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PROJECTION LATERAL BANDS AND LATERAL RETRACTS

KAMIŃSKA A.1 , KRASIKOVA I.2 , POPOV M.1,3

A projection lateral band G in a Riesz space E is defined to be a lateral band which is the image

of an orthogonally additive projection Q : E → E possessing the property that Q(x) is a fragment

of x for all x ∈ E, called a lateral retraction of E onto G (which is then proved to be unique). We

investigate properties of lateral retracts, that are, images of lateral retractions, and describe lateral

retractions onto principal projection lateral bands (i.e. lateral bands generated by single elements)

in a Riesz space with the principal projection property. Moreover, we prove that every lateral retract

is a lateral band, and every lateral band in a Dedekind complete Riesz space is a projection lateral

band.
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1 INTRODUCTION

Recent development of the theory of orthogonally additive operators on Riesz spaces

brought appearance and study of new specific notions like lateral order, lateral ideal and lateral

band in a Riesz space. These notions have appeared to be so important for the study of orthog-

onally additive operators, as the corresponding notions of ideal and band are important for

linear operators. In the present paper, we find conditions on a Riesz space under which every

lateral band is a projection lateral band. We also find formulas for lateral band projections.

In this paper, we familiarly use terminology and notation on Riesz spaces from textbook

[1]. The specific notation x =
⊔

i∈I xi is used to express that x is a disjoint sum of xi, that is,

x = ∑i∈I xi and xi ⊥ xj if i 6= j. The notation x ⊑ y means that x is a fragment1 of y, that is,

x ⊥ (y − x) for elements of a Riesz space E. Given any e ∈ E, we set Fe = {x ∈ E : x ⊑ e}. If a

Riesz space E has the principal projection property, then for every e ∈ E \ {0} by Pe we denote

the order projection onto the band generated by {e}.

УДК 517.982
2010 Mathematics Subject Classification: Primary 46A40; Secondary 47B65.

1 component, in the terminology of [1]
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1.1 Orthogonally additive operators

In pioneer papers [4, 5], J.M. Mazón and S. Segura de León introduced, studied and dis-

covered main vector lattice properties of orthogonally additive operators. Recall that a map

T : E → F between Riesz spaces E and F is called an orthogonally additive operator if T(x ⊔ y) =

T(x) + T(y) for all disjoint pairs x, y ∈ E. An orthogonally additive operator T : E → F is said

to be positive (write T ≥ 0) provided T(x) ≥ 0 for all x ∈ E (not only for x ≥ 0 as is claimed

for positivity of linear operators). An order bounded orthogonally additive operator is called

an abstract Uryson operator, and the set of all abstract Uryson operators T : E → F is denoted

by U (E, F). The vector space U (E, F) is a Riesz space with respect to the order S ≤ T if and

only if T − S ≥ 0. Moreover, U (E, F) is Dedekind complete, once F is [4, Theorem 3.2]. Simple

examples of nonlinear abstract Uryson operators are: T1(x) = x+, T2(x) = |x| from E to E;

more general, any order bounded linear operator T : E → F defines a positive abstract Uryson

operator by S(x) = T|x| for all x ∈ E. For further examples (e.g., integral Uryson operators)

see [4, 5, 7].

1.2 Lateral order, lateral ideals and lateral bands

It is well known that ideals and bands of a Riesz space are very important for the theory of

order bounded linear operators on Riesz spaces. Similarly, lateral ideals and lateral bands play

an important role in the theory of abstract Uryson operators. First these notions were intro-

duced and studied in [3], and later in [8,9] and other papers by M. Pliev, M. Popov, K. Ramdane

and some other authors.

The relation ⊑ is a partial order on a Riesz space E [8], which obviously coincides with

the usual order ≤ on the positive cone E+. A net in E which is (non-strictly) increasing with

respect to the lateral order is said to be laterally increasing. A subset G of E is said to be later-

ally closed, provided for every laterally increasing net (xα) in G the existence of a supremum

x =⊑-supα xα of (xα) with respect to the lateral order in E implies x ∈ G.

A subset G of a Riesz space E is said to be laterally solid, if for every x ∈ E and g ∈ G the

condition x ⊑ g implies x ∈ G (in other words, provided Fg ⊆ G for all g ∈ G). A laterally

solid subset G of E is called a lateral ideal of E, if for every x, y ∈ G the condition x ⊥ y implies

x + y ∈ G. For example, the kernel of every positive abstract Uryson operator is a lateral

ideal [8]. A laterally closed lateral ideal G of E is called a lateral band of E. Obviously, every

ideal is a lateral ideal and every band is a lateral band.

Theorem 1 ([3, 8]). Let E and F be Riesz spaces with F Dedekind complete, D a lateral ideal

of E and T : D → F+ an order bounded orthogonally additive operator. Then the function

T̃ : E → F defined by

T̃x = sup{Ty : y ∈ Fx ∩ D} (1)

for all x ∈ E is a positive abstract Uryson operator extending T. Moreover, T̃ is the minimal

positive abstract Uryson extension of T with respect to the order on U (E, F).

If, moreover, D is a lateral band of E then the minimal extension T̃ defined by (1), inherits

some of compactness-like properties of T, e.g. AM-compactness, C-compactness, narrowness,

strict narrowness [8, Theorems 3, 4].
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1.3 Orthogonally additive projections onto lateral bands

Observe that the intersection of any family of lateral ideals (respectively, lateral bands) of

a Riesz space E is a lateral ideal (respectively, lateral band). Hence, given any subset A of E,

there exists a minimal lateral ideal I(A) (respectively, a minimal lateral band B(A)) including

A, called the lateral ideal (respectively, the lateral band) generated by A.

Following notation of [3], we use the symbols in bold∪∪∪,
⋃⋃⋃

(respectively,∩∩∩,
⋂⋂⋂

) to denote the

lateral supremum (respectively, lateral infimum) of subsets of a Riesz space, that are, supremum

and infimum with respect to the lateral order ⊑. A net (xα) in a vector lattice up-laterally

converges to an element x ∈ E if xα ⊑ xβ ⊑ x for all indices α ≤ β and (xα) order converges

to x. In this case we write xα
ℓ↑
−→ x. Obviously, xα

ℓ↑
−→ x holds if and only if (xα) is laterally

increasing and
⋃⋃⋃

α xα = x. A function f : E → F between vector lattices is called up-laterally

continuous at a point x ∈ E if for every net (xα) in E with xα
ℓ↑
−→ x in E one has f (xα)

ℓ↑
−→ f (x)

in F. A function f is said to be up-laterally continuous provided f is up-laterally continuous at

every point x ∈ E.

Theorem 2 ([3]). Let B be a lateral band of a Dedekind complete vector lattice E. Then the

function QB : E → E defined by setting for every x ∈ E

QB(x) =
⋃⋃⋃

(Fx ∩ B),

is a disjointness preserving up-laterally continuous projection of E onto B.

A direct consequence of Theorem 2 is the following result.

Corollary 1. Let E be a Dedekind complete vector lattice and e ∈ E. Then the function

Qe : E → E defined by setting for every x ∈ E

Qe(x) =
⋃⋃⋃

(Fx ∩ Fe),

is a disjointness preserving up-laterally continuous projection of E onto Fe.

In Section 3 we extend Corollary 2 to the more general setting of Riesz spaces with the prin-

cipal projection property by proving for every e ∈ E the existence of a lateral band projection

Qe of E onto the principal lateral band Fe with a more exact formula Qe(x) = x∩∩∩ e for all x ∈ E.

Moreover, we prove the orthogonal additivity of Qe.

2 LATERAL RETRACTIONS

In this section, we define lateral retractions and lateral retracts in a natural way. Then

we show that lateral retracts are lateral bands, and in a Dedekind complete Riesz space the

converse is also true.

Definition 1. Let E be a Riesz space. A function f : E → E is called a lateral contraction if

f (x) ⊑ x holds true for all x ∈ E.

A lateral contraction has the following obvious property.

Proposition 1. Let E be a Riesz space. Then every lateral contraction f : E → E preserves

disjointness, that is, for every x, y ∈ E the condition x ⊥ y implies f (x) ⊥ f (y).
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Proof. Observe that for every u, v ∈ E, if u ⊑ v then |u| ≤ |v|. Indeed, u ⊥ (v − u) implies

v = u ⊔ (v − u) and hence |v| = |u| + |v − u|, which yields |u| ≤ |v|. So, let x, y ∈ E with

x ⊥ y. Then

| f (x)| ∧ | f (y)| ≤ |x| ∧ |y| = 0.

Definition 2. Let E be a Riesz space. A function f : E → E is called a lateral retraction if the

following conditions hold:

(i) f is a projection, that is, f 2 = f ;

(ii) f is an orthogonally additive operator;

(iii) f is a lateral contraction.

A subset A of E is called a lateral retract if A is the image of a lateral retraction f : E → E.

Definition 3. A lateral band A of a Riesz space E, which is a lateral retract, is called a projection

lateral band, and the lateral retraction of E onto A is called the lateral band projection of E

onto A.

Remark 1. Observe that the projection QB in Theorem 2 is obviously a lateral contraction.

Hence, QB is a lateral retraction and so, every lateral band in a Dedekind complete Riesz space is a

projection lateral band.

Theorem 3. Let E be a Riesz space. Then the following assertions hold.

1. Let A be a lateral retract in E. Then there exists a unique retraction of E onto A.

2. Every lateral retraction is up-laterally continuous.

3. Every lateral retract in E is a lateral band.

4. If, moreover, E is Dedekind complete then a subset A of E is a lateral retract if and only

if A is a projection lateral band.

We need the following elementary property of orthogonally additive operators (see [6, The-

orem 4.9] for more details).

Lemma 1. Let E, F be Riesz spaces and T : E → F a disjointness preserving orthogonally

additive operator. Then T is lateral order preserving, that is, for every x, y ∈ E the relation

x ⊑ y implies T(x) ⊑ T(y).

Proof. Let x, y ∈ E and x ⊑ y. Since x ⊥ (y − x), one has T(x) ⊥ T(y − x). On the other hand,

y = x ⊔ (y − x) implies T(y) = T(x) + T(y − x), that is, T(y − x) = T(y) − T(x). Hence,

T(x) ⊥ T(y)− T(x), that is, T(x) ⊑ T(y).
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Proof of Theorem 3. (1) Let f , g : E → E be lateral retractions of E onto A and x ∈ E. By

Lemma 1, f (x) ⊑ x implies f (x) = g
(

f (x)
)
⊑ g(x) and similarly g(x) ⊑ f (x), which yield

f (x) = g(x).

(2) Let f : E → E be a lateral retraction. Let (xα) be a net in Fx with xα
ℓ↑
−→ x. By Lemma 1,

f (xα) ⊑ f (xβ) ⊑ f (x) for α ≤ β. The equality x = xα ⊔ (x − xα) implies

f (x) = f (xα) + f (x − xα).

Hence f (x) − f (xα) = f (x − xα) ⊑ x − xα and therefore2 | f (x) − f (xα)| ≤ |x − xα|, which

yields f (xα)
o

−→ f (x). So, f (xα)
ℓ↑
−→ f (x) is proved.

(3) Let A ⊆ E be a lateral retract and f : E → E be a lateral retraction of E onto A. First

we prove that A is laterally solid. Let x ∈ A and y ⊑ x; our goal is to prove that y ∈ A. Since

f (y) ⊑ y, one has
(
y − f (y)

)
⊑ y, which yields |y − f (y)| ≤ |y|. Similarly, f (x − y) ⊑ (x − y)

yields |x − y − f (x − y)| ≤ |x − y|. Hence,

|y − f (y)| ∧ |x − y − f (x − y)| ≤ |y| ∧ |x − y| = 0

and therefore

0 = |y − f (y) + (x − y)− f (x − y)| = |y − f (y)| + |(x − y)− f (x − y)|,

which implies y = f (y), that is, y ∈ A.

Now let x, y ∈ A and x ⊥ y. By the orthogonal additivity of f , f (x + y) = f (x) + f (y) =

x + y, and so, x + y ∈ A. Thus, A is a lateral ideal.

So, it remains to prove that A is laterally closed. Let (xα) be a net in A with xα ⊑ xβ for

α ≤ β and x =⊑-supα xα. By [2], xα ⊑ x for all α and so, xα
ℓ↑
−→ x. By the up-laterally

continuity of f (see (2)), we obtain xα = f (xα)
ℓ↑
−→ f (x). The above conditions imply f (x) = x,

that is, x ∈ A.

(4) follows from (3) and Remark 1.

3 THE PRINCIPAL LATERAL BAND PROJECTION

Obviously, both lateral ideal and lateral band, generated by a singleton {e}, where e ∈ E,

coincide with the set Fe of all fragments of e, which we call the principal lateral ideal and the

principal lateral band generated by e.

In this section, we describe lateral band projections onto principal lateral bands in a Riesz

space with the principal projection property.

Theorem 4. Let E be a Riesz space with the principal projection property. Then for every e ∈ E

the function Qe : E → E defined by setting

Qex = x∩∩∩ e for all x ∈ E (2)

is a lateral retraction of E onto the principal lateral band Fe.

2 see the remark in the proof of Proposition 1
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Proof. Observe that the operator Qe is well defined by (2), because every finite subset of a Riesz

space with the principal projection property has a lateral infimum [6, Theorem 3.13].

We prove that Qe satisfies all items of Definition 2. Items (i) and (iii) are obvious.

(ii) Let x, y ∈ E \ {0} and x ⊥ y. Observe that Bx+y = Bx ⊕ By, and hence, every z ∈ Bx+y

has an expansion

z = Pxz + Pyz. (3)

We prove that

Px

(
(x + y)∩∩∩ e

)
= x∩∩∩ e, Py

(
(x + y)∩∩∩ e

)
= y∩∩∩ e. (4)

Since the band projection Px preserves disjointness, Px is lateral order preserving, that is,

(∀u, v ∈ E) u ⊑ v ⇒ Pxu ⊑ Pxv. (5)

Indeed, u ⊑ v means u ⊥ (v − u), which yields Pxu ⊥ Px(v − u) = Pxv − Pxu, that is,

Pxu ⊑ Pxv.

Hence by (5),

Px

(
(x + y)∩∩∩ e

)
⊑ Px(x + y) = x. (6)

On the other hand, by the obvious relation Pxw ⊑ w for all w ∈ E,

Px

(
(x + y)∩∩∩ e

)
⊑ (x + y)∩∩∩ e ⊑ e. (7)

By (6) and (7),

Px

(
(x + y)∩∩∩ e

)
⊑ x∩∩∩ e. (8)

Observe that |x∩∩∩ e| ≤ n|x| for all n ∈ N, and hence, by [1, Theorem 1.47],

Px(x∩∩∩ e)+ =
∞∨

n=1

(
(x∩∩∩ e)+ ∧ n|x|

)
= (x∩∩∩ e)+

and analogously, Px(x∩∩∩ e)− = (x∩∩∩ e)−. Therefore,

x∩∩∩ e = Px(x∩∩∩ e)
by (5)

⊑ Px

(
(x + y)∩∩∩ e

)
. (9)

By (8) and (9), the first part of (4) is proved. The second part is proved analogously. Finally, we

obtain

(x + y)∩∩∩ e
by (3)
= Px

(
(x + y)∩∩∩ e

)
+ Py

(
(x + y)∩∩∩ e

) by (4)
= (x∩∩∩ e) + (y∩∩∩ e),

and the orthogonal additivity of Qe is proved.

We do not know if the Dedekind complete assumption in item (4) of Theorem 3 is essential.

Problem 1. Is there a Riesz space E and a lateral band A of E which is not a projection lateral

band (equivalently, which is not a lateral retract)?
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Камiньська А., Красiкова I., Попов М. Проекцiйнi латеральнi смуги та латеральнi ретракти //

Карпатськi матем. публ. — 2020. — Т.12, №2. — C. 333–339.

Проекцiйну латеральну смугу G у векторнiй ґратцi E визначають як латеральну смугу, яка

є образом деякого ортогонально адитивного проектора Q : E → E, що має таку властивiсть:

Q(x) є фрагментом елемента x для всiх x ∈ E; такий проектор називають латеральною ре-

тракцiєю ґратки E на G (доводиться єдинiсть такого проектора). Ми дослiджуємо властивостi

латеральних ретрактiв, тобто образiв латеральних ретракцiй, i описуємо латеральнi ретракцiї

на головнi проекцiйнi латеральнi смуги (тобто латеральнi смуги, породженi окремими еле-

ментами) у векторнiй ґратцi з головною проективною властивiстю. Крiм того, ми доводимо,

що кожний латеральний ретракт є латеральною смугою, а кожна латеральна смуга у поряд-

ково повнiй векторнiй ґратцi є проекцiйною латеральною смугою.

Ключовi слова i фрази: ортогонально адитивний оператор, векторна ґратка, латеральна

смуга.


