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Two variables generalized Laguerre polynomials

Asad A.

The objective of this paper is to introduce and study the generalized Laguerre polynomial for
two variables. We prove that these polynomials are characterized by the generalized hypergeometric
function. An explicit representation, generating functions and some recurrence relations are shown.
Moreover, these polynomials appear as solutions of some differential equations.

Key words and phrases: Laguerre polynomial, hypergeometric function, generating function, re-
currence relation.
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1 Introduction

Laguerre polynomials play a great role in mathematics and in mathematical physics. They
can be found in many monographs on special functions. Special functions are particular math-
ematical functions which have more or less established names and notations due to their im-
portance in mathematical analysis, functional analysis, physics or other branches of mathe-
matics. There is no need for us to review the impact that classical orthogonal polynomial and
special functions theory have applications in mathematics, science, engineering and compu-
tations [1,4,12]. Laguerre, Hermite, Bateman, Gegenbauer and Chebyshev polynomial se-
quences have appeared in connection with the study of differential equations [2,3,6]. In [5,7],
the Laguerre and Hermite polynomials were introduced as examples of right orthogonal poly-
nomial sequences for appropriate right moment functionals of integral type. The Laguerre
polynomials were introduced and studied in [8]. In [9], it is shown that these polynomials
are orthogonal with respect to a weight function. Recently, the numerical inversion of Laplace
transforms using Laguerre polynomials has been given in [10]. A generalized form of the
Bateman polynomials is presented in [3,9]. The Laguerre polynomials for two variables are
defined in [7] by the generating function

3 L0 ()t = (1— gty el 70), O
n=0

By using [5], we can get the following equation
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From (2) we can easily derive
1 n
LM (x,y) = L¥ &)y na,)ny 1h1 <—1’l; 1 +06;§> , ©)

where n € Ny, 1+a € C\ Z,,x,y € C. Here and elsewhere, let N, R and C be the sets
of positive integers, real number and complex numbers, respectively, and let Ny := IN U {0}.
1F1 is a particular case of the well-known generalized hypergeometric series ,F;, p, ¢ € Ny,
given by [13, p. 73]

] - B A i

Here (1), denotes the Pochhammer symbol, which is defined for A, v € C in terms of the
familiar Gamma function I' by

M)y = T(A+v) _{1, v=0,A e C)\ {0}, -

T \AA+1D)--(A+n—1), v=neN,AeC.

It being read traditionally that (A)g := 1. The particular case « = 0 of (3), i.e.

La(x,y) = L (x,y) = y"1 Fy ("” 15) ’ ©

where n € Ny, x,y € C, is called simple Laguerre polynomial for two variables, which has
also accepted much attention. Numerous generating functions can produce (3) or (6), certain
formulas and properties, including these polynomials [1,9,11,13].

2 Two variables generalized Laguerre polynomials

We begin by defining two variables generalized Laguerre polynomials (TVGLP for short)
L) (x,y) by the follow ing functi
pn(X,y) by the tollowing generating function

L —xPt — - ) n .
(1 —yt)lte b ((1 — yt)P> - n;) Lup(x,y) £, peN; x,y,acC. 7)

One may observe that for p = 1 the relations (1) and (7) are identical. That is, Li(f‘l) (x,y) =

LS,'X)(x, y), which is classical Laguerre polynomials for two variables. Hereafter we explore
certain formulas and properties involving the TVGLP in (7). Throughout, let F(p; x, y, t) be the
left-handed generating function in (7).
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2.1 Explicit expression

We give an explicit expression of TVGLP Lgf;(x,y) and prove that these polynomials are

characterized by the generalized hypergeometric function in the following theorem.

Theorem 1. Letx, « € C,p € IN, and n € Ny. Then

[n/p] n—pk
() (=Dky" Pk
Lup(xy) = (14 ) Z KL+ ) (n— ph)L

_ (1+“)nyn ["/ﬁ] (-1 )(Pﬂ)k (—”)pk <x>Pk.

n! = k(1 + &) i y

(8)

Here and throughout, [m] denotes the greatest integer less than or equal to m € R. Or,
equivalently,

—n —n+l —n—1+p
(@) 1+, p’op T NN EAY
Ln,p(x,y) - n! Y PPP a+1 a+2 “+p( 1) y . (9)
p 4 p VAR p 4

Proof. Expanding the exponential in the left-hand side of (7), we find

xpk tpk
F(p;x,y,t) = (1— 1+zx+pk Z
Employing the binomial theorem
S\ —a - (a)n n __ . .
(1-z)7"=) (a; —;z), a€C,lz| <1, (10)
n=0
we obtain the following double series
(14 a + pk), y" xPk
Flpxyt) = ), Z P T T g (1)
n=0 k= T
Recall a known double series manipulation [13]:
0 o o [n/p]
Y. ) A(kn ZZAkn—pk peN, (12)
n=0 k=0 n=0 k=
is equivalent to
oo / oo oo
Z Z kn)zzz (k,n+pk), peN, (13)
n=0 k=0 n=0 k=0

where A denotes a function of two variables and the involved double series is assumed to be
absolutely convergent.
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Applying (12) in (11), we get
¥ (14 &+ pk)y_pr y" P 2Pk o

oo [n/p]
Flpixy.t) nZ:OkZ k! (n — pk)!

Equating the coefficients of t" in the right members of (7) and (14) yields

)k (1+a+ pk)n_pk yn—pk ok

%) [/p] (<1
L, (x,y) =
np(%Y) kgo k! (n — pk)!
Using (5) and a known identity
—Dknt
(n—k)!—( L) n’ k, ne Ny, 0<k<n,
(=n)k
we derive
—1)Pk n!
(1+a), and (n—pk)! = u

(_n)pk

1 K)o = 1
(14 o+ pk)y_pi Eme

Hence, using (16) in (15) leads to the desired identity (8). Finally, applying the multiplication

formula
<A+j—1

> , AeC, meNN, neNy,
m n

(A)mn = m™" ﬁ

j=1

to (8), gives the equivalent expression (9)

(14)

(15)

(16)

(17)

O

2.2 Generating functions
( )(x y) in the following theorem.

We establish two generating functions for TVGLP L,

Theorem 2. The two variables generalized Laguerre polynomials satisfy the following gener-

ating functions
p 1) L(‘x)
on< rx—i—llzx—i—Z, a+p <x_t> >:Z np(x,y) t" 18)
p p p p = (1+a)
and
1 B SEa NP & @uLip(ny)
AP A = il A i tH<1. (19
)C"”(“—l,“—,f, , 5L (1—]/1‘) L —ira, M 1)
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Proof. Using (8), (13), and (17), we have

oo («) n 1) 00 0o k
OO S G S GO0y g 1)y
H;O 1+ a), _n;o ! ,;)k!(1+a)pk_eyl<_§) P \p) T 0)
kT <7>k

In view of (4), the rightmost term of (20) can be expressed as the left-hand side of (18). Em-
ploying (8), (13), and (10), we find

§ Ol o e e+ 90, )" (©)pe -Gt}

=0 1 + 0() k=0 n—0 k! (1 + oc)pk
- o b - (25) )
(1 —yt) 2 k(1 + ) 1—yt ’
which, upon using (17) and (4), leads to the left-hand member of (19). O

It is noted that the case ¢ = 1 4 & of (19) yields the generating function (7).

2.3 Recurrence relations

(a)

We give some recurrence relations involving TVGLP L, ,(x,y) and their derivative in the
following theorem.

Theorem 3. The two variables generalized Laguerre polynomials satisfy the following rela-
tions

x DL (x,y) = nLip(x,y) +y(a+n) LY, (x,y) = (21)
0 0<n<wn-—-1
DLS,?‘;(x, y) =2 (a+7) =n=pre (22)
—pxP LT y), n>p,

yla+n) LW (xy) —nLi(xy) = pa? LD (), n>p, (23)

where D = i

Proof. From (20), we can set

00 («) n
Li’l 7 t - p p
G(p/ XY, t) = Z & = eyfq) < il ) ’ (24)

where
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Differentiating G(p; x, y, t) with respect to x and ¢, respectively, gives

—yP tp) —xP—1y4p

: _ ot
Gx(p;x,y,t)=e d>< Pz s

and

—xP P —xP P\ —xp -1

Combining Gx(p; x,y,t) and G(p; x,y, t) yields
xGx(p;x,y,t) —tGe(ps x, 9, t) +yt G(p; x,y,t) = 0. (25)

Applying the series in (24) to (25), we obtain

o0 xDL,(q;(x y)t

)3

n=1

oonL,wxy i nlp(xy) B
(1+a), _Z (1+a), Z (1+a),_1 =0 (26)

We find from (26) that each coefficient of " should be zero, which gives (21).

Differentiating both sides of (7) provides

" DLW () 1 — 1 —W N (g
L, Printen =g —ytwﬂf oF << pp) (77
= —pxPl Z Lﬁppp X, y)t
which, upon equating the coefficients of t", n > p, in the leftmost and rightmost members,

produces (22). Setting (22) in (21) provides (23). O

Theorem 4. The two variables generalized Laguerre polynomials is solution of the following
ditferential equation

[peﬂ( —1+0c—{—j)> (-1 p+1<)p]ﬁ%9+j—n—1)]Ln‘i‘,Z(x,y):o, 27)

. d
where 6 = X7

Proof. With the suggestion of equation (9) before us, we can proceed as follows

p= UEOWS pon bl | nkpo L1t 200 PR qyen <§>p>
n! p p p p p p y
p .
n i—n—1 _1\(p+1)k pk, n—pk
H(xnmg( 1=1) (1) Dk
p

R C R

1=
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Since %Bx”k = kxP¥, it follows that

8 13[ <i—;;—1>k (i—i—a—;k—l) (= 1) (P+ Dk Py n—pk

nl :pl <i+7a>k(k—1)!

1

But the last factor in <l+—"‘> L is <%) , so the above equality can be proceed as follows

P
P
g, EL () o
n 1=
n! P,
k=1 it — 1)
11:11<p)k—1(k L)

Now we replace k by k + 1 and have

1 JF.1 . (1+a)n -
[;611]0;(9_1-1-06%—1)}4): nt = 1 P (iga 1
_ 1(5),
y T (En=1) [T (tizne1) (—1)(pDkgpkynpk
= (=1)P*? <§>f’(1—|—(x)n [5] £Il< 5 >kzgl< : )( 1) (P Dk ypkyn—p
y n! ~ .
k 11;11<7)kk’
— p+1 (X P1E 1 o
(=1) H 0+j—n—-1)|¢
y 1P
[

Thus, we have shown that ¢ is solution of differential equation. It is worth noticing that
taking p = 1 in (27) gives the following

d2 x\ d 1\, @ B
<JCE + <(1 + 0() — ?> ﬁ + ?> Ll,n (x,y) = O, (28)

which is the differential of classical Laguerre polynomials for two variables.
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Mertoro 1Ii€l CTaTTi € NpeACTaBACHHsI Ta BUBUEHHsI y3araAbHeHMX MOAIHOMIB Aareppa Bia ABOX
3MiHHVX. MM AOBOAMMO, IITO Li MOAIHOMM XapaKTepPU3YIOThCS Y3araAbHEHOIO rilepreoMeTpUYHO0
dyuxieto. [ToxaszaHo sTBHe IIpeACTaBAEHHS, TeHePYIOUy (PYHKIIIO Ta AesIKi peKypeHTHi CITiBBiAHO-
mIeHHs1. BiAbIle TOTO, i MOAIHOMY 3'SIBASIIOTBCS SIK PO3B’SI3KM AESIKMX AMdpepeHITiaAbHIX PiBHSHb.

Kntouosi cnosa i ppasu: moaiHom Aareppa, TiepreoMeTpuuHa (pyHKIIisI, TeHepyoda PyHKIIis,
PeKypeHTHe CITiBBiAHOIIIeHHS.



