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Some results concerning localization property of generalized
Herz, Herz-type Besov spaces and Herz-type
Triebel-Lizorkin spaces

Djeriou A., Heraiz R.

In this paper, based on generalized Herz-type function spaces Kf;(()) were introduced by
Y. Komori and K. Matsuoka in 2009, we define Herz-type Besov spaces Kf; B;(Q) and Herz-type

Triebel-Lizorkin spaces K,’; FE(G), which cover the Besov spaces and the Triebel-Lizorkin spaces in
the homogeneous case, where 6 = {6(k)} . is a sequence of non-negative numbers such that

c1p0k=)) <« 20 < conlk=)) >
0(/) !
for some C > 1 (« and ¢ are numbers in R).
Further, under the condition mentioned above on 6, we prove that Kf; (#) and Kf; By () are locali-

zable in the £;-norm for p = g, and Kf; Fg (6) is localizable in the £;-norm, i.e. there exists ¢ € D(IR")
satisfying Y yczn ¢ (x —k) =1, for any x € R", such that

17N~ (X ot —ny-£1EN7) "

kezn

Results presented in this paper improve and generalize some known corresponding results in some
function spaces.

Key words and phrases: generalized Herz space, Herz-type Besov space, Herz-type Triebel-
Lizorkin space, localization property.
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1 Introduction and preliminaries

As usual, R" is the n-dimensional real Euclidean space, IN is the collection of all natural
numbers and INg = IN U {0}. The letter Z stands for the set of all integer numbers.

Forany u > 0, k € Zweset C(u) = {x € R" : u/2 < |x| < u} and C; = C(2F). For
x € R" and r > 0 we denote by B(x, ) the open ball in R"” with center x and radius r. Let xj,
for k € Z, denote the characteristic function of the set Cy.

As usual, LP(R") for 0 < p < oo stands for the Lebesgue spaces on R"” normed by (quasi-
normed for p < 1)

1/p
AL @] =151, = ([, olar) <o 0<p<c,
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and
IAILZRY] = [fllo = ess-sup [f(x)] < oo
xelR”

By 45, 0 < q < oo, we denote the space of all (complex) sequences {ay }., equipped with the
quasi-norm

o] 1/57
|arhees It = ( Y rakw)

k=—o00
(with the usual modification if g = o0).

Given two quasi-Banach spaces X and Y, we write X — Y if X C Y and the natural
embedding of X in Y is continuous. We use c as a generic positive constant, i.e. a constant
whose value may change from appearance to appearance.

By S(IR") we denote the Schwartz space of all complex-valued, infinitely differentiable and
rapidly decreasing functions on R”. The topology in the complete locally convex space S(IR")
is generated by the norms

pn (@) = sup (14 |x)N Y. [D%( N=123,....
xeR" || <N
By S’(IR") we denote the dual space of all tempered distributions on IR”. We define the Fourier
transform of a function f € S(R") by

F(R@ = m) " [ e f(xdx

Its inverse is denoted by F~'f. Both F and F ! are extended to the dual Schwartz space
S’'(R™) in the usual way.

It is well known that the localization property was first introduced by G. Bourdaud (see
[1]) and under some conditions he proved that Besov spaces is localizable in the £, norm.
N. Ferahtia and S. Allaoui (see [4]) generalized the Bourdaud theorem of a localization proper-
ty of Besov spaces B“;;,q on the ¢, space, where r € [1, +0].

Recently, the localization property of some function spaces have attracted great attention
(see [11,13,20]).

In this paper, we define Herz-type Besov spaces Kg Bg (0) and Herz-type Triebel-Lizorkin
spaces K/ g F3 () which covers Besov spaces and Triebel-Lizorkin spaces in the homogeneous

case. Notice that these spaces based on generalized Herz-type function spaces Kg (0) were in-
troduced by Y. Komori and K. Matsuoka in [8]. After this, we treat and discuss the localization
property of these spaces and then we compare our results with existing ones.

2 Function spaces

We start by recalling the definition and some properties of the generalized Herz spaces.
Definition 1. Letw, 6 € R. A sequence of numbers 0 = {0(k)} ., belongs to the class A («,¢)
if and only if

(i) 0(k) > 0 forallk € Z;

(ii) there exists a constant C > 1 such that

C120(k=)) < @ < C2u(k=)) (1)
()
fork > j.



Some results concerning localization property of generalized K" (6), Ky B; () and kP F5(6) 219

The size condition (1) in the above definition can be satisfied by many sequences of num-
bers such as:

0 = {ZVk}kez € A(w,0) foro <p<a, 0= {2)"‘(1 —{—max(O,kan))}keZ e AAMNA+T).

Definition 2. Let6 € A (x,5) and 0 < p, q < co. The generalized Herz space K} () is defined
by
K3 (0) == {f € L, (R"\ {0}) « [| fIKF(0) | < oo},

where
1/p
7

IFKT @) = (X 670 [|fxd?|”)
k=—o00
with the usual modifications made when p = o and/or q = co.

The spaces KZ (0) were first defined by Y. Komori and K. Matsuoka [8] and under the condi-
tion above, the authors studied the boundedness of singular integral operators and fractional
integral operators on these spaces.

The Definition 2 coincide with the classical definition of Herz spaces for the case of the
particular function, i.e

KJ(0) = KgP(R") if 6 € A(n, ).

The spaces K/ (9) are quasi-Banach spaces and if min(p, q) > 1 then K} (6) are Banach spaces.
If6 € A(0,0)and 0 < p = q < oo then K}, (6) coincides with the Lebesque spaces L?(R").
A detailed discussion of the properties of K} (6), where § € A (a,a), may be found in the
papers [6,7,9,10], and references therein.

Next, we present the Fourier analytical definition of Herz-type Besov spaces K,’; B“;’3 (0) and

Herz-type Triebel-Lizorkin spaces K} F; (0) and recall their basic properties. We first need the
concept of a smooth dyadic resolution of unity.

Definition 3. Let ¥ be a function in S(R") satisfying ¥(x) = 1 for |x| < 1 and ¥(x) = 0 for
x| > 3. We put ¢o(x) = ¥(x), ¢1(x) = ¥(x/2) — ¥(x) and

pi(x) = ¢1(277x) for j=2,3,....

Then we have supp ¢; C {x e R" : 271 < |x| <3-271}, ¢i(x) = 1for3-272 < |x| <2/ and
2}";0 ¢j(x) = 1 for all x € R". The system of functions {q)j}jelNo is called a smooth dyadic
resolution of unity. We define the convolution operators A; as follows

Ajf:fflfpj*f, jEN, and Aof =F W¥xf, fecS'(R").

Thus we obtain the Littlewood-Paley decomposition f = y°, Ajf of all f € S'(R") (conver-
gence in S'(R")).

We are now ready to state the definitions of Herz-type Besov and Triebel-Lizorkin spaces.

Definition 4. (i) Letf € A(a,6),s € R,and0 < p,q, B < co. The generalized Herz-type Besov

space KZ;B%(B) is the collection of all f € S’(IR") such that

71585 @) = (2 29 |, f1K] 0) ) < o,
L
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with the obvious modification if B = co.
(ii) Let6 € A(n,8),s € R,0 < p, g < o0 and 0 < B < oo. The generalized Herz-type
Triebel-Lizorkin space K} FE(B) is the collection of all f € S’(IR") such that

IAIKEE @] = | (ngsﬁm]-f}ﬁ)”’g K )] <

with the obvious modification if B = oo.

Observing that, if 0 € A(a, a) then KgB; (6) = Kg’pB% (R™) (resp., KgFg ) = Kg’pFE) are
the classical Herz-type Besov spaces (resp., the classical Herz-type Triebel-Lizorkin spaces).
The spaces K} B (6) and K} Fg (6) are quasi-Banach spaces and if p, 4, f > 1, then both K} B (0)
and Kf; FE (0) are Banach spaces. Further results, concerning, for instance, lifting properties,
Fourier multiplier and local means characterizations can be found in [17-19].

Now we give the definitions of the spaces B}, ; and F, ;.

Definition 5. (i) Lets € R and 0 < p, B < o. The Besov space Bpﬁ( ") is the collection of all
f € 8'(R") such that

1f1By,p (R")[| = (i)zjsﬁHAjf\Lp(R”)Hﬁ)l/ﬁ < oo,
=

(ii) Lets € R,0 < p < c0o and 0 < B < oo. The Triebel-Lizorkin space F;,/B(]Rn) is the collection
ofall f € S'(R") such that

| FIF5 5 (RY)] \—H(Zzﬁﬂw») L7 (R")

The theory of the spaces B ,(R") and F; ;(IR") has been developed in detail in [14-16],
but has a longer history already including many contributors; we do not want to discuss this
here. In particular, with p = g = 00, s > 0, one recovers Holder-Zygmund spaces C* = Bg, ,,
cf. [14, Theorem 2.5.12]. Clearly, for 6 € A (0,0),s € R,0 < p < o0 (0 < p < oo for the K;;Fg (0)
spaces) and 0 < B < oo,

K}Bj (6) = B; 4(R") and KjF;(6) = F; 5(R").

For the proof of the localization property of Herz-type Besov and Herz-type Triebel-Lizorkin
spaces, we need the following proposition, see [2, Proposition 3.5].

Proposition1. Let0 € A(x,6),s € Rand1 < p,q,p < cosuchthat—n/q <wa,é <n(l—1/q).
Forall vy, p > 1, there exists ¢ > 0 such that for any sequence {g},., of functions, where

suppFgo C {¢:[e| <p}  and  suppFg C {g:v72 < g <92},
we have

H ggl‘KgB% (6) H < C(gzlsﬁﬂgz\ﬁ; () Hﬁ)l/ﬁ

and

, 1<p, qg<oo.

| Zeiktm o <] (52 16) "1k @
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Before the proof of Proposition 1, we need some technical lemmas. The following assertion
is the K,’; (0)-version of lemma by J. Franke [5].

Lemma 1. Let 6 € A(a,5), 1 < p,q < oo and v, p > 1. For any sequence {g},cn, C
S’ (R") MK (0) with
suppFgo C {Z:]¢l <p}  and  suppFg C {g:7712 < g <02},
we have
188 K5 (O)]] < el K7 (6)]]-
The constant ¢ > 0 is independent of j and I.

For the proof of this lemma, we can repeat arguments similar to the ones used in the proof
of Lemma 3.3 in [2].
Lemma 2. Let0 < b <1land0 < g < co. Let {Sf}jez be a sequence of real positive numbers
in £,. Then there exists a constant ¢ > 0 depending only on b and q such that

H{j_ioob(kj)gj}kezqu t H{;b(jk)gf}kezwq” < CH{Sk}keZMQH'

The proof of Lemma 2 is immediate by using Young’s inequality in £,.

Proof of Proposition 1. By similarity we prove only the Herz-type Besov case. We observe that
there existe H; = [log, 2] and H, = [log, ((37) /2)] in IN such that

Observe that

Therefore,
i+H,

o0 o /B
| L aki; ) | < (j_ZOZJSﬁ(l]ZH Al (6) H)ﬁ)l ~

Now, according to sign of s and by Lemma 1, we separate the cases.

1. The case s > 0. We obtain
jt+H>

Y Al @) < e Y227 (2|anm gl K (6)]) < 27y 27 (2|2ilKE (0)]])-
I=j—H; I=j I=j
2. The case s < 0. Similarly
j+H> j

Y 2Kl O)] < e 2927 (2]|a;malKEO)]) < 28 )27 (27 @il Kf0)])-
I=j—H; 1=0 1=0

3. If s = 0, we immediately get
j+H> _ j+H> _ jtHy 1yp g JHH2 ‘ 1/p
Y lagiki@)) <c ¥ 1falki@)l<c( ¥ 1) ( 3 (ngm;w)u)ﬁ) -
I=j—H I=j—H I=j—H I=j—H
Finally, we apply /g-norm and Lemma 2, and obtain

H ggﬂKf;B; (6) H < c<§21sﬁHgl|K5 ) Hﬁ)l/ﬁ-
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3 Localization of Herz-type Besov spaces

In this section, we present three results concerning the localization property of generalized
Herz, Herz-type Besov and Herz-type Triebel-Lizorkin spaces on the ¢, spaces.

We first need the concept of a localization spaces. Let E be a Banach space of distributions.
We associate on the space E the following hypothesis.

(1) Translation invariance: if 7, denotes the operator given by 7;.f(t) = f(t — k), then 7 is
an isometry of E.

(2) Localization invariance: for all f € E and ¢ € D(R"), we have that ¢ - f € E.

Let ¢ € D(IR"). The notion of localized is defined by fr = Tx¢ - f, it follows immediately
from the hypothesis (1) and (2) that the family (fy)yerr is bounded in E. We consider the set
A as the class of all the functions ¢ € D(IR") satisfying

supp C B(0,R) with R > /n,

and

Y. e(x—k)=1, VxeR"{0}. 2)
kez"

Definition 6. Let E be a Banach space of distributions, E is localizable in the ¢, norm,
1 <r < o, if there exist ¢ € A and a constant ¢ > 1 such that

LIAEN < UA® I = (X e £IEI) " <clifIEN

kezZn

Remark 1. Let f € (E)y,. If g € S such that g(x) # 0 for x € supp ¢. Then the following
expression

(T lug- fEN)”

kezn

defines an equivalent norm in (E),,, cf. [1, Proposition 5, p. 156].
The following result play a fundamental role in the proof of Theorem 3.
Lemma 3. Let 0 € A(a,6) and1 < p, g < oo. There exists a constant ¢ > 0 such that the

inequality

| ski@] << L i)™

kezn kezn

holds, for all R > 1 and for all family { f }xcz» from S’ with supp f; contained in the ball
|x — k| <R.

Proof. For any sequence { fi } .z, let us write Y 7n fi as in (2), namely

Y. fi= ) ¢ (x—K) fi = Mo ({fikkezn) s

kezn kezn

where ¢ € D(R") is chosen such that ¢ = 1 on the ball |x| < R. We want to show that A, is
bounded operator from ¢ (K} (6)) to K{(9) and from (oo (K5, (8)) to K5(6).
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Consider | Ay ({fi}xezn) IK] (6)]| first. By Minkowski’s inequality, Holder’s inequality and
since p > 1, we have

|Ag ({fikiezn) K@) = (Z 07 (1

‘ Y. o=k fi X1|L1H )

kezn
< HHQ (- =K) fio- xalLH 1€ (61) H
< H<v|L°°HHH0 i alL! 16, (80) |
< HH9lfk-Xz|L1H|51 H
< % IO = Il Gorems @10 |

We now consider || Ay ({fi}rezn) |K5(0)||. By Holder’s inequality, we have

|Ag ({fihiezs) IKLO)] = (Z o0 otk i)

kezn

< (l_gwef’u |sup i wole=|| T ot~ 0 1)

keZn kez"
< | ez IO 4]

Since % € (0,1), by the complex interpolation theory established in [3, Theorem 4.1] and

[12, p. 121/4]), we have
[61(K7(6)), £ (KE(6)))]

= Lp([K1(0), KZ()]1) = £, (K} (0)).

=
==

This finishes the proof of the lemma. O

The following result gives the localization property of generalized Herz spaces on the ¢,
spaces.

Theorem 1. Let0 € A(w,5),1 < p,q < co. Then
(1) K7 (0) = (Kj (6))s, forr > max(p,q),
(ii) (K,’; (0)), — K,’; (6) forr < min(p,q).
In particular, K] (6) space is localizable in the {;-norm.
Proof. (i) We must show that
IF1(K7 (8))e, || < c[| £IK7 (8) ||

forall f € K} (6). We have

[ee]

o A @)1= | & o foxik @) = ( £ o0 ¥ w0 wdne])

|=—c0
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We observe that x; - xx # 0, when |l — k| < 1, which means I = k. We have

lwg- FIKE () || < (l_i QP(Z)HTW'f'Xz|Lqu>1/p'

this implies

IF1(K5 (0)),

= (L o185 ) N < (T (L e0lue fal)?)) "

keZ" " l=—o0

Since r > max(p, q) implies r > p, from Minkowski inequality we have

oo r
ORI @ 9P(l)<kZZ:nHquo-f'leL"Hr)p/ )" )

Since r > max(p,q) > g, by the embedding ¢; — ¢, and the localization of L7 in {9 spaces we
obtain

7

<k‘;HT"‘P'f'X”LqHY)1/r = <k‘2nHTk¢'f'Xz!U7Hq)l/q < cflf xlLe

the right hand side inequality of (3) is bounded by

IFI(KF (0))e,

d /p .
<c( L 0Ol alt)”) " =clf1KE ) .
|=—c0
(ii) By the localization of L7 spaces in the ﬂq norm (with r < min(p, q) < ¢q), we have

|f - x| = HkZZ:nTkGD'f'XﬂLqH < C(}(ZZ:”HTW'f'Xl|Lqu)l/q
<c( § o~ -mitrl) "
this implies that
Iz @)1= (5 ool xdl’)”" < e £ o) F s -mial’)™)"

|=—c kezn

Since r < min(p, q), it holds that r < p, then from Minkowski inequality we have

IR @) < e( (X 2o -xltrlP) ) = 11K ),

This finishes the proof of the theorem. O

Remark 2. We would like to mention if § € A(0,0) and p = g, then the statements corre-
sponding to Theorem 1 present the localization of Lebesgue spaces L1 on the {,; spaces.

Motivated by [1,4, 13], we give the localization property of generalized Herz-type Besov
and Herz-type Triebel-Lizorkin spaces on the ¢, spaces.
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Theorem 2. Let0 € A(w,d),s € R,1 < p,q,p < oo such that —n/q < a,6 <n(l —1/q). Then
(i) KLB; (6) = (KIB; (6)), for r > max(p,q,B),

(i) (K§Bj(0))s, < KiB; (8) for r < min(p,q,p).

In particular, KZB; (8) space is localizable in the {,-norm.
Proof. Our proofs use partially some techniques already used in [4], where Besov spaces case

was studied.
First, we prove (i). We must show that

| f1(Ky B (0)), Ky B (0) |
forall f € KyBj (). By Proposition 1, we have
|l - fIKY B (6 HZWP AifIKYB; (0) | < (szsﬁHkaP ARG (6 )Hﬁ)l/[3
this implies that,
I8 @04 = (X e sikip @1)"'< (5 (S 2o st @) )

kezn

Since r > max(p, q, B) implies r > B, from Minkowski inequality we have

(22”’3( ¥ uo-asik @) @

kez"

I F1(Kg B} (6))

Since K} (0) < (KF (9))y,. i.e.

(X Ime-aiflks ) )" < cllaifiks @]

keznr
the right hand side inequality of (4) is bounded by

IAI(REBS (6))s,]| < (ZZ’SﬁHA]ﬂK” 0 1F) """ = 71K B3 6) |.

]_
(ii) By the localization of Herz spaces in the ¢,-norm (with » < min(p, q), see Theorem 2
(ii)), we have

HA]f|Kp H Z Tk - A]f|K’7 H < C< Z Hqu) A]f|Kp 9) Hr>1/r’
kez" kez"
this implies that
Hf’KpBS )= (szsﬁHAjf‘Kp 0) Hﬁ)l < c< szsﬁ <kZZ:nHTk(P A]f]Kp (0) Hr>ﬁ/r)1/5_

Since ¥ < min(p, g, ﬁ) it holds that r < g, then from Minkowski inequality we have

gz @1 = (L2( 5 eyl o))"
< <kZZ:n<ZQJS/3Hqu) AfIRE (8 )H5>r/ﬁ)1/r:Hf\(KgBE(Q))gr.

This finishes the proof of the theorem. O
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Remark 3. We would like to mention if 6 € A(0,0) and p = g, then the statements corre-
sponding to Theorem 2 can be found in Theorem 2 of [4].

Theorem 3. Let0 € A(wa,0),s € R,1 < p,q,B < oo such that —n/q < a,é6 <n(l—1/q). Then
KYF; () = (KJF5(6))y,-

Proof. First, we prove (K} Fg (0))e, — KIF 3 > (8). We must show that

IFIKGFS (0) || < el £I(RGF; (0))s, |

forall f € (KPFE (6))¢,- We have

|FIKEFS (6) H:H<]szsﬁmﬂ )ik o) < H(D ¥ 2up-8,6°) K0 6) |

=0 kezn

< | Hzf T - 8iflEg (02)| 1K (6) ||

Since B > 1, by Minkowski inequality, Lemma 3 and Remark 1, we have

IAREE @) < || |27 aifler (e6)]| K] @) |

\Z<D2]ST'<<" sfl”) g e

kez"
. 1/q
< oY |me-SfIREES 0| < e X e FIREE; 0) |7)
kezZn kezn

< C||fIRDES (0))s, |-

Second, we prove KPFE (0) — (KPFE

LAICRTES (6))e, || < el FIRTES (6) |

forall f € KgFg (0). We have

—+00
IFI(REE; (0))g, || = (kZZ:nHqu) . fIKYF3 (6) Hq)l/q _ ( Y Y we- AFIKEES (6) Hq)w

kezn" =0

(0))¢,- We must show that

By Proposition 1, we obtain

HSANNEX®Y

kezn

S /8 0 1/q
(L [25ue-aifl”) I @) )
j=0
By Theorem 2 (i) with r = g, the right hand side inequality of the last inequality is bounded by
2 1/, . .
| (X [2Pme-aifl”) TIRE @) | = cllFIREFs (0) 1
j=0

This finishes the proof of the Theorem. O
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Remark 4. We would like to mention if 6 € A(0,0) and p = g, then the statements corre-
sponding to Theorem 3 can be found in Theorem 3 of [4].
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Y Wit cTaTTi, BUKOPUCTOBYIOUM y3araabHeHi (pyHKIINHI npocTopu Tumy 'epna Kf; (9), wo 6y-
Au BBeaeni M. Komopi Ta K. Mamyoka y 2009 potri, My Bu3HauaeMo mpocTopu Becosa tumy Tepira
Kf; B; (#) i mpocropm Tpibeas-Aizopkina Tumy I'epiia Kf; Fg (9), sxi y3araabHIOIOTB IpocTopu Becosa
i mpocropu Tpibeas-Aisopkina B oaAHOpiaHOMY Bumaaky, Ae 6 = {6(k)} ., — Taka mOCAiAOBHICTH
HEeBiA €MHMX YMCeA, IO

o

(k
()~

~—

Cc120(k—j) < c2rk=j) k> j,

(o

AAst aestkoro C > 1 (v i § — alvicHi umcaa).

ITpu 3a3HaveHMX BUIle yMOBaxX Ha 6 MM AOBOAMMO, IIO K,’; 0) i K,’; By (f) € Aokani3oBHI y
L;-HopMi IpU p = ¢, K,’; Fg (6) e roxanisosHi y £,-HOpMi, TO6TO icHye ¢ € D(IR"), 10 3aA0BOAB-
Hs€ ) yezn ¢ (x — k) = 1 aast poBinbHOrO ¥ € R” TaK, 110

17N~ (X ot —n)-£1EN7) "

kez"
BxasaHi pesyAbTaTy MOKpalllyIOTh Ta y3araAbHIOIOTH BiAIIOBIAHI BIAOMi pe3yAbTaTH AASL AESIKMX
dYHKIINHIX IPOCTOPIB.

Kontouosi cnosa i ¢ppasu: y3sararbHeHMIT mpoctip I'epria, mpocrip Becosa Tumy I'epia, mpoctip
Tpibeasi-Aisopkina Tumy I'epiia, BAacTMBiCTb AOKaAizarIii.



