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Weighted Hardy operators in local generalized Orlicz-Morrey
spaces

Aykol C.12 Azizova Z.0.2, Hasanov J.J.2

In this paper, we find sufficient conditions on general Young functions (®,¥) and the func-
tions (@1, ¢2) ensuring that the weighted Hardy operators A, and A%, are of strong type from a lo-

cal generalized Orlicz-Morrey space M?I;,Z(‘;i (R") into another local generalized Orlicz-Morrey space

My Z;’JZ(]R”). We also obtain the boundedness of the commutators of A%, and A%, from Mg;lgfl (R™)

0,1
to My (‘;Z (R™).
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1 Introduction

The well known Morrey spaces Ly, ;, introduced in [15], were widely investigated during
last decades, including the study of classical operators of harmonic analysis — maximal, singu-
lar and potential operators. Hardy operators, maximal functions and singular integrals play
a key role in harmonic analysis since maximal functions could control crucial quantitative in-
formation concerning the given functions, despite their larger size, while singular integrals,
Hilbert transform as it’s prototype, nowadays intimately connected with PDE, operator theory
and other fields. C.B. Morrey found that many properties of solutions to PDE can be attributed
to the boundedness of such operators on Morrey spaces. The generalized Morrey spaces LF'¢
are obtained by replacing r* by a function ¢(r) in the definition of the Morrey space. During
the last decades vaious classical operators, such as maximal, singular and potential operators
and their commutators with BMO functions were widely investigated in both classical and
generalized Morrey spaces. For the boundedness of the Hardy-Littlewood maximal operator
and fractional integral operators, see for example [1,4,5,14,16,21,22,24,25].

They are useful tools to study harmonic analysis and its applications. For example, the
Hardy-Littlewood maximal operator is bounded on L, for 1 < p < oo, but not bounded on L.
Using Orlicz spaces, we can investigate the boundedness of the operator near p = 1 precisely.
Characterization of Young functions A for which the Hardy-Littlewood maximal operator or
the Hilbert and Riesz transforms are of weak or strong type in Orlicz space L4 is known (see
for example [6,12]). For the theory of Orlicz spaces, see [6,9-11,20,23].
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In [17], the author introduced Orlicz-Morrey spaces to investigate the boundedness of gen-
eralized fractional integral operators. Orlicz-Morrey spaces unify Orlicz and Morrey spaces.
Recently, using Orlicz-Morrey spaces, Y. Sawano, S. Sugano and H. Tanaka [26] proved a
Trudinger type inequality for Morrey spaces.

Inequalities involving classical operators of harmonic analysis, such as maximal functions,
fractional integrals and singular integrals of convolution type have been extensively investi-
gated in various function spaces. Results on weak and strong type inequalities for operators
of this kind in Lebesgue spaces are classical and can be found for example in [3,27,28]. Gener-
alizations of these results to Zygmund spaces are presented in [3]. Orlicz-Morrey spaces and
maximal and singular operators in such spaces were studied in [7, 8,18, 19]. The boundedness
of weighted Hardy operator and its commutators in Orlicz-Morrey spaces was proved in [2].

In this paper we consider the following weighted Hardy operators

5 F(x) = [xe—n f(y) 5 ix) =[xl f(y)dy
ALF) = allel) [ sy and AL = w(l) [ Rl
lyl<|x] [y1> x|
where & > 0 and w is a weight.

Note that Hardy operators in Orlicz-Morrey spaces were less studied in comparison with
maximal, singular and potential operators.

As is well known, the boundedness of commutators of various operators, such as maximal
and singular operators, is of importance in applications to PDE. Such boundedness was not
studied in local generalized Orlicz-Morrey spaces. We obtain conditions, for the weighted
boundedness of the commutators of Hardy operators with BMO functions in local generalized
Orlicz-Morrey spaces.

The main purpose of this paper is to find sufficient conditions on general Young functions
(®,7) and the functions (¢4, ¢2) ensuring that the weighted Hardy operators A%, and A%, are

of strong type from a local generalized Orlicz-Morrey space Mg;/lz)cl (R") into another local gen-

eralized Orlicz-Morrey space M\OF’ Z(OPZ (R™). We also obtain the boundedness of the commutators

of A% and A% from M%f‘;‘i (R") to M\OF’,Z(OPZ (R"). The main results are given in Theorems 2, 3, 4,
5and 6.

In the next section, we recall the definitions of Morrey and Otrlicz spaces and give the defini-
tion of local Orlicz-Morrey and local generalized Orlicz-Morrey spaces. In Section 3, we prove
the boundedness of weighted Hardy operators A% and A%, from M%,l;i (R") to M\OI;,Z(‘;‘; (R™), and
in Section 4, we prove the boundedness of the commutators of A%, and A% from Mg;,l 09001 (R™) to
My (R").

Throughout the paper we use the letter C for a positive constant, independent of appro-
priate parameters and not necessary the same at each occurrence. By A < B we mean that
A < CB with some positive constant C. If A < Band B S A, we write A = B and say that A
and B are equivalent.

2 Preliminaries

Morrey spaces were introduced by Morrey [15] in 1938 in connection with certain problems
in elliptic partial differential equations and calculus of variations. Later, Morrey spaces found
important applications to Navier-Stokes and Schrodinger equations, elliptic problems with
discontinuous coefficients, and potential theory.
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Definition 1. We denote by L, \(R") Morrey space for0 <A <n,1<p < oo, f € L, ,(R") if
fe L;OC(]R”) and

_A
LPIA(]R”):{feL;OC(R”):HfHLPIA — sup 7 v|rf||L,,(B<x,r>><oo}-
xeR", r>0

Here and everywhere in the sequel B(x, r) stands for the ball in R" of radius r centered at x. Let
|B(x,7)| be the Lebesgue measure of the ball B(x,r) and |B(x,r)| = v,r", where v, = |B(0,1)].
L, (R") is an expansion of L,(IR") in the sense that L,o(R") = L,(IR"). We also denote by
WL, = WL, (R") the weak Morrey space of all functions f € WL;OC(]R”) for which

2
up 7 7| fllwe, () < oo

£ = s
Whpa xeR", r>0

where WL, denotes the weak L,-space.

We recall the definition of Young functions.
Definition 2. A function ® : [0, +c0] — [0, 40| is called a Young function if ® is convex,
left-continuous, hIEOCD(r) = ®(0) =0and EIF P(r) = P(+00) = +o0.
r— r—Too

From the convexity and ®(0) = 0 it follows that any Young function is increasing. If there
exists s € (0, +0) such that ®(s) = +co, then ®(r) = 4o forr > s.

We say that @ € A, if forany a > 1, there exists a constant C, > 0 such that ®(at) < C,P(#)
forall t > 0.

Recall that a function & is said to be quasiconvex if there exist a convex function w and a
constant ¢ > 0 such that

w(t) < ®(t) <cwl(ct), te0,+x).
Let Y be the set of all Young functions ® such that
0<P(r) < +oo for 0 <r < Hoo.

If ® € ), then @ is absolutely continuous on every closed interval in [0, +o0) and bijective
from [0, +00) to itself.

Definition 3 (Orlicz space). For a Young function ®, the set
Le(R") = {f € LP(R™) : / D (k| f(x)|)dx < +oco for somek > 0 }
]Rﬂ

is called Orlicz space. The space qug’C(IR”) endowed with the natural topology is defined as the
set of all functions f such that fx; € Le(R") for all balls B C R" (||fx; 1wy = IIfllLg(5))-

Note that Lg(IR") is a Banach space with respect to the norm

— : LLANEAE <
| fllre 1nf{)t>0 n@( 1 )dx 1,
see, for example, [23, Section 3, Theorem 10], so that

()]
Jo @, A=t
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Definition 4. The weak Orlicz space
WL(D(]RM) = {f < L%oc(]Rn) : Hf”WL¢, < —|—OO}

is defined by the norm

Ifllwre = inf{}\ >0 : sgtg@(t)m(%, t) < 1},

wherem(f, t) = [{x € R" : [f(x)]| > t}|.

For Young functions ® and ¥, we write ® ~ Y if there exists a constant C > 1 such that
O(Clr) < ¥(r) < ®(Cr) forallr > 0. If ® ~ ¥, then Lo(R") = Ly (R") with equiva-
lent norms. For a Young function ® and 0 < s < +oo, let ®~1(s) = inf{r > 0 : ®(r) > s}
(infg = +o0). If ® € ), then @~ ! is the usual inverse function of ®. We note that
O(D71(r)) <r <O HD(r)) for 0 < 7 < +o0.

A Young function @ is said to satisfy the V,-condition, denoted also by ® € V), if

1
< — >
d(r) < ZkCD(kr), r>0,

for some k > 1.
For a Young function ®, the complementary function ®(r) is defined by

(r) =

- {sup{rs —®(s):s € [0,00)}, re[0,0),
+o0, r = +o0.

The complementary function ® is also a Young function and &= 1If O(r) = r,thend(r) = 0
for0 <r<land ®(r) = +ooforr >1.If1<p <oo,1/p+1/p' =1and ®(r) = r?/p, then
O(r)=1"/p. U D(r) =e —r—1, then ®(r) = (1+7)log(1+71) —r.

Remark 1. Note that ® € V; if and only if ® € A,. Also, if D isa Young function, then ® € V;
if and only if ®7 be quasiconvex for some y € (0,1) (see, for example, [12, p. 15]).

It is known that
r< CID’l(r)CI)’l(r) <2r for r>0. (1)

Note that Young functions satisfy the properties

D(at) <ad(t), if 0<a <1, and O at) > ad 1(t), f 0<a<1,
d(at) > ad(t), if a >1, O Hat) < adY(t), if a > 1.
The following analog of the Holder inequality is well known.

Theorem 1 ([29]). For a Young function ® and its complementary function ®, the inequality
17811y rey < 2[1fllzo lIgllzg holds.

The following lemma is valid. See, for example [3,13].

Lemma 1. Let ® be a Young function and B be a set in R" with finite Lebesgue measure. Then

1
||XBHWL¢,(IR") = HXB||L¢,(R”) = W
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In the next sections, where we prove our main estimates, we use the following lemma,
which follows from Theorem 1, Lemma 1 and inequalities (1).

Lemma 2. For a Young function ® and B = B(x, r), the following inequality holds

1oy < 21BIS7" (1BI7) 1 llg s)-

Orlicz-Morrey spaces were defined in [17] while investigating the boundedness of general-
ized fractional integral operators. Here we define the local Orlicz-Morrey spaces.

Definition 5 (local Orlicz-Morrey space). For a Young function ® and 0 < A < n, we denote
by L%’l‘)’f(lR”) the local Orlicz-Morrey space, defined as the space of all functions Li(R") with
tinite quasinorm

Hf”L%/lgf(]Rn) = sup O M fllLeB0r))-
Note that if ®(r) = 1,1 < p < oo, then LGS’ (R") = LYY(R"). If A = 0, then Lg'{"(R") =
Lo(R™).

Definition 6 (generalized Orlicz-Morrey space). For a Young function ® and 0 < A < n, we
denote by Mg,,(R") the local generalized Orlicz-Morrey space, defined as the space of all
functions LI%¢(R") with finite quasinorm

1flMe, = sup  @(x,7) '@ (™) fllLg (Bxr))-

r>0,xeR"

Now we define local generalized Orlicz-Morrey spaces.

Definition 7 (local generalized Orlicz-Morrey space). For a Young function ® and 0 < A < n,

we denote by M%,Z;C(IR”) the local generalized Orlicz-Morrey space, defined as the space of all

functions LI%¢(R") with finite quasinorm

£l pgg, 1o = sup 9(0,7) '@ () I fll g (o) -
s r>0

Note that Mg, (R") C Mg'*‘(R") or Ll aggyroe < 11 fll g,
x4

Definition 8. The space of functions with bounded mean oscillation, BMO(IR"), consists of
those functions f with finite norm

Il = sup B [ 1F0) = focenldy

t>0, xeR"

where fy ) = [B(x O™ [y fW)dy.

For Hardy operators, instead of BMO, we will use the class of functions introduced in the
next definition.

Definition 9. For a Young function ®, we denote by BMO, ¢ (R") the local BMO space, defined
as the space of all functions L¢¢(R") with finite quasinorm

Iflow = sup @) = f(ro)llL,-

r>0,0€5m-1
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3 Boundedness of weighted Hardy operators in the spaces M3'% s (R")

In this section sufficient conditions on the pairs (®,¥) and (¢1, ¢2) for the boundedness
of the weighted Hardy operators A, and A{, from one local generalized Orlicz-Morrey space
Mg;’l;i (R™) to another local generalized Orlicz-Morrey space M%/Z;‘; (R") are obtained. First an
auxiliary theorem is proved to obtain main results.

Theorem 2. Let ® be Young function and the function ¢ satisfy the condition ¢(r) < C¢(t),

¢ ¢(r)
(i) = Cq) ()’ 0 < r < t. Then the inequality
(t) dt

o son I < € [} 550550 7> 0 @

holds, where C > 0 does not depend on r and x.
Proof. Let By = B(0,27%r)\B(0,27%17). We get

lpCIxDxB0n e < 3 o) X8I

k=0
Since ¢(r) < Cp(t), 0 < r < t, then

Z lo(lxDxs e < Zeb “MlIxe02-lLe-

By Lemma 1, we obtam

> ¢(27Fr) P(t)  dt
IoDxs0n s < C X v o oty < C b ario ¢

and we arrive at (2). The last passage to the integral is verified in the standard way with the
o) ) in t, imposed by the assumptions

e (

use of the monotonicity properties of the function

of the lemma on ¢ as

o) dt & 2 IO

/0 @1(t")7_k20/2 1y L(pn)
$(2*r) 24 ¢(2 *r)

= 2 “ &1 (|B(0,2kr)|-1) /2 = anZ “ d-1(|B(0,27kr)| 1)’

Thus the proof of the theorem is completed. O

In the following two theorems we give sufficient conditions on general Young functions
(®,¥) and the functions (¢1, ¢2) ensuring the boundedness of the weighted Hardy operators
A% and A% from the spaces MO loc oy (R") to MO loc o (R").

Theorem 3. Let ®,¥Y be Young functions, 0 < a < n, f € LIOC(]R”) % < C#ﬁt),
@1(0,t)/tPw(t) < Ce1(0,7)/rPw(r) 0 < r < t, B € R and the functions (¢1, ¢2) and (®,¥)
satisfy the conditions
r r
n n 14
/t (pl(O,t)ﬂ < ! ¢1(0,7) and s jol(Ois)@ < C ¢2(0,7) 3)
;o w(t) w(r) ;YT s avl

. . 0,1 0,1
Then the weighted Hardy operator A, is bounded from Mg, .- (R") to My (R").
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Proof. Tt is clear that for x € B(0,r) the inequality

AL F() £ e aollel) [ LB

|z <]«

], (LG
[ =4 wiep

|z| <r

holds. We have

(4)

where B, = {z: 271y < Jz] < Z*kr}. Making use of the fact that there exists a B such that
tPw(t) is almost decreasing, we observe that 1/w(|z|) < C/w(27%r) on By. Applying this in

(4) and making use of the Holder inequality, we obtain

z o 2*kr no - »
/ g(ﬂZ)‘i)dz <y ;(Zgr)q, L@ ) ) Ufll o w02 )

el<r k=0
f (
|

|z|<r

Therefore

r)"¢1(0,2”"7)
_kr) ”f”M%,l;Cl

Since the function ¢1(0,t)/tPw(t) is almost decreasing with some j3, we obtain

y EeE D <oy / tertd

2k1

f(2)l 110 (0, ) dt
/ M CHf”M%fl;iO/W?

|z|<r

By (5) and (6), we have

It remains to prove that

[Aof(X)] < ||fHMg;llgcl|x|lx_nw(|x|)/T_‘

o

Hence by (3) and Theorem 2 we obtain

_ t"p1(0,t) dt
148 ey 02 < Clf gy |11 "ela) [ EBAE

(t) ¢
0 Ly (B(0,r))
— |x|nq01(01|x|)
<C toe |[|x]* TP w(|x|) ———=
e R G e =
< C”f”M%lg;l H|x|”‘901(0/ XDl Ly B0
[ 5°1(0,5) ds ¢2(0,7)

< oc Y 2N oc 7'
CHf”MOI gy 1( ) CHf”MOl Y- (1, n)

Therefore we get

0,7)
A < . L
148 ) S 1 gy 2

Thus the proof of the theorem is completed.

(5)

(6)
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Theorem 4. Let ®,¥ be Young functions, 0 < a < n, ( y < <C t(ﬁ) r*@1(0,r)® L (r ) <
Ct*p1(0,£)® 1 (t7"), 0 < r < t, B € R and the functions (@1, ¢,) and (®,¥) satisfy the
conditions L o

© @1(0,t)d " (t~ 0,r)® " (r~
/ ¢1(0, )P~ ( )ﬂgcq)l( e (r™") @)
r w(t) t w(r)
and .
Y1t ") t Y- 1(r my’
where C does not depend on r. Then the weighted Hardy operator A, is bounded from
Mg " (R") to My % (IR").

Proof. It is clear that for x € B(0, r) the inequality

A8f ()] S eollel) [ O

[z["e(lz])
|z[>|x]
holds. By Fubini’s theorem we have

/ e’ / aten U ) o= 7 (e oty ™)

dz
r<lzl<t w(|z[)

n+1°
By Lemma 2 we get
f&l, o~ 1 ( ) dt
[ ae=s | aw (L) mi s [ om0 W oo
|z|>r
1 dt
§/r m‘b Lt )HfHL@(B(o,t))7~
Moreover,
o o i 1 n dt
| ALf(x)] < Clx w(\xr>|/| S ) Ml m0n T
X
By (7), the inequality
o o i 1 — —n dt
ALf ()] < Clxte(lxl) | 5@ () I llaaon F
|x]

[ g1(0,H@ 1 (") dt
S C||f|’Mg;l;c|x|"‘w(|x|)/4’1( ) (t=")
' 91
|x]
0,[x)®~* (x| ") -
< oe || ¢1( 3 " 1 n
< C||fHMg/lm|x| w(|x]) w(|x]) < C”f”M%,lm'x' 910, |x[)@ 1 (|x|7")

is valid. Therefore by (8) and Theorem 2 we get
||‘A f”qu 07‘)) S CHf”M%l;c

[x|“@1(0, [x)@~" (|x[7")

< Cl e /fgolglg,t)(t n)( AL CHfHMW%
0

‘ Ly (B(0,r))

Thus the proof of the theorem is completed
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4 Boundedness of the commutators of weighted Hardy operators on the
spaces Mg, l"c

The commutators of weighted Hardy operators are defined by

[b, ALlf = A(bf) = bAG(f)-
In the following two theorems we prove the boundedness of commutators of weighted
Hardy operators from one local generalized Orlicz-Morrey space Mg;/l;i (R") to another local

generalized Orlicz-Morrey space Mg;,lgfz (R™).

Theorem 5. Let ®,Y be Young functions, 0 < a < n, f € LIS(R"), b € BMO, &(R"),

w( j<C t(ﬁ) ¢1(0,t)/tPw(t) < Ce1(0,7)/rPw(r) 0 < r < t, B € R and the functions (g1, >)

and (®,Y) satisfy the conditions (3).
Then the operator [b, A% ] is bounded from Mg;/lgcl (R") to M\OI;,I(‘;DC2 (R™).

Proof. Itis clear that for x € B(0,r) we get

b, AXTF(x)] < |x]* "ew(|x]) / 1f(2)][b(x) — b(z)]dz.

2/ <]
/ @), _ i/|f(z)||b(x) —b(Z)|dz, )

AN = ¥ ST iE)

We have

where B, = {z: 271l < 7] < Z_kr}. Making use of the fact that there exists a B such that
tPw(t) is almost decreasing, we observe that 1/w(|z|) < C/w(27%r) on By. Applying this in
(9) and making use of the Holder inequality, we obtain

£(2)]Jb(x) —
o ez C Z

Hb (x)”L<T> B(0,2=kr)) Hf||Lq> B(0,27%r))

k _kT'
< CWlano anMmz(z T

Therefore we get

—b(2)] (2~ r)"g:1(0,27%r)
w(|z|) dz <C HbHBMO Hf”MO loc kz (2 k}’) . (10)

|z|<r

Since the function ¢1(0,t)/tPw(t) is almost decreasing with some j, we obtain

< (2hr)1gu(0,2°F
L e <sz/1 "

By (10) and (11), we have

r

t"p1(0,t) dt

/ f(2) (>|dzgc:|yb|\BMOO§ |yf||M%13a/ 91(0,) dt
0

w(t) t

|z|<r
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It remains to prove that

10, AL 5 bl puao,, 1y 1~ eo((xl) [ =25

o

Hence by (3) and Theorem 2, we obtain

|x|
_ t"p1(0,t) dt
116 A1l 01) < € 1bln0, I g 1~ "eo(lxl) [ =L0

w(t) t
0 Ly (B(0,r))
- "91(0, |x|)
< Cllbllve 1l o 2150y KL 220 12D
H HBMOO@ ”fHM% ’ ‘ (‘ ’) w(|x|) Ly (B(0)
<C HbHBMO ”fHMO oc |Hx!“(/’1(0, XDl Ly (B(0))

[ s°01(0,5) ds ¢2(0,7)
< e | —/————~L— < e L7
<C HbHBMOO/&, ”fHM%,Iq) J Y- ( ) g = CHf”Mg;,’(Pl 1{;71(1,7")

Consequently we obtain
b 0 r
16 481 e ts) S Wolswo g I gy 25
Therefore the operator [b, A% ] is bounded from M%/lfp‘i (R") to M\OI;,Z(‘;‘; (R™). O

Theorem 6. Let ®,Y be Young functions, 0 < a < n i < C#ﬁt), 0<r<tpek,

7 w(r)
b € BMO,&(R"), r¢1(0,r)® 1 (r") < Ct*@1(0,)® ' (t7"), 0 < r < t, the functions
(91, 2) and (®,Y) satisfy the conditions

*p1(0,t) d 0,r
/ 4’1 < quclu((r)) and / t §01(t_i) Tt < C‘Pﬁlizl((r_l)‘

Then the operator [b, A% is bounded from M%/l;i (R") to My l(‘;‘; (R™).

Proof. Itis clear that since x € B(0,r), we get

b, ASF ] S ey [ LELRD - PO,

|z["w(]z])
J2l>[x]

By Fubini’s theorem we have

FEUE ~b@L, LRI ~b@] ([
[ ey = ] () (ﬁwﬂ)d

2> i
[ ) bx) ~ba)I Y
- |x| </x<|z<t w(|z|) d > 41T
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Therefore we obtain

o, AL S () [
I

S Wllsnio, g 1 (i) [ 205

x|

(1x)
< et b0 |y 00 s

() bz 55
i oo 1

1
()
1
ot

=
€=
S
=
A

S 1ellpni0, g 11y l°eo( [Bll5110, £ gy ¥ 920, ).

Finally we get

116, AL f e (Bor)) = Cl1Plsumo, 4 HfHMgzZ;1 H‘x’lx(/’l(or‘xDHL\P(B(O,r))

[ H1(0,1) dt ¢2(0,7)
<C ||b||BMO Hf”MO fc TT <C ||b||BMOO§ ”f”M%/l;Clm'
Therefore the operator [b, A% ] is bounded from M0 loc oy (R") to MY oc(Rm). O

¥, 92
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VY 1iit craTTi MM 3HAXOAMMO AOCTAaTHI yMOBM Ha 3ararbHi ¢pyskuii IOnra (®,Y) i dpymkuii

((pl, sz)/ 10 3a6e3MeuyoTh CTPOIVIA THII 3Bg>11<eH]/[x oneparopis I'apai Af, Ta A% 3 AOKaABHOTO
s ,Loc n : o 9 9 .

y3araabHeHOro npocropy Opaiua-Mopest Mq,, o (R") B iHIIVMIT AOKAABHMII y3araAbHEHVIT IPOCTIp

. 0, loc
Opaiua 0l\i[opeﬂ My (P(Z) ]
o ,loc n ,loc (n
A% 3 Mq’,fm(]R )B M\Y’(pz(IR ).
Kntouosi cnoea i ¢ppasu: 3BakeHmii onepaTop I'apai, AokaabHMIT y3araabHeHMI1 npocTip Opaiva-
Mopesi, nokaaprmnt BMO-nipocTip.

(R™). Mu TakoX OTpUMyeMO O6MeXeHICTh KOMYTAaTOpiB omepaTopis Af, Ta



