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MATRIX DIOPHANTINE EQUATIONS OVER QUADRATIC RINGS AND THEIR
SOLUTIONS

LADZORYSHYN N.B.!, PETRYCHKOVYCH V.M.!, ZELISKO H.V.2

The method for solving the matrix Diophantine equations over quadratic rings is developed. On
the basic of the standard form of matrices over quadratic rings with respect to (z, k)-equivalence pre-
viously established by the authors, the matrix Diophantine equation is reduced to equivalent matrix
equation of same type with triangle coefficients. Solving this matrix equation is reduced to solving
a system of linear equations that contains linear Diophantine equations with two variables, their so-
lution methods are well-known. The structure of solutions of matrix equations is also investigated.
In particular, solutions with bounded Euclidean norms are established. It is shown that there exists
a finite number of such solutions of matrix equations over Euclidean imaginary quadratic rings. An
effective method of constructing of such solutions is suggested.
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INTRODUCTION AND PRELIMINARY RESULTS

The Sylvester-type matrix linear equations, the Lyapunov matrix equations, the matrix Dio-
phantine equations arise in different sections of mathematics and are used in problems of
control and dynamical systems theory [5,7,18,19,21]. New methods to solve such matrix equa-
tions over different domains, to describe the structure of their solutions are needed. There
are some ways to solve such equations over the field, that is, the elements of their coefficient
matrices are from the field [13]. For Sylvester-type polynomial matrix equations the conditions
of the existence and uniqueness of the so-called minimum solutions are specified in the case
when the coefficients of the equation are regular matrices [4]. In [1,3] there are estimated
degrees of the solutions of such matrix equations in the case where both the coefficients of
the matrix equation may be nonregular. A special form of polynomial matrices, established
in [6, 14, 15], with respect to semiscalar equivalence is applied. In [2], authors use obtained
in [16,17] the standard form of pair of matrices relative to generalized equivalence for describ-
ing solutions of matrix unilateral and bilateral equations over the principal ideal rings and Be-
zout rings. In [11], the criteria for solvability of matrix linear unilateral and bilateral equations
over arbitrary quadratic rings are established, and in [9] integer solutions of these equations
are described. In this article, it is proposed a method of constructing solutions of the matrix
Diophantine equations over quadratic rings and described their structure with application.
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Standard forms of matrices and their pairs with respect to (z, k)-equivalence are established in
the works [8,10,12,20].

The quadratic ring K = Z {\/ﬂ , where Z is a ring of integers, k € Z, k # 0,1 and k is not
divisible by the square of prime number, is formed by the following elements:

Z {\/ﬂ — {a1 taVk ) a1, € Z} ifk=2,3 (mod 4); (1)

z[Vk| = {2+ Zvk|a,a € Z, (a1 — @) divided by 2} ifk=1 (mod4). ()

The quadratic ring K = Z [\/ﬂ is called real if k > 0.If k < 0, then it is called an imaginary
quadratic ring.

Let K be a Euclidean quadratic ring. Then the Euclidean norm of an element of K is defined
as:

if k <0, then £(a+bVk) =a*—kb? or € <g+g\/%> = i (az—kb2>,
if k>0, then &(a+bvk) = )az—kbz‘ or € <§+§¢E> = i ‘az—kbz‘

depending on the appearance (1) or (2) of the element of a ring K.

Associated elements have the same Euclidean norm. Note that u is a unit if and only if
E(u) = £1. The Euclidean norm is completely multiplicative, i.e. £(ab) = £(a)E(), from
a ) _ ¢ (a)
b E(b)

In [12], the concept of (z, k)-equivalence of matrices and their pairs over quadratic rings is
introduced.

The matrices A,B € M <m, n,”Z {\/ﬂ) are called (z, k)-equivalent if there exist invertible

here we can get for the norm of the proportion of elements that £ <

matrices S over a ring of integers Z and Q over a quadratic ring K = Z [\/ﬂ , such that
A = SBQ.

In the same article there is also established a standard form for matrices of order n over
Euclidean quadratic rings and quadratic principal ideal rings. Using this form, the solutions
of the matrix equation over these rings are described.

Without difficulty, we will write down the standard form for the rectangular matrix A of
order m x n with respect to (z, k)-equivalence.

Let Ae M (m,nK),m <n,and

DA = diag(y{‘,...,yﬂ,O,...,O), Wilpiv, i=1,...,m—1,

is the Smith normal form of matrix A, p;, i = 1,...,m, are the invariant factors of matrix A.
Then a matrix A is (z, k)-equivalent to the triangular matrix

w0 0 0 0
TA — SAQ = tapr 2 0 0 0 ’
tmpr tmop2 - Hm 0 .-+ O

where S € GL (m,Z), Q € GL <n,Z [\/ﬂ) and

ti=0, if =1 ij=1...,mj<j )
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Pairs of matrices (A1, A2) and (By, B2), where A;, B € M <n,Z [\/ﬂ ), i = 1,2, we call
(z, k)-equivalent if there exist, common to both matrices A; and Aj, an invertible matrix S over
a ring of integers Z and invertible matrices Q11, Q42 over a quadratic ring K = Z {\/ﬂ such
that B; = SAlQA1 and B, = SAQQAZ.

In [8,10,12], the standard forms for certain pairs of matrices over Euclidean quadratic rings
and quadratic principal ideal rings are installed. In this article, using standard forms of ma-
trices and their pairs, the matrix Diophantine equation is reduced to a matrix linear equation
with matrices-coefficient in triangular standard forms. The solutions with certain properties
of these equations are described, in particular solutions of bounded Euclidean norms are iso-
lated. It is established that there exists a finite number of such solutions of the matrix equation
over an imaginary Euclidean quadratic ring and the easy way to find them is proposed.

1 SOLUTIONS OF THE MATRIX DIOPHANTINE EQUATION

Consider the matrix Diophantine equation

AX + BY =C, )

where A,B,C € M (m,n,K), m < n, are known matrices and X,Y € M (n,K) are unknown
matrices over a Euclidean quadratic ring K = Z [\/E] .

Let the pair of matrices (A, B) from matrix equation (5) be (z, k)-equivalent to the pair
(TA, TB) in standard forms T4 and T5 of matrices A and B, that is

udh o - 0 0 --- 0
e ©
Eabd thotst o pm 0 oo 0
and
P‘? 0 ... 0 0 --- 0
e & A | ?
Bkt tookts - M O 0

where S € GL (m,Z), Q4,QF € GL <n,Z [\/ﬂ) and the elements tl’?, tg-, ij=1,..,m,
i < j, satisfy the conditions (3) and (4).

Then considering the ratio (6) and (7) between the matrices A, B and its standard forms
T4, TB from the matrix equation (5) we obtain the following equation

SAQA (QA) X 4+ sBQ? <QB> 'y —sc )
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Using the right elementary operations, reduce the matrix SC to the lower triangular form,
that is, for some invertible matrix V € GL (n, K) we have

;. 0 - 0 -+ 0
sCy — Gy G -+ 0 -+ 0 _e
5m1 5m2 Emm 0

Then from the matrix equation (8) we obtain the following equation

SAQA <(QA) 1xv) + SBQB <(QB)1YV> — 5CV

or
TAH + TBw = C, )

where

H= <QA) xv, we (QB>_1 YV, € =SCV. (10)

Matrix equations (5) and (9) are equivalent, i.e. the matrix equation (5) has a solution if and
only if the matrix equation (9) is solvable and the solutions of these equations are related by a
relation (10). Therefore, the description of the solutions of the matrix equation (5) is reduced to
the description of the solutions of the matrix equation (9) with the matrix-coefficients of trian-
gular forms, and therefore it is simpler. In [12], it is established that the Sylvester-type matrix
equation AX + YB = C with matrix-coefficients from Euclidean quadratic ring is equivalent
to the matrix equation with the coefficients T4 and T® in the standard forms of the matrices A
and B. If this matrix equation is solvable, then it has solutions with bounded Euclidean norms.
It should be noted that not every solvable matrix Diophantine equation (9) over such a ring has
solutions with such restrictions. We establish the matrix equations for which such solutions
exist.

Theorem 1. Let K be a Euclidean quadratic ring, A,B,C € M(m,n,K), m < n,

D =diag(L,..., Luly, g 15, 0,...,0), up #1, 1>0,

be the Smith normal form of matrix B with a matrix equation (9), d4 and d? are greatest
common divisors of minors of the m-th order of matrices A and B, respectively. If (d,An, d,Bn) =1,
then a matrix equation (9) has such solutions

0o ... 0 0 .0 0 --- 0
0o ... 0 0 .0 0 --- 0

g - g O 0 0 0

o |[Pe2n o B Moo 0 0 0
Wy -+ hm,l+1 hm,l+2 o hym 0 -+ 0

0o ... 0 0 .0 0 --- 0

0 0 0 .- 0 0 0
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Wi 0 0 0 0 -+ 0
Wiyl o Wi 41 0 oo 0 0 --- 0
Wi42,1 "0 Wig21+1 Wig2,142 0 0 0
W=1| --. A (11)
W1 Tt wmll+1 wm’lJrz e Wmm 0 e 0
0 ce 0 0 - 0 0O --- 0
0 e 0 0 e 0 0 --- 0

where non-zero elements h;; of a matrix H are with bounded Euclidean norms, that is
€ () <5<ﬁ), if i #£0, i=l+1142...,m j=1,..,i (12)

Proof. Itis known that the matrix equation (5) is solvable if and only if the left greatest common
divisor of the matrices A and B is the left divisor of the matrix C. Since (d,An, dB) =1, then it
is obvious that this condition is true and the matrix equation (9) is solvable. From the matrix
equation (9) we obtain the following system of equations:

i
Z (tl‘-;‘yfhsj + tﬁyfu@) =&, i=1....m j=1,...,n, (13)
s=1

where t2 =t = 1 and Cij=0,j>1
Consider the subsystem of system (13) ati =1, j=1,...,n

A B, _ =
(uihi + pufwi = e,

uithiy + pbwip =0,

V{‘hlm + ,u?wlm =0, (14)
V{‘hl,erl + ubwy i1 =0,

\ ,Mithn + ﬂ?wln = 0.
Since, )
B
dpy=dp = pipg o pp do=dy = pip3

then <yiA, y}g) = 1forall i,j =1,...,m. And therefore (]/t{‘, ]/t?) = 1 and the first equation of
this system has solutions, then obviously a subsystem (14) is solvable. From [12, Lemma 2] it
is known that there exists solution 1%, w9, of an equation

uithy + plwn = én, (15)
such that

£ (1) <& (k).

Obviously, the following n — 1 equations from subsystem (14) have zero solutions

h?]: , w?]:o, j:2,3,...,n.
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Fori =2, j =1,...,n, we have such subsystem

r ~
to it + s hoy + 5 uBwey + pfwy = &,

B33 g + st hoy + by i W + 5w = 8,
t ui s + uithos + 8 uBwis + ulwys =0,

' 16
t?l:u?hlm + ﬂ?hZM + f%#?wm + ]/llzgw2m =0, (16)
B I 1+ g i + B T W01 g1+ PR W21 =0,
(511 M + g hon + 3 YW1 + pEwan = 0.
Consider the first equation of subsystem (16)
t?lyfhn + ,‘M?hzl + tlzgly?wll + y123w21 = (p1. (17)

Let us substitute the solution h(l)l, w(l)1 of the equation (15) from the subsystem (14) into the
equation (17), we obtain the following equation:

Mot + Sy = — By iy — typr ).
Since (p4', u) = 1, this equation is solvable and it has solution h;, w9, such that
£ () <€ (k).

In equation tfl yfhlz + y?hzz + tgly]fwlz + ]/1123 Wy = &y, substitute the solution h(l)z =0, w(l)z =
0 from the subsystem (14), we will obtain y?hzz + ]/tg Wy = Cp. This equation is solvable and
there exists a solution hgz, wgz, such that

& (n) <& ().
Consider the following equation of a subsystem (16)
t5 11 13 + 3 hos + 9 i w13 + phwas = 0.

Since h(1)3 =0, w(1)3 = 0, the solutions of this equation will be hg3 =0, wg3 =0.
Considering similarly, we establish that the system (13) has the solutions h?j, w?]., such that

e(ny) <&(uf), if i=tm j=1...i
and h?]-, w?j =0ifi=1,...,mj=i+1,i+2,...,n. The theorem is proved. O
Theorem 2. Let K = Z [\/ﬂ be an imaginary Euclidean quadratic ring. Then the matrix
equation (9) over a ring K has a finite number solutions of the form (11) with conditions (12).

Proof. From solutions of system (13) we will get the solutions

n
ij=1"

n

H= Hhi]' ij=1"

W = [

such that elements hi]-, i,j = 1,...,n, of a matrix H have bounded Euclidean norms. It is
known that there is a finite number of elements from the imaginary Euclidean quadratic ring
K, which have the same Euclidean norm value. Therefore, there is a finite number of these
solutions H, W over the imaginary Euclidean quadratic ring. The proof is complete. O



374 LADZORYSHYN N.B., PETRYCHKOVYCH V.M., ZELISKO H.V.

The Euclidean norm E(A) of the matrix A = ||a;;|

& (apq) of elements of the matrix A.

The Euclidean norm £(H) of the matrix H from the solution (11) of the matrix equation (9)
is less than the Euclidean norm & (u2) of the last invariant multiplier u2 of the matrix H from
the equation (5). The Euclidean norm &(D?) of the canonical diagonal form D? of the matrix
B equals to the Euclidean norm & () of the invariant multiplier u2. Therefore we obtain the
following result.

T]Zl is called the greatest Euclidean norm

Corollary 1. Let the matrices A and B from the matrix equation (9) are such that (d4,d5) = 1.
Then this equation has the solutions of H, W, such that the Euclidean norm £(H) of the matrix
H is less than the Euclidean norm € (DP) of the canonical diagonal form D® of matrix B. If K
is an imaginary Euclidean quadratic ring, then there exists a finite number of such solutions
of the matrix equation (9).

Note that if for matrices A and B from the equation (9) (d7,d5) # 1, then the equation
(9) may not have solutions H, W of the form (11) such that £ (h;;) < € (u?), if hj # 0,
i=1+11+2,....m j=1,...,i
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Po3pobaeHO METOA PO3B’sI3yBaHHSI MaTPUUHMX Ai0paHTOBMX PiBHSHD Hah KBaAPaTVIHVMM KiAb-
ussmMu. Ha ocHOBI paHillle BCTAaHOBAEHOI aBTOpaMI CTAaHAAPTHOI POPMIM MaTpPMITh HaA KBaAPaTUIHN-
M KIABIISIMI BIAHOCHO (Z, k)-eKBiBaAEHTHOCTI MaTpudHe Al0paHTOBe PiBHSIHHS 3BEACHO AO €KBi-
BaA€HTHOTO TaKOTO X TUITy MaTPUIHOTO PiBHSHHS 3 TPUMKYTHMMI KoedpirlieHTamn. Po3s’si3yBaHHS
LIbOrO MAaTPUYHOTO PiBHSHHS 3B€ACHO AO PO3B’SI3yBaHHS CUCTEMU AIHIHMX PiBHSHD, SIKa MiCTUTB Ai-
HilfHI ABOYAEHHI AlOpaHTOBI PiBHSIHHS, METOAM PO3B’sTyBaHHS SIKMX A06pe BiaoMi. AocaiaxkeHO Ta-
KOX CTPYKTYPY PO3B’sI3KiB MaTPUUIHMX PiBHSIHB. 30KpeMa, BCTAHOBAEHO PO3B’SI3KM 3 OOMeXeHNMM
eBKAipAOBMMM HOpMamt. ITokasaHo, IIT0 TaKMX pO3B’SI3KiB MaTpUYHMX PiBHSIHD HaA KBaApaTUYHN-
MU eBKAIAOBVMM YSIBHMMM KIABIISIMM € CKiHUeHHa KiABKiCTB. 3alIpOITOHOBAHO edpeKTUMBHIIA CTIoci6
o6y AOBM TaKMX PO3B’SI3KiB.

Kniouosi cnioea i ppasu: KBarpaTIdHe Kiablle, MaTpus, (z, k)-eKBiBaA€HTHICTb MaTpUIIb, MATPHU-
uJHe AlodpaHTOBe PiBHSIHHS, PO3B’SI30K MATPUIHOTO PiBHSHHS.



