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Decomposition and stability of linear singularly perturbed
systems with two small parameters

Osypova O.V., Pertsov A.S., Cherevko I.M.

In the domain Ω = {(t, ε1, ε2) : t ∈ R, ε1 > 0, ε2 > 0}, we consider a linear singularly perturbed

system with two small parameters







ẋ0 = A00x0 + A01x1 + A02x2,

ε1ẋ1 = A10x0 + A11x1 + A12x2,

ε1ε2ẋ2 = A20x0 + A21x1 + A22x2,

where x0 ∈ R
n0 , x1 ∈ R

n1 , x2 ∈ R
n2 . In this paper, schemes of decomposition and splitting of

the system into independent subsystems by using the integral manifolds method of fast and slow

variables are investigated. We give the conditions under which the reduction principle is truthful to

study the stability of zero solution of the original system.
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Introduction

The theory of singularly perturbed systems of differential equations has been intensively

developed recently, and its methods have been widely used for the study of various problems

of science and technique. Singularly perturbed models describe dynamic processes in physics,

chemical kinetics, theory of automatic control, hydroscopic systems, economical and biological

processes etc.

For singularly perturbed systems, an important task is to develop asymptotic methods for

investigating the qualitative behavior of both individual solutions and their sets. Effective

method of investigation of singularly perturbed systems is integral manifold method [4, 11],

which allows to reduce the dimension of the initial system on the integral manifold. In many

applications of singularly perturbed systems an important role is played by the transformation

of variables, which makes it possible to decompose the initial system to a block-triangular

form [7]. In particular, algorithms for constructing asymptotic decompositions of an integral

manifold by degrees of a small parameter, that can be effectively implemented in systems of

computer algebra, are investigated in [3, 6].

The application of the integral manifold method to the decomposition and splitting of lin-

ear singularly perturbed systems into independent fast and slow subsystems proved to be
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interesting and effective [2, 9, 10]. In particular, for a linear system
{

ẋ = A11x + A12y,

εẏ = A21x + A22y

were established the conditions for existence of variables substitution
{

x = u + εP(t, ε)v,

y = v + H(t, ε)x,

which transforms the initial system into two independent subsystems

u̇ = (A11 + A12H) u,

εv̇ = (A22 − εHA12) v.

The application of the method of integral manifolds of fast and slow variables to the study-

ing of linear singularly perturbed systems with many small parameters was carried out in

[1, 5, 8, 12]. In this paper, we establish the reduction principle for investigation the stability of

linear singularly perturbed systems with two small parameters.

1 Decomposition

In the domain Ω = {(t, ε1, ε2) : t ∈ R, ε1 > 0, ε2 > 0}, we consider a linear singularly per-

turbed system






ẋ0 = A00x0 + A01x1 + A02x2,

ε1ẋ1 = A10x0 + A11x1 + A12x2,

ε1ε2 ẋ2 = A20x0 + A21x1 + A22x2,

(1)

where x0 ∈ R
n0 , x1 ∈ R

n1 , x2 ∈ R
n2 , Aij = Aij (t), i, j = 0, 2, are ni × nj matrices, and ε1, ε2 are

small positive parameters.

Let the following conditions hold:

C.1) matrices Aij(t), i, j = 0, 2, are uniformly bounded in t ∈ R by a positive constant M;

C.2) eigenvalues λi = λi(t), i = 1, n2, of the matrix A22(t) satisfy the inequality

Re λi ≤ −2β < 0.

Let us make in (1) the substitution

x0 = y0 + ε1ε2H0w, x1 = y1 + ε2H1w, x2 = w + P0x0 + P1x1, (2)

where H0, H1, P0, P1 are matrix functions of appropriate dimensions.

If matrices P0 and P1 are solutions of the system
{

ε1ε2Ṗ0 = A20 + A22P0 − ε1ε2P0A00 − ε1ε2P0A02P0 − ε2P1A10 − ε2P1A12P0,

ε1ε2Ṗ1 = A21 + A22P1 − ε1ε2P0A01 − ε1ε2P0A02P1 − ε2P1A11 − ε2P1A12P1,
(3)

then system (1) will have the following form






























ẏ0 = (A00 + A02P0) y0 + (A01 + A02P1) y1 +
(

ε1ε2 A00H0 + ε2A01 H1 − ε1ε2Ḣ0

+A02 (E + ε1ε2P0H0 + ε2P1H1)− H0 (A22 − ε1ε2P0A02 − ε2P1A12)
)

w,

ε1ẏ1 = (A10 + A12P0) y0 + (A11 + A12P1) y1 +
(

ε1ε2A10 H0 + ε2 A11H1 − ε1ε2Ḣ1

+A12 (E + ε1ε2P0H0 + ε2P1H1)− H1 (A22 − ε1ε2P0A02 − ε2P1A12)
)

w,

ε1ε2ẇ = (A22 − ε1ε2P0A02 − ε2P1A12)w.

(4)
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If matrices H0 and H1 are solutions of the system


















ε1ε2Ḣ0 = ε1ε2 A00H0 + A02 (E + ε1ε2P0H0 + ε2P1H1)

−H0 (A22 − ε1ε2P0A02 − ε2P1A12) + ε2 A01H1,

ε1ε2Ḣ1 = ε1ε2 A10H0 + A12 (E + ε1ε2P0H0 + ε2P1H1)

−H1 (A22 − ε1ε2P0A02 − ε2P1A12) + ε2 A11H1,

(5)

then system (4) will have the form







ẏ0 = B00y0 + B01y1,

ε1ẏ1 = B10y0 + B11y1,

ε1ε2ẇ = B22w,

(6)

where Bij = Aij + Ai2Pj, i, j = 0, 1, B22 = A22 − ε1ε2P0A02 − ε2P1A12.

Under conditions C.1), C.2) and a sufficiently small value of the small parameter ε2 > 0,

in [8] it is established the existence of bounded solutions of systems (3) and (5) by which system

(1) is reduced to the form (6).

Suppose that for the system (1) we should solve a Cauchy problem with initial conditions

(t0, x00, x10, x20). Let us show that there is a solution of the system (6) with initial conditions

(t0, y00, y10, w0) for which the equalities (2) are true. By the uniqueness of the solution, it suf-

fices to show that (2) holds for t = t0, that is

x00 = y00 + ε1ε2H0
0w0,

x10 = y10 + ε2H0
1w0,

x20 = w0 + P0
0 x00 + P0

1 x10.

(7)

From (7) we can get

w0 = x20 − P0
0 x00 − P0

1 x10,

y10 = x10 − ε2H0
1

(

x20 − P0
0 x00 − P0

1 x10

)

,

y00 = x00 − ε1ε2H0
0

(

x20 − P0
0 x00 − P0

1 x10

)

.

(8)

Therefore, each solution of the system (1) can be represented as (2), where y0, y1, w is the solu-

tion of the system (6) with initial conditions (8).

Let us present this solution as

x0 = x0(t, ε1, ε2) = y0(t, ε1, ε2) + ϕ1(t, ε1, ε2),

x1 = x1(t, ε1, ε2) = y1(t, ε1, ε2) + ϕ2(t, ε1, ε2),

x2 = x2(t, ε1, ε2) = P0y0(t, ε1, ε2) + P1y1(t, ε1, ε2) + ϕ3(t, ε1, ε2),

(9)

where

ϕ1(t, ε1, ε2)= ε1ε2H0
0w0, ϕ2(t, ε1, ε2)= ε2H0

1w0, ϕ3(t, ε1, ε2)= w+ P0ϕ1(t, ε1, ε2)+ P1 ϕ2(t, ε1, ε2).

2 Splitting and reduction principle

Denote Q(t, s, ε1, ε2) the fundamental matrix of the equation ε1ε2ẋ2 = A22x2.

The uniform boundedness of the matrix A22 in the domain Ω and condition C.2) provide

the estimate (see [9, 11, 12])
∥

∥

∥Q(t, s, ε1, ε2)
∥

∥

∥ ≤ Ke
− 3β

2ε1ε2
(t−s)

(10)

for some K > 0 and any −∞ < s ≤ t < ∞.
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Lemma 1. Let conditions C.1), C.2) be true. Then there exists ε2 such that for 0 < ε2 ≤ ε2 the

fundamental matrix Q(t, s, ε1, ε2) of the equation

ε1ε2ẇ = (A22 − ε1ε2P0A02 − ε2P1A12)w (11)

satisfies the estimate
∣

∣

∣
Q(t, s, ε1, ε2)

∣

∣

∣
≤ Ke

− β
ε1ε2

(t−s)
. (12)

Proof. Rewrite the equation (11) as

ε1ε2ẇ = A22w − (ε1ε2P0A02 + ε2P1A12) w.

The fundamental matrix Q(t, s, ε1, ε2) satisfies the integral equation

Q = Q −
∫ t

t0

Q (ε1ε2P0A02 + ε2P1 A12) Qds.

Using estimation (10), condition C.1) and inequalities for matrices
∥

∥P0

∥

∥ ≤ KM
β ,

∥

∥P1

∥

∥ ≤ KM
β

(see [8]), we have

∣

∣

∣Q
∣

∣

∣ ≤ Ke
− 3β

2ε1ε2
(t−s)

+
∫ t

t0

K2M2

β
(ε1ε2 + ε2)

∣

∣

∣Q
∣

∣

∣e
− 3β(t−s)

2ε1ε2 ds.

Applying the Gronwall-Bellman inequality, we obtain

∣

∣

∣
Q
∣

∣

∣
e

3βt
2ε1ε2 ≤ K1e

∫ t
t0

K2M2

β (ε1ε2+ε2)ds
= K1e

K2M2

β (ε1ε2+ε2)(t−t0).

Therefore,
∣

∣Q
∣

∣ ≤ Ke

(

K2M2

β (ε1ε2+ε2)− 3β
2ε1ε2

)

t
. The last inequality for ε <

β√
2ε2(ε1+1)KM

= ε2 takes

the form
∣

∣

∣
Q
∣

∣

∣
≤ Ke

− β
ε1ε2

(t−s)
.

From the boundedness of the matrices H0, H1 and the estimate (12) we obtain that there is

such positive number N that for t ≥ t0 the following inequalities hold

|ϕ1(t, ε1, ε2)| ≤ ε1ε2Ne
− β

ε1ε2
(t−t0)|w0|,

|ϕ2(t, ε1, ε2)| ≤ ε2Ne
− β

ε1ε2
(t−t0)|w0|,

|ϕ3(t, ε1, ε2)| ≤ Ne
− β

ε1ε2
(t−t0)|w0|.

(13)

From the obtained relations (9) and estimates (13) we obtain that the system (1) has the

integral manifold

x2 = P0x0 + P1x1,

the motion on which describes the subsystem of the first two equations of the system (6)
{

ẏ0 = B00y0 + B01y1,

ε1ẏ1 = B10y0 + B11y1.
(14)

Any solution of system (1) is represented as the sum of some solution that lies on the in-

tegral manifold and exponentially decreasing terms. From the representation (9) and the es-

timates (13) we obtain statements for the investigation of the stability of the zero solution of

system (1).
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Theorem 1. Let the conditions C.1), C.2) be true. Then for sufficiently small ε1, ε2 the zero

solution of system (1) is stable (asymptotically stable, unstable) if and only if the zero solution

of subsystem (14) is stable (asymptotically stable, unstable).

Let us now consider system (6), which has already been studied in [9,10]. Let the following

condition be true

C.3) eigenvalues λi = λi(t), i = 0, n1, of the matrix B11(t, ε1, ε2) satisfy the inequality

Reλi ≤ −2γ < 0.

Then there exists ε∗1 > 0 such that for 0 < ε1 < ε∗1 the substitution of variables (see [8, 9])

{

y0 = u + ε1H(t, ε1, ε2)v,

y1 = v + P(t, ε1, ε2)y0
(15)

splits the system (6) into independent subsystems

{

u̇ = (B00 + B01)Hu,

ε1v̇ = (B11 − ε1HB01)v.
(16)

The matrix functions P and H are uniformly bounded solutions of such equations

{

ε1Ṗ = ε1(B00 + B01H)P + B01 − P(B11 − ε1HB01),

ε1Ḣ = B10 + B11H − ε1H(B00 − B01H).

By expressing the old variables x0, x1, x2 through the new ones u, v, w we obtain the follow-

ing result.

Theorem 2 ([8]). Let conditions C.1), C.2), C.3) be satisfied. Then for sufficiently small values

ε1, ε2, there is a nondegenerate substitution of variables





x0

x1

x2



 =





E

P

P0 + P1P

ε1H

E + ε1PH

P1 + ε1 (P0 + P1P) H

ε1ε2H0

ε2H1

E + ε1ε2P0H0 + ε2P1H1









u

v

w



 ,

by which system (1) is transformed to three independent subsystems







u̇ = (B00 + B01H) u,

ε1v̇ = (B11 − ε1HB01) v,

ε1ε2ẇ = B22w.

In system (16) the first equation describes the behavior of system (6) on the invariant man-

ifold of slow variables, and the second equation provides the behavior of system (6) on the

invariant manifold of fast variables.

From representation (15) under condition C.3), it was established in [9,10] that the stability

of system (6) is equivalent to the stability of the first equation of system (16).

Let us summarize these considerations in the form of reduction principle for investigating

the stability of the zero solution of the original system (1).
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Theorem 3. Let conditions C.1), C.2), C.3) be satisfied. Then for sufficiently small values ε1, ε2

the zero solution of system (1) is stable (asymptotically stable, unstable) if and only if the zero

solution of equation

u′(t) = (B00 + B01H) u

is stable (asymptotically stable, unstable).

Example. As an example of application of construction of splitting transformation and

application of the principle of reduction we will consider system of singularly perturbed dif-

ferential equations






ẋ0 = x0 + x1 + x2,

ε1ẋ1 = x0 + x1 + x2,

ε1ε2 ẋ2 = −x0 − x1 − x2.

(17)

Let us make in (17) the substitution

x0 = y0 + ε1ε2h0w, x1 = y1 + ε2h1w, x2 = w + p0x0 + p1x1. (18)

To find the coefficients p0, p1, h0, h1, taking into account the stationarity and form of the

system (17) from relations (3) and (5) we obtain the following systems of equations:

{ −1 − p0 − ε1ε2 p0 − ε1ε2p2
0 − ε2p1 − ε2 p0 p1 = 0,

−1 − p1 − ε1ε2 p0 − ε1ε2p0 p1 − ε2 p1 − ε2p2
1 = 0,

{

h0(−1 + ε1ε2 + ε2) = 1,

h1(−1 + ε1ε2 + ε2) = 1.

Finding the bounded solutions of these systems, we get

p0 = p1 = −1, h0 = h1 =
1

−1 + ε1ε2 + ε2
.

Thus, the substitution of variables (18) takes the form

x0 = y0 +
ε1ε2

−1 + ε1ε2 + ε2
w, x1 = y1 +

ε2

−1 + ε1ε2 + ε2
w, x2 = w − x0 − x1.

In this case, the system (17) is split into the system of independent equations







ẏ0 = 0,

ε1ẏ1 = 0,

ε1ε2ẇ = (−1 + ε1ε2 + ε2)w.

(19)

According to Theorem 3, the stability of the zero solution of system (17) is equivalent to the

stability of the zero solution of the first equation of system (19). Thus, based on the principle of

reduction, we can conclude that the zero solution of system (17) is stable, but not asymptotic.
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Осипова О.В., Перцов А.С., Черевко I.М. Декомпозицiя та стiйкiсть лiнiйних сингулярно збуре-

них систем з двома малими параметрами // Карпатськi матем. публ. — 2021. — Т.13, №1. — C.

15–21.

В областi Ω = {(t, ε1, ε2) : t ∈ R, ε1 > 0, ε2 > 0} дослiджується лiнiйна сингулярно збурена

система з двома малими параметрами







ẋ0 = A00x0 + A01x1 + A02x2,

ε1ẋ1 = A10x0 + A11x1 + A12x2,

ε1ε2ẋ2 = A20x0 + A21x1 + A22x2,

де x0 ∈ R
n0 , x1 ∈ R

n1 , x2 ∈ R
n2 . Розглянуто схеми декомпозицii та розщеплення системи

на незалежнi пiдсистеми за допомогою iнтегральних многовидiв швидких та повiльних змiн-

них. Встановлено умови, при виконаннi яких справедливий принцип зведення для дослiджен-

ня стiйкостi нульового розв’язку вихiдної системи.

Ключовi слова i фрази: сингулярно збурена система, декомпозицiя, розщеплення, стiйкiсть,

iнтегральний многовид.


