcal{A}(\alpha,\alpha)$, may be found in the papers [6,7,9,10], and references therein.

Next, we present the Fourier analytical definition of Herz-type Besov spaces $\dot{K}_q^p B_\beta^s(\theta)$ and Herz-type Triebel-Lizorkin spaces $\dot{K}_q^p F_\beta^s(\theta)$ and recall their basic properties. We first need the concept of a smooth dyadic resolution of unity.

Definition 3. Let Ψ be a function in $\mathcal{S}(\mathbb{R}^n)$ satisfying $\Psi(x) = 1$ for $|x| \le 1$ and $\Psi(x) = 0$ for $|x| \ge \frac{3}{2}$. We put $\varphi_0(x) = \Psi(x)$, $\varphi_1(x) = \Psi(x/2) - \Psi(x)$ and

$$\varphi_j(x) = \varphi_1(2^{-j+1}x)$$
 for $j = 2, 3, \dots$

Then we have supp $\varphi_j \subset \{x \in \mathbb{R}^n : 2^{j-1} \le |x| \le 3 \cdot 2^{j-1}\}$, $\varphi_j(x) = 1$ for $3 \cdot 2^{j-2} \le |x| \le 2^j$ and $\sum_{j=0}^{\infty} \varphi_j(x) = 1$ for all $x \in \mathbb{R}^n$. The system of functions $\{\varphi_j\}_{j \in \mathbb{N}_0}$ is called a smooth dyadic resolution of unity. We define the convolution operators Δ_j as follows

$$\Delta_j f = \mathcal{F}^{-1} \varphi_j * f, \quad j \in \mathbb{N}, \quad and \quad \Delta_0 f = \mathcal{F}^{-1} \Psi * f, \quad f \in \mathcal{S}'(\mathbb{R}^n).$$

Thus we obtain the Littlewood-Paley decomposition $f = \sum_{j=0}^{\infty} \Delta_j f$ of all $f \in \mathcal{S}'(\mathbb{R}^n)$ (convergence in $\mathcal{S}'(\mathbb{R}^n)$).

We are now ready to state the definitions of Herz-type Besov and Triebel-Lizorkin spaces.

Definition 4. (i) Let $\theta \in \mathcal{A}(\alpha, \delta)$, $s \in \mathbb{R}$, and $0 < p, q, \beta \le \infty$. The generalized Herz-type Besov space $\dot{K}_q^p B_\beta^s(\theta)$ is the collection of all $f \in \mathcal{S}'(\mathbb{R}^n)$ such that

$$||f|\dot{K}_{q}^{p}B_{\beta}^{s}\left(\theta\right)|| = \left(\sum_{j=0}^{\infty}2^{js\beta}||\Delta_{j}f|\dot{K}_{q}^{p}\left(\theta\right)||^{\beta}\right)^{1/\beta} < \infty,$$

with the obvious modification if $\beta = \infty$.

(ii) Let $\theta \in \mathcal{A}(\alpha, \delta)$, $s \in \mathbb{R}$, 0 < p, $q < \infty$ and $0 < \beta \le \infty$. The generalized Herz-type Triebel-Lizorkin space $\dot{K}_q^p F_B^s(\theta)$ is the collection of all $f \in \mathcal{S}'(\mathbb{R}^n)$ such that

$$||f|\dot{K}_{q}^{p}F_{\beta}^{s}\left(\theta\right)|| = \left|\left(\sum_{j=0}^{\infty} 2^{js\beta} \left|\Delta_{j}f\right|^{\beta}\right)^{1/\beta} \left|\dot{K}_{q}^{p}\left(\theta\right)\right|\right| < \infty,$$

with the obvious modification if $\beta = \infty$.

Observing that, if $\theta \in \mathcal{A}(\alpha,\alpha)$ then $\dot{K}^p_q B^s_\beta(\theta) = \dot{K}^{\alpha,p}_q B^s_\beta(\mathbb{R}^n)$ (resp., $\dot{K}^p_q F^s_\beta(\theta) = \dot{K}^{\alpha,p}_q F^s_\beta$) are the classical Herz-type Besov spaces (resp., the classical Herz-type Triebel-Lizorkin spaces). The spaces $\dot{K}^p_q B^s_\beta(\theta)$ and $\dot{K}^p_q F^s_\beta(\theta)$ are quasi-Banach spaces and if $p,q,\beta \geq 1$, then both $\dot{K}^p_q B^s_\beta(\theta)$ and $\dot{K}^p_q F^s_\beta(\theta)$ are Banach spaces. Further results, concerning, for instance, lifting properties, Fourier multiplier and local means characterizations can be found in [17–19].

Now we give the definitions of the spaces $B_{p,\beta}^s$ and $F_{p,\beta}^s$.

Definition 5. (i) Let $s \in \mathbb{R}$ and $0 < p, \beta \le \infty$. The Besov space $B_{p,\beta}^s(\mathbb{R}^n)$ is the collection of all $f \in \mathcal{S}'(\mathbb{R}^n)$ such that

$$||f|B_{p,\beta}^s(\mathbb{R}^n)|| = \Big(\sum_{j=0}^{\infty} 2^{js\beta} ||\Delta_j f| L^p(\mathbb{R}^n)||^{\beta}\Big)^{1/\beta} < \infty.$$

(ii) Let $s \in \mathbb{R}$, $0 and <math>0 < \beta \leq \infty$. The Triebel-Lizorkin space $F_{p,\beta}^s(\mathbb{R}^n)$ is the collection of all $f \in \mathcal{S}'(\mathbb{R}^n)$ such that

$$||f|F_{p,\beta}^s(\mathbb{R}^n)|| = ||\left(\sum_{j=0}^{\infty} 2^{js\beta} |\Delta_j f|^{\beta}\right)^{1/\beta} |L^p(\mathbb{R}^n)|| < \infty.$$

The theory of the spaces $B^s_{p,q}(\mathbb{R}^n)$ and $F^s_{p,\beta}(\mathbb{R}^n)$ has been developed in detail in [14–16], but has a longer history already including many contributors; we do not want to discuss this here. In particular, with $p=q=\infty, s>0$, one recovers Hölder-Zygmund spaces $\mathcal{C}^s=B^s_{\infty,\infty}$, cf. [14, Theorem 2.5.12]. Clearly, for $\theta\in\mathcal{A}(0,0)$, $s\in\mathbb{R}$, $0< p\leq\infty$ ($0< p<\infty$ for the $K^p_pF^s_\beta(\theta)$ spaces) and $0<\beta\leq\infty$,

$$\dot{K}_{p}^{p}B_{\beta}^{s}\left(\theta\right)=B_{p,\beta}^{s}(\mathbb{R}^{n})$$
 and $\dot{K}_{p}^{p}F_{\beta}^{s}\left(\theta\right)=F_{p,\beta}^{s}(\mathbb{R}^{n}).$

For the proof of the localization property of Herz-type Besov and Herz-type Triebel-Lizorkin spaces, we need the following proposition, see [2, Proposition 3.5].

Proposition 1. Let $\theta \in \mathcal{A}(\alpha, \delta)$, $s \in \mathbb{R}$ and $1 \le p, q, \beta \le \infty$ such that $-n/q < \alpha, \delta < n(1-1/q)$. For all $\gamma, \rho > 1$, there exists c > 0 such that for any sequence $\{g_l\}_{l \in \mathbb{N}_0}$ of functions, where

$$\operatorname{supp} \mathcal{F} g_0 \subset \{\xi : |\xi| \leq \rho\}$$
 and $\operatorname{supp} \mathcal{F} g_l \subset \{\xi : \gamma^{-1} 2^l \leq |\xi| \leq \gamma 2^l\}$,

we have

$$\left\| \sum_{l=0}^{\infty} g_l | \dot{K}_q^p B_{\beta}^s \left(\theta \right) \right\| \leq c \left(\sum_{l=0}^{\infty} 2^{ls\beta} \| g_l | \dot{K}_q^p \left(\theta \right) \|^{\beta} \right)^{1/\beta}$$

and

$$\left\| \sum_{l=0}^{\infty} g_l |\dot{K}_q^p F_{\beta}^s \left(\theta\right) \right\| \leq c \left\| \left(\sum_{l=0}^{\infty} 2^{ls\beta} \left| g_l \right|^{\beta} \right)^{1/\beta} |\dot{K}_q^p \left(\theta\right) \right\|, \quad 1 \leq p, \ q < \infty.$$

Before the proof of Proposition 1, we need some technical lemmas. The following assertion is the $K_a^p(\theta)$ -version of lemma by J. Franke [5].

Lemma 1. Let $\theta \in \mathcal{A}(\alpha, \delta)$, 1 < p, $q \le \infty$ and γ , $\rho > 1$. For any sequence $\{g_l\}_{l \in \mathbb{N}_0} \subset \mathcal{S}'(\mathbb{R}^n) \cap \dot{K}^p_q(\theta)$ with

$$\operatorname{supp} \mathcal{F} g_0 \subset \{\xi : |\xi| \leq \rho\}$$
 and $\operatorname{supp} \mathcal{F} g_l \subset \{\xi : \gamma^{-1} 2^l \leq |\xi| \leq \gamma 2^l\}$,

we have

$$\|\Delta_j g_l | \dot{K}_q^p(\theta) \| \le c \|g_l | \dot{K}_q^p(\theta) \|.$$

The constant c > 0 is independent of j and l.

For the proof of this lemma, we can repeat arguments similar to the ones used in the proof of Lemma 3.3 in [2].

Lemma 2. Let 0 < b < 1 and $0 < q \le \infty$. Let $\{\varepsilon_j\}_{j \in \mathbb{Z}}$ be a sequence of real positive numbers in ℓ_q . Then there exists a constant c > 0 depending only on b and q such that

$$\left\| \left\{ \sum_{j=-\infty}^{k} b^{(k-j)} \varepsilon_{j} \right\}_{k \in \mathbb{Z}} |\ell_{q}| + \left\| \left\{ \sum_{j=k}^{\infty} b^{(j-k)} \varepsilon_{j} \right\}_{k \in \mathbb{Z}} |\ell_{q}| \right\| \le c \left\| \left\{ \varepsilon_{k} \right\}_{k \in \mathbb{Z}} |\ell_{q}| \right\|.$$

The proof of Lemma 2 is immediate by using Young's inequality in ℓ_q .

Proof of Proposition 1. By similarity we prove only the Herz-type Besov case. We observe that there existe $H_1 = [\log_2 2\gamma]$ and $H_2 = [\log_2 ((3\gamma)/2)]$ in \mathbb{N} such that

$$\Delta_j g_l = 0$$
 if $l \ge j + H_2$ or $l \le j + H_1$.

Observe that

$$\Delta_j \Big(\sum_{l=0}^{\infty} g_l \Big) = \sum_{l=j-H_1}^{j+H_2} \Delta_j g_l.$$

Therefore,

$$\left\| \sum_{l=0}^{\infty} g_l | \dot{K}_q^p B_{\beta}^s \left(\theta \right) \right\| \leq \left(\sum_{j=0}^{\infty} 2^{js\beta} \left(\sum_{l=i-H_1}^{j+H_2} \left\| \Delta_j g_l | \dot{K}_q^p \left(\theta \right) \right\| \right)^{\beta} \right)^{1/\beta}.$$

Now, according to sign of *s* and by Lemma 1, we separate the cases.

1. The case s > 0. We obtain

$$\sum_{l=j-H_1}^{j+H_2} 2^{sj} \|\Delta_j g_l | \dot{K}_q^p(\theta) \| \leq c \sum_{l=j}^{\infty} 2^{sj} 2^{-sl} \Big(2^{sl} \|\Delta_{j+H_1} g_l | \dot{K}_q^p(\theta) \| \Big) \leq c 2^{sj} \sum_{l=j}^{\infty} 2^{-sl} \Big(2^{sl} \|g_l | \dot{K}_q^p(\theta) \| \Big).$$

2. The case s < 0. Similarly

$$\sum_{l=j-H_1}^{j+H_2} 2^{sj} \|\Delta_j g_l | \dot{K}_q^p(\theta) \| \leq c \sum_{l=0}^{j} 2^{sj} 2^{-sl} \Big(2^{sl} \|\Delta_{j-H_2} g_l | \dot{K}_q^p(\theta) \| \Big) \leq c 2^{js} \sum_{l=0}^{j} 2^{-sj} \Big(2^{sl} \|g_l | \dot{K}_q^p(\theta) \| \Big).$$

3. If s = 0, we immediately get

$$\sum_{l=j-H_1}^{j+H_2} \left\| \Delta_j g_l | \dot{K}^p_q(\theta) \right\| \leq c \sum_{l=j-H_1}^{j+H_2} 1 \left\| g_l | \dot{K}^p_q(\theta) \right\| \leq c \bigg(\sum_{l=j-H_1}^{j+H_2} 1 \bigg)^{1/\beta'} \bigg(\sum_{l=j-H_1}^{j+H_2} \left(\left\| g_l | \dot{K}^p_q(\theta) \right\| \right)^{\beta} \bigg)^{1/\beta}.$$

Finally, we apply ℓ_{β} -norm and Lemma 2, and obtain

$$\left\| \sum_{l=0}^{\infty} g_l |\dot{K}_q^p B_{\beta}^s(\theta) \right\| \leq c \left(\sum_{l=0}^{\infty} 2^{ls\beta} \|g_l| \dot{K}_q^p(\theta) \|^{\beta} \right)^{1/\beta}.$$

3 Localization of Herz-type Besov spaces

In this section, we present three results concerning the localization property of generalized Herz, Herz-type Besov and Herz-type Triebel-Lizorkin spaces on the ℓ_r spaces.

We first need the concept of a localization spaces. Let *E* be a Banach space of distributions. We associate on the space *E* the following hypothesis.

- (1) Translation invariance: if τ_k denotes the operator given by $\tau_k f(t) = f(t-k)$, then τ_k is an isometry of E.
 - (2) Localization invariance: for all $f \in E$ and $\varphi \in \mathcal{D}(\mathbb{R}^n)$, we have that $\varphi \cdot f \in E$.

Let $\varphi \in \mathcal{D}(\mathbb{R}^n)$. The notion of localized is defined by $f_x = \tau_x \varphi \cdot f$, it follows immediately from the hypothesis (1) and (2) that the family $(f_x)_{x \in \mathbb{R}^n}$ is bounded in E. We consider the set A as the class of all the functions $\varphi \in \mathcal{D}(\mathbb{R}^n)$ satisfying

supp
$$\varphi \subset B(0, R)$$
 with $R > \sqrt{n}$,

and

$$\sum_{k \in \mathbb{Z}^n} \varphi(x - k) = 1, \quad \forall x \in \mathbb{R}^n \setminus \{0\}.$$
 (2)

Definition 6. Let *E* be a Banach space of distributions, *E* is localizable in the ℓ_r norm, $1 \le r \le \infty$, if there exist $\varphi \in A$ and a constant $c \ge 1$ such that

$$\frac{1}{c} \|f|E\| \le \|f|(E)_{\ell_r}\| = \left(\sum_{k \in \mathbb{Z}^n} \|\tau_k \varphi \cdot f|E\|^r\right)^{1/r} \le c \|f|E\|.$$

Remark 1. Let $f \in (E)_{\ell_r}$. If $g \in S$ such that $g(x) \neq 0$ for $x \in \text{supp } \varphi$. Then the following expression

$$\left(\sum_{k\in\mathbb{Z}^n}\|\tau_kg\cdot f|E\|^r\right)^{1/r}$$

defines an equivalent norm in $(E)_{\ell_r}$, cf. [1, Proposition 5, p. 156].

The following result play a fundamental role in the proof of Theorem 3.

Lemma 3. Let $\theta \in A(\alpha, \delta)$ and $1 \leq p$, $q \leq \infty$. There exists a constant c > 0 such that the inequality

$$\left\| \sum_{k \in \mathbb{Z}^n} f_k | \dot{K}_q^p(\theta) \right\| \le c \left(\sum_{k \in \mathbb{Z}^n} \left\| f_k | \dot{K}_q^p(\theta) \right\|^p \right)^{1/p}$$

holds, for all R > 1 and for all family $\{f_k\}_{k \in \mathbb{Z}^n}$ from S' with supp f_k contained in the ball $|x - k| \le R$.

Proof. For any sequence $\{f_k\}_{k\in\mathbb{Z}^n}$, let us write $\sum_{k\in\mathbb{Z}^n} f_k$ as in (2), namely

$$\sum_{k\in\mathbb{Z}^n}f_k=\sum_{k\in\mathbb{Z}^n}\varphi\left(x-k\right)f_k=\Lambda_{\varphi}\left(\left\{f_k\right\}_{k\in\mathbb{Z}^n}\right),$$

where $\varphi \in \mathcal{D}(\mathbb{R}^n)$ is chosen such that $\varphi = 1$ on the ball $|x| \leq R$. We want to show that Λ_{φ} is bounded operator from $\ell_1(\dot{K}_1^p(\theta))$ to $\dot{K}_1^p(\theta)$ and from $\ell_{\infty}(\dot{K}_{\infty}^p(\theta))$ to $\dot{K}_{\infty}^p(\theta)$.

Consider $\|\Lambda_{\varphi}\left(\{f_k\}_{k\in\mathbb{Z}^n}\right)|\dot{K}_1^p(\theta)\|$ first. By Minkowski's inequality, Hölder's inequality and since $p\geq 1$, we have

$$\begin{split} \|\Lambda_{\varphi}\left(\{f_{k}\}_{k\in\mathbb{Z}^{n}}\right)|\dot{K}_{1}^{p}(\theta)\| &= \left(\sum_{l=-\infty}^{\infty}\theta^{p}(l)\Big\|\sum_{k\in\mathbb{Z}^{n}}\varphi\left(\cdot-k\right)f_{k}\cdot\chi_{l}|L^{1}\Big\|^{p}\right)^{1/p} \\ &\leq \left\|\|\theta(l)\varphi\left(\cdot-k\right)f_{k}\cdot\chi_{l}|L^{1}\||\ell_{p}\left(\ell_{1}\right)\| \\ &\leq \left\|\varphi|L^{\infty}\|\Big\|\|\theta(l)f_{k}\cdot\chi_{l}|L^{1}\||\ell_{p}\left(\ell_{1}\right)\| \\ &\leq \left\|\|\theta(l)f_{k}\cdot\chi_{l}|L^{1}\||\ell_{1}\left(\ell_{p}\right)\| \\ &\leq \sum_{k\in\mathbb{Z}^{n}}\|f_{k}|\dot{K}_{1}^{p}(\theta)\| = \left\|\|\left(f_{k}\right)_{k\in\mathbb{Z}^{n}}|\dot{K}_{1}^{p}(\theta)\||\ell_{1}\right\|. \end{split}$$

We now consider $\|\Lambda_{\varphi}(\{f_k\}_{k\in\mathbb{Z}^n})|\dot{K}^p_{\infty}(\theta)\|$. By Hölder's inequality, we have

$$\begin{split} \left\| \Lambda_{\varphi} \left(\left\{ f_{k} \right\}_{k \in \mathbb{Z}^{n}} \right) | \dot{K}_{\infty}^{p}(\theta) \right\| &= \left(\sum_{l = -\infty}^{\infty} \theta^{p}(l) \left\| \sum_{k \in \mathbb{Z}^{n}} \varphi \left(\cdot - k \right) f_{k} \cdot \chi_{l} | L^{\infty} \right\|^{p} \right)^{1/p} \\ &\leq \left(\sum_{l = -\infty}^{\infty} \theta^{p}(l) \left\| \sup_{k \in \mathbb{Z}^{n}} f_{k} \cdot \chi_{l} | L^{\infty} \right\|^{p} \left\| \sum_{k \in \mathbb{Z}^{n}} \varphi \left(\cdot - k \right) | L^{\infty} \right\|^{p} \right)^{1/p} \\ &\leq \left\| \left\| \left(f_{k} \right)_{k \in \mathbb{Z}^{n}} | \dot{K}_{\infty}^{p}(\theta) \right\| | \ell_{\infty} \right\|. \end{split}$$

Since $\frac{1}{p} \in (0,1)$, by the complex interpolation theory established in [3, Theorem 4.1] and [12, p. 121/4]), we have

$$[\ell_1(\dot{K}_1^1(\theta)), \ell_{\infty}(\dot{K}_{\infty}^{\infty}(\theta))]_{\frac{1}{p}} = \ell_p([\dot{K}_1^1(\theta), \dot{K}_{\infty}^{\infty}(\theta)]_{\frac{1}{p}}) = \ell_p(\dot{K}_p^p(\theta)).$$

This finishes the proof of the lemma.

The following result gives the localization property of generalized Herz spaces on the ℓ_r spaces.

Theorem 1. Let $\theta \in \mathcal{A}(\alpha, \delta)$, $1 < p,q \le \infty$. Then

(i)
$$\dot{K}_{q}^{p}(\theta) \hookrightarrow (\dot{K}_{q}^{p}(\theta))_{\ell_{r}} \text{ for } r \geq \max(p,q),$$

(ii)
$$(\dot{K}_{q}^{p}(\theta))_{\ell_{r}} \hookrightarrow \dot{K}_{q}^{p}(\theta)$$
 for $r \leq \min(p,q)$.

In particular, $\dot{K}_{q}^{q}(\theta)$ space is localizable in the ℓ_{q} -norm.

Proof. (i) We must show that

$$||f|(\dot{K}_{q}^{p}(\theta))_{\ell_{r}}|| \leq c||f|\dot{K}_{q}^{p}(\theta)||$$

for all $f \in \dot{K}_{q}^{p}(\theta)$. We have

$$\left\|\tau_{k}\varphi\cdot f|\dot{K}_{q}^{p}\left(\theta\right)\right\| = \left\|\sum_{l=-\infty}^{\infty}\tau_{k}\varphi\cdot f\cdot\chi_{l}|\dot{K}_{q}^{p}\left(\theta\right)\right\| = \left(\sum_{k=-\infty}^{\infty}\theta^{p}(k)\right\|\sum_{l=-\infty}^{\infty}\tau_{k}\varphi\cdot f\cdot\chi_{l}\cdot\chi_{k}|L^{q}\|^{p}\right)^{1/p}.$$

We observe that $\chi_l \cdot \chi_k \neq 0$, when |l - k| < 1, which means l = k. We have

$$\|\tau_k \varphi \cdot f| \dot{K}_q^p(\theta) \| \leq \Big(\sum_{l=-\infty}^{\infty} \theta^p(l) \|\tau_k \varphi \cdot f \cdot \chi_l| L^q \|^p \Big)^{1/p},$$

this implies

$$\left\|f|(\dot{K}_{q}^{p}\left(\theta\right))_{\ell_{r}}\right\| = \left(\sum_{k \in \mathbb{Z}^{n}} \left\|\tau_{k} \varphi \cdot f|\dot{K}_{q}^{p}\left(\theta\right)\right\|^{r}\right)^{1/r} \leq \left(\sum_{k \in \mathbb{Z}^{n}} \left(\sum_{l=-\infty}^{\infty} \theta^{p}(l) \left\|\tau_{k} \varphi \cdot f \cdot \chi_{l}|L^{q}\right\|^{p}\right)^{r/p}\right)^{1/r}.$$

Since $r \ge \max(p, q)$ implies $r \ge p$, from Minkowski inequality we have

$$||f|(\dot{K}_q^p(\theta))_{\ell_r}|| \le \Big(\sum_{l=-\infty}^{+\infty} \theta^p(l) \Big(\sum_{k\in\mathbb{Z}^n} ||\tau_k \varphi \cdot f \cdot \chi_l| L^q||^r\Big)^{p/r}\Big)^{1/p}.$$
(3)

Since $r \ge \max(p,q) \ge q$, by the embedding $\ell_q \hookrightarrow \ell_r$ and the localization of L^q in ℓ^q spaces we obtain

$$\left(\sum_{k\in\mathbb{Z}^n} \left\| \tau_k \varphi \cdot f \cdot \chi_l |L^q\|^r \right)^{1/r} \leq \left(\sum_{k\in\mathbb{Z}^n} \left\| \tau_k \varphi \cdot f \cdot \chi_l |L^q\|^q \right)^{1/q} \leq c \|f \cdot \chi_l |L^q\|,$$

the right hand side inequality of (3) is bounded by

$$||f|(\dot{K}_q^p(\theta))_{\ell_r}|| \le c \Big(\sum_{l=-\infty}^{\infty} \theta^p(l) ||f \cdot \chi_l| L^q ||^p\Big)^{1/p} = c ||f| \dot{K}_q^p(\theta) ||.$$

(ii) By the localization of L^q spaces in the ℓ_q norm (with $r \leq \min(p,q) \leq q$), we have

$$||f \cdot \chi_{l}|L^{q}|| = \left\| \sum_{k \in \mathbb{Z}^{n}} \tau_{k} \varphi \cdot f \cdot \chi_{l} |L^{q}| \right\| \leq c \left(\sum_{k \in \mathbb{Z}^{n}} ||\tau_{k} \varphi \cdot f \cdot \chi_{l} |L^{q}||^{q} \right)^{1/q}$$
$$\leq c \left(\sum_{k \in \mathbb{Z}^{n}} ||\tau_{k} \varphi \cdot f \cdot \chi_{l} |L^{q}||^{r} \right)^{1/r},$$

this implies that

$$||f|\dot{K}_{q}^{p}\left(\theta\right)|| = \left(\sum_{l=-\infty}^{\infty} \theta^{p}(l) ||f \cdot \chi_{l}|L^{q}||^{p}\right)^{1/p} \leq c \left(\sum_{l=-\infty}^{+\infty} \theta^{p}(l) \left(\sum_{k\in\mathbb{Z}^{n}} ||\tau_{k}\varphi \cdot f \cdot \chi_{l}|L^{q}||^{r}\right)^{p/r}\right)^{1/p}.$$

Since $r \leq \min(p, q)$, it holds that $r \leq p$, then from Minkowski inequality we have

$$||f|\dot{K}_{q}^{p}\left(\theta\right)|| \leq c \left(\sum_{k \in \mathbb{Z}^{n}} \left(\sum_{\ell=-\infty}^{\infty} 2^{l\alpha p} ||\tau_{k} \varphi \cdot f \cdot \chi_{l}| L^{q}||^{p}\right)^{r/p}\right)^{1/r} = ||f| (\dot{K}_{q}^{p}\left(\theta\right))_{\ell_{r}}||.$$

This finishes the proof of the theorem.

Remark 2. We would like to mention if $\theta \in A(0,0)$ and p = q, then the statements corresponding to Theorem 1 present the localization of Lebesgue spaces L^q on the ℓ_q spaces.

Motivated by [1, 4, 13], we give the localization property of generalized Herz-type Besov and Herz-type Triebel-Lizorkin spaces on the ℓ_r spaces.

Theorem 2. Let $\theta \in \mathcal{A}(\alpha, \delta)$, $s \in \mathbb{R}$, $1 \le p, q, \beta \le \infty$ such that $-n/q < \alpha, \delta < n(1-1/q)$. Then

(i)
$$\dot{K}_{q}^{p}B_{\beta}^{s}(\theta) \hookrightarrow (\dot{K}_{q}^{p}B_{\beta}^{s}(\theta))_{\ell_{r}} \text{ for } r \geq \max(p,q,\beta),$$

(ii)
$$(\dot{K}_{q}^{p}B_{\beta}^{s}(\theta))_{\ell_{r}} \hookrightarrow \dot{K}_{q}^{p}B_{\beta}^{s}(\theta)$$
 for $r \leq \min(p,q,\beta)$.

In particular, $K_q^q B_q^s(\theta)$ space is localizable in the ℓ_q -norm.

Proof. Our proofs use partially some techniques already used in [4], where Besov spaces case was studied.

First, we prove (i). We must show that

$$||f|(\dot{K}_{q}^{p}B_{\beta}^{s}(\theta))_{\ell_{r}}|| \leq c||f|\dot{K}_{q}^{p}B_{\beta}^{s}(\theta)||$$

for all $f \in \dot{K}_{q}^{p}B_{\beta}^{s}\left(\theta\right)$. By Proposition 1, we have

$$\left\|\tau_{k}\varphi\cdot f|\dot{K}_{q}^{p}B_{\beta}^{s}\left(\theta\right)\right\| = \left\|\sum_{i=0}^{\infty}\tau_{k}\varphi\cdot\Delta_{j}f|\dot{K}_{q}^{p}B_{\beta}^{s}\left(\theta\right)\right\| \leq \left(\sum_{i=0}^{\infty}2^{js\beta}\left\|\tau_{k}\varphi\cdot\Delta_{j}f|\dot{K}_{q}^{p}\left(\theta\right)\right\|^{\beta}\right)^{1/\beta},$$

this implies that,

$$\left\| f | (\dot{K}_{q}^{p} B_{\beta}^{s}(\theta))_{\ell_{r}} \right\| = \left(\sum_{k \in \mathbb{Z}^{n}} \left\| \tau_{k} \varphi \cdot f | \dot{K}_{q}^{p} B_{\beta}^{s}(\theta) \right\|^{r} \right)^{1/r} \leq \left(\sum_{k \in \mathbb{Z}^{n}} \left(\sum_{i=0}^{\infty} 2^{js\beta} \left\| \tau_{k} \varphi \cdot \Delta_{j} f | \dot{K}_{q}^{p}(\theta) \right\|^{\beta} \right)^{r/\beta} \right)^{1/r}.$$

Since $r \ge \max(p, q, \beta)$ implies $r \ge \beta$, from Minkowski inequality we have

$$\left\| f | (\dot{K}_q^p B_\beta^s(\theta))_{\ell_r} \right\| \le \left(\sum_{i=0}^{\infty} 2^{js\beta} \left(\sum_{k \in \mathbb{Z}^n} \left\| \tau_k \varphi \cdot \Delta_j f | \dot{K}_q^p(\theta) \right\|^r \right)^{\beta/r} \right)^{1/\beta}. \tag{4}$$

Since $\dot{K}_{q}^{p}\left(\theta\right)\hookrightarrow\left(\dot{K}_{q}^{p}\left(\theta\right)\right)_{\ell_{r}}$, i.e.

$$\left(\sum_{k\in\mathbb{Z}^n}\left\|\tau_k\varphi\cdot\Delta_jf\right|\dot{K}_q^p\left(\theta\right)\right\|^r\right)^{1/r}\leq c\left\|\Delta_jf\right|\dot{K}_q^p\left(\theta\right)\right\|,$$

the right hand side inequality of (4) is bounded by

$$||f|(\dot{K}_{q}^{p}B_{\beta}^{s}(\theta))_{\ell_{r}}|| \leq \left(\sum_{j=0}^{\infty} 2^{js\beta} ||\Delta_{j}f|\dot{K}_{q}^{p}(\theta)||^{\beta}\right)^{1/\beta} = ||f|\dot{K}_{q}^{p}B_{\beta}^{s}(\theta)||.$$

(ii) By the localization of Herz spaces in the ℓ_r -norm (with $r \leq \min(p,q)$, see Theorem 2 (ii)), we have

$$\left\|\Delta_{j}f|\dot{K}_{q}^{p}\left(\theta\right)\right\| = \left\|\sum_{k\in\mathbb{Z}^{n}}\tau_{k}\varphi\cdot\Delta_{j}f|\dot{K}_{q}^{p}\left(\theta\right)\right\| \leq c\left(\sum_{k\in\mathbb{Z}^{n}}\left\|\tau_{k}\varphi\cdot\Delta_{j}f|\dot{K}_{q}^{p}\left(\theta\right)\right\|^{r}\right)^{1/r},$$

this implies that

$$\left\|f|\dot{K}_{q}^{p}B_{\beta}^{s}\left(\theta\right)\right\| = \left(\sum_{j=0}^{\infty} 2^{js\beta} \left\|\Delta_{j}f|\dot{K}_{q}^{p}\left(\theta\right)\right\|^{\beta}\right)^{1/\beta} \leq c\left(\sum_{j=0}^{\infty} 2^{js\beta} \left(\sum_{k\in\mathbb{Z}^{n}} \left\|\tau_{k}\varphi\cdot\Delta_{j}f|\dot{K}_{q}^{p}\left(\theta\right)\right\|^{r}\right)^{\beta/r}\right)^{1/\beta}.$$

Since $r \leq \min(p, q, \beta)$, it holds that $r \leq q$, then from Minkowski inequality we have

$$\begin{aligned} \|f|\dot{K}_{q}^{p}B_{\beta}^{s}\left(\theta\right)\| &= \left(\sum_{j=0}^{\infty}2^{js\beta}\left(\sum_{k\in\mathbb{Z}^{n}}\left\|\tau_{k}\varphi\cdot\Delta_{j}f|\dot{K}_{q}^{p}\left(\theta\right)\right\|^{r}\right)^{\beta/r}\right)^{1/\beta} \\ &\leq \left(\sum_{k\in\mathbb{Z}^{n}}\left(\sum_{j=0}^{\infty}2^{js\beta}\left\|\tau_{k}\varphi\cdot\Delta_{j}f|\dot{K}_{q}^{p}\left(\theta\right)\right\|^{\beta}\right)^{r/\beta}\right)^{1/r} = \|f|(\dot{K}_{q}^{p}B_{\beta}^{s}\left(\theta\right))_{\ell_{r}}\| \end{aligned}$$

This finishes the proof of the theorem.

Remark 3. We would like to mention if $\theta \in A(0,0)$ and p = q, then the statements corresponding to Theorem 2 can be found in Theorem 2 of [4].

Theorem 3. Let $\theta \in \mathcal{A}(\alpha, \delta)$, $s \in \mathbb{R}$, $1 \le p$, q, $\beta \le \infty$ such that $-n/q < \alpha, \delta < n(1-1/q)$. Then

$$\dot{K}_{q}^{p}F_{\beta}^{s}\left(\theta\right)=\left(\dot{K}_{q}^{p}F_{\beta}^{s}\left(\theta\right)\right)_{\ell_{q}}.$$

Proof. First, we prove $(\dot{K}_q^p F_\beta^s(\theta))_{\ell_q} \hookrightarrow \dot{K}_q^p F_\beta^s(\theta)$. We must show that

$$||f|\dot{K}_{q}^{p}F_{\beta}^{s}\left(\theta\right)|| \leq c||f|(\dot{K}_{q}^{p}F_{\beta}^{s}\left(\theta\right))_{\ell_{q}}||$$

for all $f \in (\dot{K}_q^p F_\beta^s(\theta))_{\ell_q}$. We have

$$\begin{aligned} \left\| f | \dot{K}_{q}^{p} F_{\beta}^{s} \left(\theta \right) \right\| &= \left\| \left(\sum_{j=0}^{\infty} 2^{js\beta} \left| \Delta_{j} f \right|^{\beta} \right)^{1/\beta} | \dot{K}_{q}^{p} \left(\theta \right) \right\| &\leq \left\| \left(\sum_{j=0}^{\infty} \left| \sum_{k \in \mathbb{Z}^{n}} 2^{js} \tau_{k} \varphi \cdot \Delta_{j} f \right|^{\beta} \right)^{1/\beta} | \dot{K}_{q}^{p} \left(\theta \right) \right\| \\ &\leq \left\| \left\| 2^{js} \tau_{k} \varphi \cdot \Delta_{j} f | \ell_{\beta} \left(\ell_{1} \right) \right\| | \dot{K}_{q}^{p} \left(\theta \right) \right\|. \end{aligned}$$

Since $\beta \ge 1$, by Minkowski inequality, Lemma 3 and Remark 1, we have

$$\begin{aligned} \|f|\dot{K}_{q}^{p}F_{\beta}^{s}\left(\theta\right)\| &\leq c \|\left\|2^{js}\tau_{k}\varphi\cdot\Delta_{j}f|\ell_{1}\left(\ell_{\beta}\right)\right\| |\dot{K}_{q}^{p}\left(\theta\right)\| \\ &= c \|\sum_{k\in\mathbb{Z}^{n}} \left(\sum_{j=0}^{\infty} \left|2^{js}\tau_{k}\varphi\cdot\Delta_{j}f\right|^{\beta}\right)^{1/\beta} |\dot{K}_{q}^{p}\left(\theta\right)\| \\ &\leq c \sum_{k\in\mathbb{Z}^{n}} \|\tau_{k}\varphi\cdot\Delta_{j}f|\dot{K}_{q}^{p}F_{\beta}^{s}\left(\theta\right)\| \leq c \left(\sum_{k\in\mathbb{Z}^{n}} \|\tau_{k}\varphi\cdot f|\dot{K}_{q}^{p}F_{\beta}^{s}\left(\theta\right)\|^{q}\right)^{1/q} \\ &\leq c \|f|(\dot{K}_{q}^{p}F_{\beta}^{s}\left(\theta\right))_{\ell_{q}}\|. \end{aligned}$$

Second, we prove $\dot{K}_q^p F_\beta^s(\theta) \hookrightarrow (\dot{K}_q^p F_\beta^s(\theta))_{\ell_q}$. We must show that

$$||f|(\dot{K}_{q}^{p}F_{\beta}^{s}(\theta))_{\ell_{q}}|| \leq c||f|\dot{K}_{q}^{p}F_{\beta}^{s}(\theta)||$$

for all $f \in \dot{K}_{q}^{p} F_{\beta}^{s}(\theta)$. We have

$$\left\|f|(\dot{K}_{q}^{p}F_{\beta}^{s}(\theta))_{\ell_{q}}\right\| = \left(\sum_{k\in\mathbb{Z}^{n}}\left\|\tau_{k}\varphi\cdot f|\dot{K}_{q}^{p}F_{\beta}^{s}(\theta)\right\|^{q}\right)^{1/q} = \left(\sum_{k\in\mathbb{Z}^{n}}\left\|\sum_{j=0}^{+\infty}\tau_{k}\varphi\cdot\Delta_{j}f|\dot{K}_{q}^{p}F_{\beta}^{s}(\theta)\right\|^{q}\right)^{1/q}.$$

By Proposition 1, we obtain

$$||f|(\dot{K}_q^p F_\beta^s(\theta))_{\ell_q}|| \le c \Big(\sum_{k \in \mathbb{Z}^n} ||\Big(\sum_{j=0}^\infty |2^{js} \tau_k \varphi \cdot \Delta_j f|^\beta\Big)^{1/\beta} |\dot{K}_q^p(\theta)||^q\Big)^{1/q}.$$

By Theorem 2 (i) with r = q, the right hand side inequality of the last inequality is bounded by

$$c \left\| \left(\sum_{i=0}^{\infty} |2^{js} \tau_k \varphi \cdot \Delta_j f|^{\beta} \right)^{1/\beta} |\dot{K}_q^p(\theta)| \right\| = c \|f| \dot{K}_q^p F_{\beta}^s(\theta)|.$$

This finishes the proof of the Theorem.

Remark 4. We would like to mention if $\theta \in A(0,0)$ and p = q, then the statements corresponding to Theorem 3 can be found in Theorem 3 of [4].

Acknowledgement

This work is supported by the General Direction of Scientific Research and Technological Development. PRFU Projects №C00L03UN280120180007 and №C00L03UN280120180002.

References

- [1] Bourdaud G. Localisations des espaces de Besov. Studia Math. 1988, 90 (2), 153-163. (in French)
- [2] Djeriou A., Drihem D. On the Continuity of Pseudo-Differential Operators on Multiplier Spaces Associated to Herztype Triebel-Lizorkin Spaces. Mediterr. J. Math. 2019, **16** 153. doi:10.1007/s00009-019-1418-7
- [3] Drihem D. Complex interpolation of Herz-type Triebel-Lizorkin spaces. Math. Nachr. 2018, 291 (13), 2008–2023. doi:10.1002/mana.201700266
- [4] Ferahtia N., Allaoui S. *A generalization of a localization property of Besov spaces*. Carpathian Math. Publ. 2018, **10** (1), 71–78. doi:10.15330/cmp.10.1.71-78
- [5] Franke J. On the spaces of triebel-lizorkin type: Pointwise multipliers and spaces on domains. Math. Nachr. 1986, 125 (1), 29–68. doi:10.1002/mana.19861250104
- [6] Hernández E., Weiss G., Yang D. The φ -transform and wavelet characterizations of Herz-type spaces. Collect. Math. 1996, 47 (3), 285–320.
- [7] Hernández E., Yang D. *Interpolation of Herz-type Hardy spaces*. Illinois J. Math. 1998, **42** (4), 564–581. doi:10.1215/ijm/1255985461
- [8] Komori Y., Matsuoka K. Boundedness of several operators on weighted Herz spaces. J. Funct. Spaces 2009, 7 (1), 1–12. doi.org/10.1155/2009/739134
- [9] Lu S.Z. The local versions of $H^p(\mathbb{R}^n)$ spaces at the origin. Studia Math. 1995, **116**, 103–131. doi:10.4064/sm-116-2-103-131
- [10] Lu S., Yang D. The decomposition of weighted Herz spaces on \mathbb{R}^n and its applications. Science in China (Ser.A). 1995, **38**, 147–158.
- [11] Sickel W., Smirnov I. *Localization properties of Besov spaces and of its associated multiplier spaces*. Jenaer Schriftenzur Mathematik und Informatik 1999. Math/Inf/99/21.
- [12] Triebel H. Interpolation Theory, Function Spaces, Differential Operators. North-Holland, 1978.
- [13] Triebel H. *A localization property for* $B_{p,q}^s$, and $F_{p,q}^s$ spaces. Studia Math. 1994, **109**, 183–195. doi:10.4064/sm-109-2-183-195
- [14] Triebel H. Theory of function spaces I. Birkhäuser, Basel, 1983.
- [15] Triebel H. Theory of function spaces II. Birkhäuser, Basel, 1992.
- [16] Triebel H. Theory of function spaces III. Birkhäuser Basel, 2006.
- [17] Xu J., Yang D. Herz-type Triebel-Lizorkin Spaces, I. Acta Math. Sin. (Engl. Ser.) 2005, **21** (3), 643–654. doi:10.1007/s10114-004-0424-1
- [18] Xu J. Some properties on Herz-type Besov spaces. J. Hunan Univ. (Nat. Sci) 2003, 30 (5), 1–4. (in Chinese)

[19] Xu J. Equivalent norms of Herz-type Besov and Triebel-Lizorkin spaces. J. Funct. Spaces 2005, 3, 17–31. doi: 10.1155/2005/149703

[20] Youssefi A. Localisation des espaces de Lizorkin-Triebel homogènes. Math. Nechr. 1990, 147, 107–121. doi: 10.1002/mana.19901470113

Received 05.04.2020 Revised 18.10.2020

Джеріу А., Гераїз Р. Деякі результати стосовно властивості локалізації узагальнених просторів Герца, просторів Бєсова типу Герца і просторів Трібеля-Лізоркіна типу Герца // Карпатські матем. публ. — 2021. — Т.13, №1. — С. 217–228.

У цій статті, використовуючи узагальнені функційні простори типу Герца $K_q^p(\theta)$, що були введені Й. Коморі та К. Мацуока у 2009 році, ми визначаємо простори Бесова типу Герца $K_q^p B_\beta^s(\theta)$ і простори Трібеля-Лізоркіна типу Герца $K_q^p F_\beta^s(\theta)$, які узагальнюють простори Бесова і простори Трібеля-Лізоркіна в однорідному випадку, де $\theta = \{\theta(k)\}_{k \in \mathbb{Z}}$ — така послідовність невід'ємних чисел, що

$$C^{-1}2^{\delta(k-j)} \leq \frac{\theta(k)}{\theta(j)} \leq C2^{\alpha(k-j)}, \quad k > j,$$

для деякого $C \ge 1$ (α і δ — дійсні числа).

При зазначених вище умовах на θ ми доводимо, що $\dot{K}^p_q(\theta)$ і $\dot{K}^p_q B^s_\beta(\theta)$ є локалізовні у ℓ_q -нормі при p=q, $\dot{K}^p_q F^s_\beta(\theta)$ є локалізовні у ℓ_q -нормі, тобто існує $\varphi\in\mathcal{D}(\mathbb{R}^n)$, що задовольняє $\sum_{k\in\mathbb{Z}^n} \varphi(x-k)=1$ для довільного $x\in\mathbb{R}^n$ так, що

$$||f|E|| \approx \left(\sum_{k \in \mathbb{Z}^n} ||\varphi(\cdot - k) \cdot f|E||^q\right)^{1/q}.$$

Вказані результати покращують та узагальнюють відповідні відомі результати для деяких функційних просторів.

Ключові слова і фрази: узагальнений простір Герца, простір Бесова типу Герца, простір Трібеля-Лізоркіна типу Герца, властивість локалізації.