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PROJECTION LATERAL BANDS AND LATERAL RETRACTS

KAMINSKA A.l, KRASIKOVA 1.2, Porov M.13

A projection lateral band G in a Riesz space E is defined to be a lateral band which is the image
of an orthogonally additive projection Q : E — E possessing the property that Q(x) is a fragment
of x for all x € E, called a lateral retraction of E onto G (which is then proved to be unique). We
investigate properties of lateral retracts, that are, images of lateral retractions, and describe lateral
retractions onto principal projection lateral bands (i.e. lateral bands generated by single elements)
in a Riesz space with the principal projection property. Moreover, we prove that every lateral retract
is a lateral band, and every lateral band in a Dedekind complete Riesz space is a projection lateral
band.
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1 INTRODUCTION

Recent development of the theory of orthogonally additive operators on Riesz spaces
brought appearance and study of new specific notions like lateral order, lateral ideal and lateral
band in a Riesz space. These notions have appeared to be so important for the study of orthog-
onally additive operators, as the corresponding notions of ideal and band are important for
linear operators. In the present paper, we find conditions on a Riesz space under which every
lateral band is a projection lateral band. We also find formulas for lateral band projections.

In this paper, we familiarly use terminology and notation on Riesz spaces from textbook
[1]. The specific notation x = | J;c; x; is used to express that x is a disjoint sum of x;, that is,
x = Yierxiand x; L x;if i # j. The notation x £ y means that x is a fragment! of y, that is,
x L (y — x) for elements of a Riesz space E. Given any e € E, weset§, = {x € E: x Ce}.Ifa
Riesz space E has the principal projection property, then for every e € E \ {0} by P, we denote
the order projection onto the band generated by {e}.
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! component, in the terminology of [1]
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1.1 Orthogonally additive operators

In pioneer papers [4,5], ].M. Maz6n and S.Segura de Le6n introduced, studied and dis-
covered main vector lattice properties of orthogonally additive operators. Recall that a map
T : E — F between Riesz spaces E and F is called an orthogonally additive operator if T(x Lly) =
T(x) 4+ T(y) for all disjoint pairs x,y € E. An orthogonally additive operator T : E — F is said
to be positive (write T > 0) provided T(x) > 0 for all x € E (not only for x > 0 as is claimed
for positivity of linear operators). An order bounded orthogonally additive operator is called
an abstract Uryson operator, and the set of all abstract Uryson operators T : E — F is denoted
by U(E,F). The vector space U(E, F) is a Riesz space with respect to the order S < T if and
onlyif T — S > 0. Moreover, U (E, F) is Dedekind complete, once F is [4, Theorem 3.2]. Simple
examples of nonlinear abstract Uryson operators are: Tj(x) = x*, Tr(x) = |x| from E to E;
more general, any order bounded linear operator T : E — F defines a positive abstract Uryson
operator by S(x) = T|x| for all x € E. For further examples (e.g., integral Uryson operators)
see [4,5,7].

1.2 Lateral order, lateral ideals and lateral bands

It is well known that ideals and bands of a Riesz space are very important for the theory of
order bounded linear operators on Riesz spaces. Similarly, lateral ideals and lateral bands play
an important role in the theory of abstract Uryson operators. First these notions were intro-
duced and studied in [3], and later in [8,9] and other papers by M. Pliev, M. Popov, K. Ramdane
and some other authors.

The relation C is a partial order on a Riesz space E [8], which obviously coincides with
the usual order < on the positive cone ET. A net in E which is (non-strictly) increasing with
respect to the lateral order is said to be laterally increasing. A subset G of E is said to be later-
ally closed, provided for every laterally increasing net (x,) in G the existence of a supremum
x =L-sup, x4 of (x,) with respect to the lateral order in E implies x € G.

A subset G of a Riesz space E is said to be laterally solid, if for every x € E and g € G the
condition x £ ¢ implies x € G (in other words, provided §; C G for all ¢ € G). A laterally
solid subset G of E is called a lateral ideal of E, if for every x,y € G the condition x L y implies
x+y € G. For example, the kernel of every positive abstract Uryson operator is a lateral
ideal [8]. A laterally closed lateral ideal G of E is called a lateral band of E. Obviously, every
ideal is a lateral ideal and every band is a lateral band.

Theorem 1 ([3,8]). Let E and F be Riesz spaces with F Dedekind complete, D a lateral ideal
of Eand T : D — F7 an order bounded orthogonally additive operator. Then the function
T : E — F defined by

Tx =sup{Ty: y € FxN D} (1)

for all x € E is a positive abstract Uryson operator extending T. Moreover, T is the minimal
positive abstract Uryson extension of T with respect to the order on U (E, F).

If, moreover, D is a lateral band of E then the minimal extension T defined by (1), inherits
some of compactness-like properties of T, e.g. AM-compactness, C-compactness, narrowness,
strict narrowness [8, Theorems 3, 4].
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1.3 Orthogonally additive projections onto lateral bands

Observe that the intersection of any family of lateral ideals (respectively, lateral bands) of
a Riesz space E is a lateral ideal (respectively, lateral band). Hence, given any subset A of E,
there exists a minimal lateral ideal Z(A) (respectively, a minimal lateral band B(A)) including
A, called the lateral ideal (respectively, the lateral band) generated by A.

Following notation of [3], we use the symbols in bold U, U (respectively, N, () to denote the
lateral supremum (respectively, lateral infimum) of subsets of a Riesz space, that are, supremum
and infimum with respect to the lateral order C. A net (x,) in a vector lattice up-laterally
converges to an element x € E if x, T xg C x for all indices @« < B and (x,) order converges

to x. In this case we write x, ﬁ> x. Obviously, x, ﬁ> x holds if and only if (x,) is laterally
increasing and Ux xo = x. A function f : E — F between vector lattices is called up-laterally

. . . . . 14 . L
continuous at a point x € E if for every net (x,) in E with x, T, Xin E one has f(xq) A, f(x)
in F. A function f is said to be up-laterally continuous provided f is up-laterally continuous at
every point x € E.

Theorem 2 ([3]). Let B be a lateral band of a Dedekind complete vector lattice E. Then the
function Qp : E — E defined by setting for every x € E

QB(X) == U (gx m B)/
is a disjointness preserving up-laterally continuous projection of E onto B.
A direct consequence of Theorem 2 is the following result.

Corollary 1. Let E be a Dedekind complete vector lattice and e € E. Then the function
Qe : E — E defined by setting for every x € E

Qe(x) = U (FxNTe),
is a disjointness preserving up-laterally continuous projection of E onto .

In Section 3 we extend Corollary 2 to the more general setting of Riesz spaces with the prin-
cipal projection property by proving for every e € E the existence of a lateral band projection
Q. of E onto the principal lateral band §, with a more exact formula Q.(x) = xNeforall x € E.
Moreover, we prove the orthogonal additivity of Q,.

2 LATERAL RETRACTIONS

In this section, we define lateral retractions and lateral retracts in a natural way. Then
we show that lateral retracts are lateral bands, and in a Dedekind complete Riesz space the
converse is also true.

Definition 1. Let E be a Riesz space. A function f : E — E is called a lateral contraction if
f(x) C x holds true for all x € E.

A lateral contraction has the following obvious property.

Proposition 1. Let E be a Riesz space. Then every lateral contraction f : E — E preserves
disjointness, that is, for every x,y € E the condition x | y implies f(x) L f(y).
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Proof. Observe that for every u,v € E, if u C v then |u| < |v|. Indeed, u L (v — u) implies
v = ulJ (v —u) and hence |v| = |u| + |v — u|, which yields |u| < |v|. So, let x,y € E with
x L y. Then

FOIALFW)] < [x Ayl =0

0

Definition 2. Let E be a Riesz space. A function f : E — E is called a lateral retraction if the
following conditions hold:

(i) f is a projection, that is, f*> = f;
(ii) f is an orthogonally additive operator;
(iii) f is a lateral contraction.
A subset A of E is called a lateral retract if A is the image of a lateral retraction f : E — E.

Definition 3. A lateral band A of a Riesz space E, which is a lateral retract, is called a projection
lateral band, and the lateral retraction of E onto A is called the lateral band projection of E
onto A.

Remark 1. Observe that the projection Qp in Theorem 2 is obviously a lateral contraction.
Hence, Qp is a lateral retraction and so, every lateral band in a Dedekind complete Riesz space is a
projection lateral band.

Theorem 3. Let E be a Riesz space. Then the following assertions hold.
1. Let A be a lateral retract in E. Then there exists a unique retraction of E onto A.
2. Every lateral retraction is up-laterally continuous.
3. Every lateral retract in E is a lateral band.

4. If, moreover, E is Dedekind complete then a subset A of E is a lateral retract if and only
if A is a projection lateral band.

We need the following elementary property of orthogonally additive operators (see [6, The-
orem 4.9] for more details).

Lemma 1. Let E, F be Riesz spaces and T : E — F a disjointness preserving orthogonally
additive operator. Then T is lateral order preserving, that is, for every x,y € E the relation
x C y implies T(x) C T(y).

Proof. Letx,y € Eand x C . Since x L (y — x), one has T(x) L T(y — x). On the other hand,
= xU (y — x) implies T(y) = T(x) + T(y — x), thatis, T(y —x) = T(y) — T(x). Hence,
T(x) L T(y) — T(x), thatis, T(x) C T(y). O
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Proof of Theorem 3. (1) Let f,g : E — E be lateral retractions of E onto A and x € E. By
Lemma 1, f(x) C x implies f(x) = g(f(x)) C g(x) and similarly g(x) T f(x), which yield
f(x) = g(x).

(2) Let f : E — E be a lateral retraction. Let (x,) be a net in §y with x, ﬁ> x. By Lemma 1,
f(xa) E f(xg) E f(x) for & < . The equality x = x, U (x — x) implies

fx) = flxa) + f(x = xa).

Hence f(x) — f(x4) = f(x — x4) C x — x, and therefore? |f(x) — f(x4)| < |x — x4|, which
yields f(xy) — f(x). So, f(xs) A, f(x) is proved.

(3) Let A C E be a lateral retract and f : E — E be a lateral retraction of E onto A. First
we prove that A is laterally solid. Let x € A and y C x; our goal is to prove that y € A. Since

f(y) Ty, onehas (y — f(y)) Cy, whichyields [y — f(y)| < [yl Similarly, f(x —y) C (x —y)
yields [x —y — f(x —y)| < |x — y|. Hence,

y—fWINIx—y—flx=y)| <ly[A[x—y[=0

and therefore

O=ly—fly) +(x—y)—flx=yl=ly—fWI+(x—y) = flx =yl

which implies y = f(y), thatis, y € A.

Now let x,iy € A and x L y. By the orthogonal additivity of f, f(x +y) = f(x) + f(y) =
x +y,and so, x +y € A. Thus, A is a lateral ideal.

So, it remains to prove that A is laterally closed. Let (x,) be a net in A with x, T Xp for

a < Band x =C-sup, x4. By [2], x, € x for all &« and so, x4 A By the up-laterally

continuity of f (see (2)), we obtain x, = f(x) 1, f(x). The above conditions imply f(x) = x,
thatis, x € A.
(4) follows from (3) and Remark 1. 0

3 THE PRINCIPAL LATERAL BAND PROJECTION

Obviously, both lateral ideal and lateral band, generated by a singleton {e}, where e € E,
coincide with the set §. of all fragments of ¢, which we call the principal lateral ideal and the
principal lateral band generated by e.

In this section, we describe lateral band projections onto principal lateral bands in a Riesz
space with the principal projection property.

Theorem 4. Let E be a Riesz space with the principal projection property. Then for every e € E
the function Q, : E — E defined by setting

Qex=xNe forall x € E (2)

is a lateral retraction of E onto the principal lateral band ..

2 see the remark in the proof of Proposition 1
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Proof. Observe that the operator Q, is well defined by (2), because every finite subset of a Riesz
space with the principal projection property has a lateral infimum [6, Theorem 3.13].
We prove that Q, satisfies all items of Definition 2. Items (i) and (iii) are obvious.

(ii) Let x,y € E\ {0} and x L y. Observe that By, = By ® By, and hence, every z € By,
has an expansion

z = Pyz + Pyz. (3)

We prove that
P((x+y)Ne) =xNe, Py((x+y)Ne) =yNe. (4)

Since the band projection Py preserves disjointness, Py is lateral order preserving, that is,
(Vu,v € E) uC v = PyuC Pyo. (5)

Indeed, u T v means u L (v — u), which yields Pyu L Py(v —u) = Pyv — Pyu, that is,
Pyu C P,o.
Hence by (5),

Pi((x+y)Ne) C Py(x+y) = x. (6)
On the other hand, by the obvious relation P,w C w for allw € E,
Pi((x+y)Ne) C (x+y)NeCe. (7)
By (6) and (7),
Px((x+y)Ne) C xNe. (8)
Observe that |[xNe| < n|x| for all n € N, and hence, by [1, Theorem 1.47],
Pr(xne)™ = \/ ((xNe)" An|x|) = (xNe)*
n=1
and analogously, Py(xNe)~ = (xNe)~. Therefore,

by (5)
xNe="P(xNe) T P((x+y)Ne). 9)

By (8) and (9), the first part of (4) is proved. The second part is proved analogously. Finally, we
obtain

by (3)
e —

x+y)ne ™ p((x+y)ne) + Py ((x+y)ne) "2 (xne) + (yne),

and the orthogonal additivity of Q. is proved. O
We do not know if the Dedekind complete assumption in item (4) of Theorem 3 is essential.

Problem 1. Is there a Riesz space E and a lateral band A of E which is not a projection lateral
band (equivalently, which is not a lateral retract)?
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ITpoexuiitny AaTeparbHy cMyTy G Y BeKTOPHIli I'paTLi E BU3HAYAIOTh SIK AaTepaAbHY CMYTY, SKa
€ 06pa3oM AeSIKOTO OPTOTOHAABHO aAMTMBHOTO IpoekTopa Q : E — E, o Mae TaKy BAACTUBICTh:
Q(x) € dparmeHTOM ereMeHTa X AAS BCiX X € E; Takuii IPOEKTOp HA3MBAIOTh AATEPAABHOIO pe-
Tpakiiero rpaTku E Ha G (AOBOAMTBCSI €AVHICTD TaKOTO IpOeKTopa). M AOCAIAXKY€EMO BAACTMBOCTI
AaTepaAbHMX PeTPaKTiB, TO6TO 06pasiB AaTepaAbHIMX PEeTPAKIIili, i OIMCyeMO AaTepaAbHi peTpaKIil
Ha TOAOBHI ITPOeKIIifHi AaTepaAbHi cMyTH (TOOTO AaTepaAbHi CMYTH, TIOPOAXEHI OKPEMUMM eAe-
MeHTaMM) y BEKTOPHIl I'PaTII 3 TOAOBHOI ITPOEKTUBHOIO BAacTuBicTO. Kpim Toro, Mu A0BOAMMO,
IO KOXXKHWMIA AaTepaAbHMI peTPakKT € AaTepaAbHOI CMYTOKO, a KOXKHA AaTepaAbHa CMyTa y MOPSIA-
KOBO ITOBHIli BeKTOPHIli I'PaTIIi € IPOEKIIiIITHOI AaTepaAbHOIO CMYTOIO.

Konwouosi cnosa i ¢ppasu: OpTOrOHAABHO aAMTUBHMII OIepaTop, BEKTOpPHA IPaTKa, AaTepaibHa
cMyTa.



