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Decomposition and stability of linear singularly perturbed
systems with two small parameters

Osypova O.V., Pertsov A.S., Cherevko I.M.

In the domain Q = {(t,€1,€2) : t € R, &1 > 0,&, > 0}, we consider a linear singularly perturbed
system with two small parameters

€1X1 = Aqoxo + A11x1 + Appx2,

{ %o = Agoxo + Ag1x1 + A2z,
€182%2 = AngXp + A21X1 + A2nXa,

where xg € R™, x; € R™, x, € R™. In this paper, schemes of decomposition and splitting of
the system into independent subsystems by using the integral manifolds method of fast and slow
variables are investigated. We give the conditions under which the reduction principle is truthful to
study the stability of zero solution of the original system.
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Introduction

The theory of singularly perturbed systems of differential equations has been intensively
developed recently, and its methods have been widely used for the study of various problems
of science and technique. Singularly perturbed models describe dynamic processes in physics,
chemical kinetics, theory of automatic control, hydroscopic systems, economical and biological
processes etc.

For singularly perturbed systems, an important task is to develop asymptotic methods for
investigating the qualitative behavior of both individual solutions and their sets. Effective
method of investigation of singularly perturbed systems is integral manifold method [4, 11],
which allows to reduce the dimension of the initial system on the integral manifold. In many
applications of singularly perturbed systems an important role is played by the transformation
of variables, which makes it possible to decompose the initial system to a block-triangular
form [7]. In particular, algorithms for constructing asymptotic decompositions of an integral
manifold by degrees of a small parameter, that can be effectively implemented in systems of
computer algebra, are investigated in [3,6].

The application of the integral manifold method to the decomposition and splitting of lin-
ear singularly perturbed systems into independent fast and slow subsystems proved to be
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interesting and effective [2,9,10]. In particular, for a linear system

{ X = Anx —+ Alzy,
gy = Axx + Azzy

were established the conditions for existence of variables substitution
x =u+¢eP(te)y,
y=v+ H(te€)x,

which transforms the initial system into two independent subsystems

u= (All + A12H) u,
&0 = (Azz — SHAlz) 0.

The application of the method of integral manifolds of fast and slow variables to the study-
ing of linear singularly perturbed systems with many small parameters was carried out in
[1,5,8,12]. In this paper, we establish the reduction principle for investigation the stability of
linear singularly perturbed systems with two small parameters.

1 Decomposition

In the domain Q) = {(t,€1,€2) : t € R, &1 > 0,ep > 0}, we consider a linear singularly per-
turbed system
Xo = Aogoxo + Ag1x1 + Agzx2,
e1%1 = A10X0 + A11x1 + A12x2, 1)
€1€2%p = Agoxo + An1x1 + Axnxz,
where xg € R™, x; € R™, xp € R™, Aj; = Ajj (t),i,]j = 0,2, are n; n; matrices, and €1, &3 are
small positive parameters.
Let the following conditions hold:

C.1) matrices Aj(t), i,j = 0,2, are uniformly bounded in t € R by a positive constant M;

C.2) eigenvalues A; = A;(t), i = 1, np, of the matrix Ay (t) satisfy the inequality
Re); < —28 < 0.

Let us make in (1) the substitution
X0 = Yo +e1e2How, x1 =y +exHiw, xp=w+ Poxg+ Prxy, (2)

where Hy, Hy, Py, P; are matrix functions of appropriate dimensions.

If matrices Py and P; are solutions of the system
{ 81821:’0 = Ay + ApPy — e162PyAgo — €1862Pg0 A Py — €2P1 A1 — €2P1 A1 P, 3)
e162P) = Apy + Ap Py — e180Pg A1 — €182P0Agp P — e2P1 A1 — e2P1 APy,

then system (1) will have the following form
o = (Aoo + AoxPo) yo + (Aot + AnxPr) y1 + (e1€2A00Ho + €2A0 Hi — €162 Ho
+A()2 (E + €1€2P()H0 =+ €2P1H1) — H() (Azz — 8182POA02 — €2P1A12))w,
e1y1 = (A1 + A12Po) yo + (A1 + APr) y1 + (e162A10Ho + €2A11Hy — e162Hy - (4)
+ A1z (E + e162PgHy + €2 P Hy) — Hy (Ap — e162P0 Az — €2P1 Avp) ) w,
8182?1') = (Azz — €1€2P0A02 — €2P1A12) w.
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If matrices Hy and Hj are solutions of the system
e1eoHo = e162A00H0 + Aoz (E + €162PyHo + €2 P1Hy)
—Ho (A — e182P0Apz — e2P1 A1z) +e2A01 Hy,

e162Hy = e160A10Ho + A1z (E + e162P0Hy + €2P1 Hy)
—H; (Ap —e182P0Ap — e2P1A1p) + €2A11Hy,

(5)

then system (4) will have the form

Yo = Boovo + Boivi,
€11 = Bioyo + By, (6)
€162 = Byw,

where Bij = Ai]‘ + Aizpj, i,j =01, B22 = A22 - 8182P0A02 - 82P1A12.

Under conditions C.1), C.2) and a sufficiently small value of the small parameter e, > 0,
in [8] itis established the existence of bounded solutions of systems (3) and (5) by which system
(1) is reduced to the form (6).

Suppose that for the system (1) we should solve a Cauchy problem with initial conditions
(to, X00, X10, X20)- Let us show that there is a solution of the system (6) with initial conditions
(to, Yoo, Y10, wo) for which the equalities (2) are true. By the uniqueness of the solution, it suf-
fices to show that (2) holds for t = ¢, that is

X0 = Yoo + €162 HYwo,
x10 = Y10 + e2HYwy, (7)
X0 = W + ngoo + Pi)xl().

From (7) we can get
wo = X0 — PYxo0 — PYx10,
y10 = x10 — €2HY (x20 — Pdx00 — PYx1), (8)
Yoo = X0 — €162HY) (x20 — PYx00 — PPx10).
Therefore, each solution of the system (1) can be represented as (2), where vy, y1, w is the solu-
tion of the system (6) with initial conditions (8).
Let us present this solution as

X0 = x0(t,€1,€2) - yO(tl‘C'l/SZ) + 901(t151152)/
x1 = x1(t,€1,€2) = y1(t €1, €2) + @2(t, €1, €2), )
xp = x2(t,€1,€2) = Poyo(t, €1,€2) + Piy1(t, €1, €2) + @3(t, €1, €2),

where

p1(t,e1,€2) = e1eaHJwo, 2 (t, €1, €2) = eaHwy, p3(t, €1, €2) = w+ Pogy(t, €1, e2)+ Propa(t, €1, €2).

2 Splitting and reduction principle

Denote Q(t,s, €1, €2) the fundamental matrix of the equation e1e2%) = Axxs.
The uniform boundedness of the matrix Ay in the domain () and condition C.2) provide

the estimate (see [9,11,12])

b (t—s)

HQ(tr s,€1,€2) H < Ke 12 (10)

for some K > 0 and any —oo <5 <t < oo.
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Lemma 1. Let conditions C.1), C.2) be true. Then there exists €, such that for 0 < &, < &, the
fundamental matrix Q(t,s, €1, €») of the equation

e182w = (A — €182P0Agp — e2P1 A1p) w (11)

satisfies the estimate ;
Q(t,s,e1,62)| < Ke a9, (12)

Proof. Rewrite the equation (11) as
18w = Ax»w — (81€2P0A02 + €2P1A12) w

The fundamental matrix @(t, s, €1, €2) satisfies the integral equation

_ t _
Q=0- /t Q (e182Py Az + €2P1 A1) Qds.
0

Using estimation (10), condition C.1) and inequalities for matrices || Pp| 5 | < &M
(see [8]), we have
— _ 3B (4 t KZM? | _3pl=s)
‘Q) < Ke z () + B (€182 + €2) )Q‘e *1%2 (s,
to
Applying the Gronwall-Bellman inequality, we obtain
)Q 62831% < Kleffo 8182+€2) = Kqe Zéwz (8182+£2)(t7t0).
_ 1<2M2 3B
Therefore, < Ke< (ere2e2) 25182>t. The last inequality for ¢ < m = g takes
£2(€1
the form
— —F (t-s)
‘Q‘ < Ke 122 .
O

From the boundedness of the matrices Hy, H; and the estimate (12) we obtain that there is
such positive number N that for t > tj the following inequalities hold

B (t—to)

|p1(t,e1,€2)| < e1eaNe” a2V |wy|,

__P
|@2(t,€1,€2)] < e2Ne 2! t0)|w0| (13)
B
@3t e1,€2)] < Ne~ @1 gy
From the obtained relations (9) and estimates (13) we obtain that the system (1) has the

integral manifold
Xy = Poxo + Prxy,

the motion on which describes the subsystem of the first two equations of the system (6)

{ Yo = Booyo + Bory1, (14)
191 = Bioyo + Buyi.

Any solution of system (1) is represented as the sum of some solution that lies on the in-
tegral manifold and exponentially decreasing terms. From the representation (9) and the es-
timates (13) we obtain statements for the investigation of the stability of the zero solution of
system (1).
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Theorem 1. Let the conditions C.1), C.2) be true. Then for sufficiently small €1,¢, the zero
solution of system (1) is stable (asymptotically stable, unstable) if and only if the zero solution
of subsystem (14) is stable (asymptotically stable, unstable).

Let us now consider system (6), which has already been studied in [9,10]. Let the following
condition be true

C.3) eigenvalues A; = A;(t), i = 0,17, of the matrix By (f, €1, €2) satisfy the inequality

ReA; < =29 <0.

Then there exists ] > 0 such that for 0 < &1 < ] the substitution of variables (see [8,9])

{ yo =u+e H(t, e1,€2)0, (15)
y1 =v+ P(t,e1,€)y0
splits the system (6) into independent subsystems
{ 1 = (Boo + Bo1)Hu, (16)
€10 = (Bll — €1HB()1)U.

The matrix functions P and H are uniformly bounded solutions of such equations

{ Slp. = 81(300 —+ BOlH)P + Bo1 — P(Bll — €1HB01),
e1H = Byo + B11H — e1H(Boo — Bo1 H).

By expressing the old variables x, x1, x, through the new ones u, v, w we obtain the follow-
ing result.

Theorem 2 ([8]). Let conditions C.1), C.2), C.3) be satistied. Then for sufficiently small values
€1, €2, there is a nondegenerate substitution of variables

X0 E €1H €1€2H0
x1 | = P E+ ¢ PH eoHp v |,
X7 Py+ PP P+¢ (PO + Plp) H E+¢e1e,PyHy + epPiHy w

by which system (1) is transformed to three independent subsystems

1t = (Boo + Bo1H) u,
€10 = (Bll — SlHB()l) 0,
€182 = Bzzw.

In system (16) the first equation describes the behavior of system (6) on the invariant man-
ifold of slow variables, and the second equation provides the behavior of system (6) on the
invariant manifold of fast variables.

From representation (15) under condition C.3), it was established in [9,10] that the stability
of system (6) is equivalent to the stability of the first equation of system (16).

Let us summarize these considerations in the form of reduction principle for investigating
the stability of the zero solution of the original system (1).
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Theorem 3. Let conditions C.1), C.2), C.3) be satisfied. Then for sufficiently small values €1, €
the zero solution of system (1) is stable (asymptotically stable, unstable) if and only if the zero
solution of equation

u’(t) = (BOO + BOlH) u
is stable (asymptotically stable, unstable).

Example. As an example of application of construction of splitting transformation and
application of the principle of reduction we will consider system of singularly perturbed dif-
ferential equations

Xo = X0 + x1 + x2,
€1X1 = xg9 + x1 + X2, (17)
€1€2Xy = —Xp — X1 — X».

Let us make in (17) the substitution
xo = Yo te1&2hpw, x1 =y1+emw, X2 =w+ poxo+ p1¥x1- (18)

To find the coefficients py, p1, ho, h1, taking into account the stationarity and form of the
system (17) from relations (3) and (5) we obtain the following systems of equations:

{ —1— po — e162p0 — €1€2P3 — €2p1 — €2p0p1 = 0,
—1— p1 — e162p0 — €1€2P0pP1 — €2P1 — €2p7 =0,

{ ho(—l + €162 —|—€2) =1,
hi(—1+4e1e2+¢3) =1

Finding the bounded solutions of these systems, we get

1
—1+e18p+ ey

po=p1=-1, hy=h =

Thus, the substitution of variables (18) takes the form

€1&2 €
w, X1=y1+ w
—1+4+¢€1e0+ ¢ —1+4+¢€1e0+ ¢

Xo = Yo+ , Xy =W — Xg— X1.

In this case, the system (17) is split into the system of independent equations

Yo =0,
e1y1 =0, (19)
e160W = (—1+ €162 + €2)w.

According to Theorem 3, the stability of the zero solution of system (17) is equivalent to the
stability of the zero solution of the first equation of system (19). Thus, based on the principle of
reduction, we can conclude that the zero solution of system (17) is stable, but not asymptotic.
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B obaacti Q = {(f,€1,€2) : t € R,e1 > 0,2 > 0} AOCAIAXYETBCS AiHiNHA CHMHIYASPHO 36ypeHa
CHCTeMa 3 ABOMA MAaAVMM ITapaMeTpamu

€1X1 = Aqoxo + A11x1 + A1xo,

{ Xo = Aooxo + Ap1x1 + Axo,
€1€2%2 = Aoxo + Ap1x1 + Anxo,

ae xg € R™, x; € R™, xp € R". Po3rAsIHyTO CxeMM AeKOMITO3MIIii Ta pO3IIENIACHHS CUCTeMU
Ha He3aAeXHi IIACKCTeMM 3a AOTIOMOIOIO iHTerpaAbHMX MHOTOBMAIB IIBMAKMX Ta MOBIABHMX 3MiH-
HUX. BcTaHOBAEHO YMOBYM, ITPM BMKOHAHHI SIKMX CIIpaBeAAMBMI IIPMHLIMII 3BeACHHS AASL AOCAIAXKeH-
HsI CTilIKOCTi Hy ABOBOTO PO3B’SI3KY BMXiAHOI CHCTEMIL.

Koouosi cnosea i hpasu: CHHTYASIpHO 36ypeHa cucTeMa, AeKOMIIO3MILisl, pO3IIENAeHHS, CTilKiCTb,
iHTerpaAbHIIT MHOTOBMA,



