Carpathian Math. Publ. 2020, **12** (2), 311–316 doi:10.15330/cmp.12.2.311-316

ON THE LIE STRUCTURE OF LOCALLY MATRIX ALGEBRAS

BEZUSHCHAK O.

Let A be a unital locally matrix algebra over a field $\mathbb F$ of characteristic different from 2. We find a necessary and sufficient condition for the Lie algebra $A/\mathbb F\cdot 1$ to be simple and for the Lie algebra of derivations $\mathrm{Der}(A)$ to be topologically simple. The condition depends on the Steinitz number of A only.

Key words and phrases: locally matrix algebra, derivation.

Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska str., 01601, Kyiv, Ukraine E-mail: bezusch@univ.kiev.ua

Introduction

Let F be a ground field of characteristic different from 2 and let \mathbb{N} be the set of all positive integers. Recall that an associative F-algebra A is called a *locally matrix algebra* (see [9,10]) if for an arbitrary finite subset of A there exists a subalgebra $B \subset A$ containing this subset and such that $B \cong M_n(F)$ for some $n \in \mathbb{N}$. We call a locally matrix algebra *unital* if it contains unit 1.

Let \mathbb{P} be the set of all primes. An infinite formal product of the form

$$s = \prod_{p \in \mathbb{P}} p^{r_p}$$
, where $r_p \in \mathbb{N} \cup \{0, \infty\}$ for all $p \in \mathbb{P}$, (1)

is called *Steinitz number*; see [12]. Denote by symbol SN the set of all Steinitz numbers. Let

$$s_1 = \prod_{p \in \mathbb{P}} p^{r_p}$$
, $s_2 = \prod_{p \in \mathbb{P}} p^{k_p} \in S\mathbb{N}$.

Then

$$s_1 \cdot s_2 = \prod_{p \in \mathbb{P}} p^{r_p + k_p}$$
, where $k_p \in \mathbb{N} \cup \{0, \infty\}$,

and $t + \infty = \infty + t = \infty + \infty = \infty$ for all $t \in \mathbb{N}$.

Let A be a countable-dimensional unital locally matrix algebra. In [5], J.G. Glimm defined the Steinitz number $\mathbf{st}(A)$ of the algebra A and proved that the algebra A is uniquely determined by $\mathbf{st}(A)$.

In [2], we extended Glimm's definition to unital locally matrix algebras of arbitrary dimensions. For a unital locally matrix algebra A denote by D(A) the set of all numbers $n \in \mathbb{N}$ such that there exists a subalgebra $A' \subseteq A$, $1 \in A'$, and $A' \cong M_n(F)$. The *Steinitz number* $\operatorname{st}(A)$ *of the algebra* A is the least common multiple of the set D(A). It turned out that a unital locally matrix algebra A of dimension $> \aleph_0$ is no longer determined by its Steinitz number $\operatorname{st}(A)$; see [2,3].

312 Bezushchak O.

An associative algebra A gives rise to the Lie algebra

$$A^{(-)} = (A, [a,b] = ab - ba).$$

Along with the Lie algebra $A^{(-)}$ we will consider its square [A, A]. Let Z(A) denote the center of the associative algebra A. In [6], I.N. Herstein showed that if A is a simple associative algebra then the Lie algebra

$$[A,A] / Z(A) \cap [A,A] \tag{2}$$

is simple. Since a locally matrix algebra A is simple, it follows that the Lie algebra (2) is simple. Let $M_n(\mathbb{F})$ be a matrix algebra, $\mathfrak{gl}(n) = (M_n(\mathbb{F}))^{(-)}$, $Z(M_n(\mathbb{F})) = \mathbb{F} \cdot 1$. The Lie algebra

$$\mathfrak{pgl}(n) = \mathfrak{gl}(n) / \mathbb{F} \cdot 1$$

is simple unless $p = \text{char } \mathbb{F} > 0$ and p divides n; see [11]. We will show that for an infinite-dimensional unital locally matrix algebra A simplicity of the Lie algebra

$$A^{(-)} / \mathbb{F} \cdot 1 \tag{3}$$

depends only on the Steinitz number st(A).

For a Steinitz number (1) denote $\nu_p(s) = r_p$.

Theorem 1. The Lie algebra (3) is simple if and only if

char
$$\mathbb{F} = 0$$

or

char
$$\mathbb{F} = p > 0$$
 and $\nu_p(\mathbf{st}(A)) = 0$ or ∞ .

Recall that a linear transformation $d: A \rightarrow A$ of an algebra A is called a *derivation* if

$$d(ab) = d(a) \cdot b + a \cdot d(b)$$

for arbitrary elements a, $b \in A$. The vector space Der(A) of all derivations of an algebra A is a Lie algebra with respect to commutation; see [7]. If A is an associative algebra then for an arbitrary element $a \in A$ the operator

$$ad(a): A \rightarrow A, x \mapsto [a, x],$$

is an *inner derivation*. The subspace $Inder(A) = \{ad(a) \mid a \in A\}$ of all inner derivations is an ideal of the Lie algebra Der(A).

Let X be an arbitrary set. The set Map(X,X) of all mappings $X \to X$ is equipped with Tykhonoff topology; see [13]. The subspace of all derivations Der(A) of an algebra A is closed in Map(A,A) in Tykhonoff topology. It makes the Lie algebra Der(A) a topological algebra.

Theorem 2. Let A be a unital locally matrix algebra. Then

- (1) the Lie algebra [Der(A), Der(A)] is topologically simple;
- (2) the Lie algebra Der(A) is topologically simple if and only if $char \mathbb{F} = 0$ or $char \mathbb{F} = p > 0$ and $v_p(\mathbf{st}(A)) = 0$ or ∞ .

1 Proof of the Theorem 1

Proof. Let *A* be a unital locally matrix **F**-algebra. We will show that

$$A = [A, A] + \mathbb{F} \cdot 1$$
 if and only if char $\mathbb{F} = 0$

or char
$$\mathbb{F} = p > 0$$
 and $\nu_p(\mathbf{st}(A)) = 0$ or ∞ .

Consider a matrix algebra $M_n(\mathbb{F})$. Then $\left[M_n(\mathbb{F}), M_n(\mathbb{F})\right] = \left\{a \in M_n(\mathbb{F}) \mid \operatorname{tr}(a) = 0\right\} = \mathfrak{sl}(n)$. If char $\mathbb{F} = 0$ or char $\mathbb{F} = p > 0$ and p does not divide n then $\operatorname{tr}(1) = n \neq 0$, and therefore $a = \left(a - \frac{1}{n}\operatorname{tr}(a) \cdot 1\right) + \frac{1}{n}\operatorname{tr}(a) \cdot 1 \in \mathfrak{sl}(n) + \mathbb{F} \cdot 1$ for an arbitrary element $a \in A$. It implies that

$$M_n(\mathbb{F}) = [M_n(\mathbb{F}), M_n(\mathbb{F})] + \mathbb{F} \cdot 1.$$

If p divides n then tr(1) = 0, hence

$$[M_n(\mathbb{F}), M_n(\mathbb{F})] + \mathbb{F} \cdot 1 = \mathfrak{sl}(n) \neq M_n(\mathbb{F}).$$

If char $\mathbb{F} = 0$ or char $\mathbb{F} = p > 0$ and p does not divide $\operatorname{st}(A)$ then for an arbitrary matrix subalgebra $1 \in A_1 \subset A$, $A_1 \cong M_n(\mathbb{F})$, the characteristic p does not divide n. Hence

$$A_1 = [A_1, A_1] + \mathbb{F} \cdot 1.$$

So, $A = [A, A] + \mathbb{F} \cdot 1$.

Suppose now that p^{∞} divides st(A). Consider a matrix subalgebra

$$1 \in A_1 \subset A$$
, $A_1 \cong M_n(\mathbb{F})$.

The number n divides $\mathbf{st}(A)$. Since p^{∞} divides $\mathbf{st}(A)$ it follows that pn also divides $\mathbf{st}(A)$. Hence, there exists a subalgebra $A_2 \subset A$ such that

$$A_1 \subset A_2$$
, $A_2 \cong M_m(\mathbb{F})$ and p divides m/n .

Let C be the centralizer of the subalgebra A_1 in A_2 . We have

$$A_2 = A_1 \otimes_{\mathbb{F}} C$$
, $C \cong M_{m/n}(\mathbb{F})$

(see [4,8]). For arbitrary elements $a \in A_1$, $b \in C$ we have

$$\operatorname{tr}_{A_2}(ab) = \operatorname{tr}_{A_1}(a) \cdot \operatorname{tr}_{C}(b),$$

where tr_{A_2} , tr_{A_1} , tr_C are traces in the subalgebras A_2 , A_1 , C, respectively. We have

$$\operatorname{tr}_{C}(1) = \frac{m}{n} = 0.$$

Hence,

$$\operatorname{tr}_{A_2}(A_1 \otimes 1) = \operatorname{tr}_{A_1}(A_1) \cdot \operatorname{tr}_{C}(1) = \{0\},\$$

and therefore $A_1 \subseteq [A_2, A_2]$. We showed that if p^{∞} divides $\mathbf{st}(A)$ then A = [A, A]. Suppose now that $\nu_p(\mathbf{st}(A)) = k, 1 \le k < \infty$. Consider a subalgebra

$$1 \in A_1 \subset A$$
, $A_1 \cong M_{n^k}(\mathbb{F})$.

BEZUSHCHAK O.

Choose an element $a \in A_1$ such that $tr_{A_1}(a) \neq 0$. We claim that

$$a \notin [A, A] + \mathbb{F} \cdot 1. \tag{4}$$

Indeed, if the element a lies in the right hand side then there exists a subalgebra $A_2 \subset A$ such that

$$A_1 \subset A_2$$
, $A_2 \cong M_n(\mathbb{F})$ and $a \in [A_2, A_2] + \mathbb{F} \cdot 1$.

Since *p* divides *n* it follows that $tr_{A_2}(1) = 0$, hence $tr_{A_2}(a) = 0$.

As above, let C be the centralizer of the subalgebra A_1 in A_2 , so that $A_2 = A_1 \otimes_{\mathbb{F}} C$. The algebra C is isomorphic to the matrix algebra $M_m(\mathbb{F})$, where $m = n/p^k$. The number m is coprime with p, hence $\operatorname{tr}_C(1) = m \neq 0$. Now,

$$\operatorname{tr}_{A_2}(a) = \operatorname{tr}_{A_2}(a \otimes 1) = \operatorname{tr}_{A_1}(a) \cdot \operatorname{tr}_{C}(1) \neq 0.$$

This contradiction completes the proof of the claim (4).

If
$$A = [A, A] + \mathbb{F} \cdot 1$$
 then

$$A^{(-)}/\mathbb{F} \cdot 1 \cong [A,A]/[A,A] \cap \mathbb{F} \cdot 1$$

In this case, the Lie algebra $A^{(-)}/\mathbb{F} \cdot 1$ is simple by I.N. Herstein's Theorem (see [6]). If $A = [A, A] + \mathbb{F} \cdot 1$ is a proper subspace of A then

$$[A,A] + \mathbb{F} \cdot 1 / \mathbb{F} \cdot 1$$

is a proper ideal in the Lie algebra $A^{(-)} / \mathbb{F} \cdot 1$. This completes the proof of Theorem 1. \square

Consider the homomorphism

$$\varphi: A^{(-)} \to \operatorname{Inder}(A), \quad \varphi(a) = \operatorname{ad}(a), \quad a \in A.$$

Since Ker $\varphi = Z(A) = \mathbb{F} \cdot 1$ it follows that Inder $(A) \cong A^{(-)} / \mathbb{F} \cdot 1$.

Corollary 1. (1) The Lie algebra [Inder(A), Inder(A)] is simple.

(2) The Lie algebra Inder(A) is simple if and only if $char \mathbb{F} = 0$ or $char \mathbb{F} = p > 0$ and $\nu_p(\mathbf{st}(A)) = 0$ or ∞ .

Proof. The Lie algebra

$$[Inder(A), Inder(A)] \cong [A, A] / [A, A] \cap \mathbb{F} \cdot 1$$

is simple by I.N. Herstein's Theorem (see [6]). The part (2) immediately follows from Theorem 1.

2 Proof of the Theorem 2

Lemma 1. Let A be an infinite-dimensional locally matrix algebra. Let $d \in Der(A)$ and suppose that d([A, A]) lies in the center of the algebra A. Then d = 0.

Proof. Let Z be the center of A. If A is not unital then $Z = \{0\}$. If A is unital then $Z = \mathbb{F} \cdot 1$. Consider a subalgebra $A_1 \subset A$ such that $A_1 \cong M_n(\mathbb{F})$ for some $n \geq 4$, and let $\varphi : M_n(\mathbb{F}) \to A_1$ be an isomorphism. An arbitrary matrix unit e_{ij} , $1 \leq i \neq j \leq n$, lies in $[M_n(\mathbb{F}), M_n(\mathbb{F})]$. Choose distinct indices $1 \leq i, j, s, t \leq n$. Then $e_{ij} = [e_{is}, e_{sj}]$. Hence,

$$d(\varphi(e_{ij})) \in Z\varphi(e_{is}) + Z\varphi(e_{sj}).$$

On the other hand, $e_{ij} = [e_{it}, e_{tj}]$, which implies $d(\varphi(e_{ij})) \in Z\varphi(e_{it}) + Z\varphi(e_{tj})$. Hence, $d(\varphi(e_{ij})) = 0$. The algebra $M_n(\mathbb{F})$ is generated by matrix units e_{ij} , $1 \le i \ne j \le n$. So, $d(\varphi(M_n(\mathbb{F}))) = \{0\}$, and therefore $d(A) = \{0\}$. This completes the proof of the Lemma. \square

In [1], we showed that for an arbitrary locally matrix algebra A the ideal Inder(A) is dense in the Lie algebra Der(A) in the Tykhonoff topology.

Proof of Theorem 2. (1) Let I be a nonzero closed ideal of the Lie algebra [Der(A), Der(A)]. Choose a nonzero element $d \in I$. For an arbitrary element $a \in [A, A]$ we have

$$[d, ad(a)] = ad(d(a)) \in [Inder(A), Inder(A)].$$

By Lemma 1, we can choose an element $a \in [A, A]$ so that $d(a) \neq 0$. Hence,

$$I \cap [\operatorname{Inder}(A), \operatorname{Inder}(A)] \neq \{0\}.$$

Since the Lie algebra [Inder(A), Inder(A)] is simple it follows that

$$[Inder(A), Inder(A)] \subseteq I$$
.

We have mentioned above that Inder(A) is dense in the Lie algebra Der(A) in the Tykhonoff topology; see [1]. Hence, [Inder(A), Inder(A)] is dense in the Lie algebra [Der(A), Der(A)]. Since the ideal I is closed we conclude that I = [Inder(A), Inder(A)].

(2) Let *I* be a nonzero closed ideal of the Lie algebra Der(A). Choose a nonzero derivation $d \in I$. By Lemma 1, there exists an element $a \in A$ such that d(a) does not lie in $\mathbb{F} \cdot 1$, hence

$$0 \neq \operatorname{ad}(d(a)) = [d,\operatorname{ad}(a)] \in I \cap \operatorname{Inder}(A).$$

Suppose that char $\mathbb{F} = 0$ or char $\mathbb{F} = p > 0$ and $\nu_p(\mathbf{st}(A)) = 0$ or ∞ . Then the Lie algebra Inder(A) is simple, and therefore Inder(A) $\subseteq I$. Since Inder(A) is dense in Der(A) (see [1]) and the ideal I is closed it follows that $I = \mathrm{Der}(A)$.

Now suppose that $\nu_p(\mathbf{st}(A)) = k$, $1 \le k < \infty$. There exists a subalgebra A_1 in A such that

$$1 \in A_1$$
 and $A_1 \cong M_{p^k}(\mathbb{F})$.

Choose an element $a \in A_1$ such that $\operatorname{tr}_{A_1}(a) \neq 0$. We will show that the inner derivation $\operatorname{ad}(a)$ does not lie in the closure

$$\overline{[\operatorname{Der}(A),\operatorname{Der}(A)]} = \overline{[\operatorname{Inder}(A),\operatorname{Inder}(A)]},$$

and therefore $\overline{[\operatorname{Inder}(A),\operatorname{Inder}(A)]}$ is a proper closed ideal in the Lie algebra $\operatorname{Der}(A)$. If $\operatorname{ad}(a)$ lies in the closure of $[\operatorname{Inder}(A),\operatorname{Inder}(A)]$ then, by the definition of the Tykhonoff topology, there exist elements $a_i,b_i\in A$, $1\leq i\leq n$, such that

$$\left(\operatorname{ad}(a) - \sum_{i=1}^{n} \operatorname{ad}\left([a_i, b_i]\right)\right)(A_1) = \{0\}.$$

316 Bezushchak O.

There exists a subalgebra $A_2 \subset A$ such that

$$A_1 \subseteq A_2$$
, $a, a_i, b_i \in A_2$, $1 \le i \le n$, and $A_2 \cong M_m(\mathbb{F})$.

As above, we consider the centralizer C of the subalgebra A_1 in A_2 such that

$$A_2 = A_1 \otimes_{\mathbb{F}} C$$
, $C \cong M_t(\mathbb{F})$ and $t = m/p^k$ is not a multiple of p .

Consider the element

$$b = \sum_{i=1}^{n} [a_i, b_i] \in A_2.$$

The difference a - b commutes with all elements from A_1 , hence $a - b = c \in C$.

In the algebra A_2 we have

$$\operatorname{tr}_{A_2}(c) = \operatorname{tr}_{A_2}(1 \otimes c) = \operatorname{tr}_{A_1}(1) \cdot \operatorname{tr}_{C}(c) = 0.$$

Hence, $\operatorname{tr}_{A_2}(a) = \operatorname{tr}_{A_2}(b) + \operatorname{tr}_{A_2}(c) = 0$.

On the other hand, $\operatorname{tr}_{A_2}(a) = \operatorname{tr}_{A_2}(a \otimes 1) = \operatorname{tr}_{A_1}(a) \cdot t \neq 0$. This contradiction completes the proof of Theorem 2.

REFERENCES

- [1] Bezushchak O. Derivations and automorphisms of locally matrix algebras. arXiv:2007.15716v1 [math.RA]
- [2] Bezushchak O., Oliynyk B. *Unital locally matrix algebras and Steinitz numbers*. J. Algebra Appl. 2020, **19** (09), 2050180. doi:10.1142/S0219498820501807
- [3] Bezushchak O., Oliynyk B. *Primary decompositions of unital locally matrix algebras*. Bull. Math. Sci. 2020, **10** (1), 2050006 (7 pages). doi:10.1142/S166436072050006X
- [4] Drozd Yu.A., Kirichenko V.V. Finite Dimensional Algebras. Springer-Verlag, Berlin–Heidelberg–New York, 1994.
- [5] Glimm J.G. On a certain class of operator algebras. Trans. Amer. Math. Soc. 1960, 95 (2), 318–340.
- [6] Herstein I.N. On the Lie and Jordan rings of a simple associetive ring. Amer. J. Math. 1955, 77 (2), 279–285.
- [7] Jacobson N. Lie algebras. Dover Publications Inc., New Yourk, 1979.
- [8] Jacobson N. Structure of rings. Colloquium Publications, 37, 1956.
- [9] Köthe G. Schiefkörper unendlichen Ranges uber dem Zentrum. Math. Ann. 1931, 105, 15-39.
- [10] Kurosh A. Direct decompositions of simple rings. Rec. Math. 1942, 11 (53) (3), 245–264.
- [11] Seligman G.B. Modular Lie Algebras. Springer-Verlag, Berlin-Heidelberg, 1967.
- [12] Steinitz E. Algebraische Theorie der Körper. J. Reine Angew. Math. 1910, 137, 167–309.
- [13] Willard S. General Topology. Dover Publications, Mineola, New York, 2004.

Received 07.08.2020

Безущак О. Про лієву структуру локально матричних алгебр // Карпатські матем. публ. — 2020. — Т.12, \mathbb{N}^2 . — С. 311–316.

Нехай A — унітальна локально матрична алгебра над полем $\mathbb F$ характеристики відмінної від 2. Знайдено необхідну і достатню умову того, щоб алгебра Λ і $A/\mathbb F\cdot 1$ була простою, а алгебра Λ і диференціювань $\mathrm{Der}(A)$ — топологічно простою. Сформульована умова залежить лише від числа Стейніца алгебри A.

Ключові слова і фрази: локально матрична алгебра, диференціювання.